Entry Kurtz:1996:WCSb from lnm1990.bib
Last update: Sat Oct 14 02:54:20 MDT 2017
Top |
Symbols |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Kurtz:1996:WCSb,
author = "Thomas G. Kurtz and Philip E. Protter",
title = "Weak convergence of stochastic integrals and
differential equations {II}: Infinite dimensional
case",
journal = j-LECT-NOTES-MATH,
volume = "1627",
pages = "197--285",
year = "1996",
CODEN = "LNMAA2",
DOI = "https://doi.org/10.1007/BFb0093181",
ISBN = "3-540-61397-8 (print), 3-540-68513-8 (e-book)",
ISBN-13 = "978-3-540-61397-8 (print), 978-3-540-68513-5
(e-book)",
ISSN = "0075-8434 (print), 1617-9692 (electronic)",
ISSN-L = "0075-8434",
MRclass = "60H05 (60B12 60G57)",
MRnumber = "1431303 (98h:60074)",
MRreviewer = "Leszek S{\l}omi{\'n}ski",
bibdate = "Fri May 9 19:07:27 MDT 2014",
bibsource = "http://www.math.utah.edu/pub/tex/bib/lnm1990.bib",
URL = "http://link.springer.com/chapter/10.1007/BFb0093181/",
acknowledgement = ack-nhfb,
book-DOI = "https://doi.org/10.1007/BFb0093175",
book-URL = "http://www.springerlink.com/content/978-3-540-68513-5",
fjournal = "Lecture Notes in Mathematics",
journal-URL = "http://link.springer.com/bookseries/304",
}
Related entries
- 60B12,
1426(0)1,
1655(0)77,
1665(0)1,
1665(0)37
- 60G57,
1426(0)275,
1541(0)1,
1613(0)108
- 60H05,
1426(0)166,
1444(0)63,
1444(0)141,
1485(0)10,
1485(0)39,
1485(0)95,
1526(0)1,
1526(0)11,
1526(0)70,
1526(0)127,
1583(0)110,
1583(0)113,
1583(0)153,
1583(0)189,
1583(0)236,
1608(0)1,
1613(0)56,
1626(0)68,
1626(0)261,
1627(0)1,
1655(0)16,
1655(0)24,
1655(0)198,
1686(0)73,
1686(0)137
- case,
5(0)81,
1447(0)333,
1479(0)1,
1493(0)87,
1493(0)107,
1496(0)277,
1507(0)157,
1521(0)111,
1524(0)240,
1530(0)56,
1530(0)226,
1532(0)97,
1540(0)149,
1566(0)117,
1580(0)59,
1588(0)68,
1588(0)96,
1612(0)95,
1619(0)31,
1619(0)67,
1655(0)126,
1663(0)23,
1663(0)63,
1668(0)114,
1670(0)11,
1670(0)15,
1670(0)59,
1670(0)69,
1675(0)32,
1675(0)131,
1721(0)131
- convergence,
1419(0)38,
1419(0)97,
1426(0)188,
1426(0)282,
1435(0)191,
1442(0)231,
1457(0)126,
1477(0)1,
1477(0)52,
1477(0)64,
1477(0)85,
1485(0)113,
1485(0)178,
1503(0)24,
1511(0)100,
1526(0)32,
1526(0)61,
1543(0)116,
1546(0)184,
1549(0)51,
1550(0)98,
1550(0)169,
1561(0)67,
1563(0)21,
1583(0)102,
1583(0)110,
1583(0)113,
1627(0)1,
1675(0)53,
1695(0)59,
1709(0)334
- differential,
1419(0)82,
1421(0)83,
1422(0)15,
1434(0)45,
1444(0)63,
1444(0)128,
1445(0)72,
1446(0)58,
1446(0)104,
1447(0)155,
1451(0)163,
1453(0)121,
1453(0)137,
1457(0)58,
1462(0)122,
1463(0)278,
1471(0)95,
1473(0)187,
1475(0)1,
1475(0)76,
1475(0)88,
1475(0)210,
1475(0)218,
1478(0)255,
1485(0)121,
1486(0)123,
1494(0)82,
1497(0)141,
1502(0)12,
1506(0)99,
1508(0)65,
1510(0)120,
1520(0)81,
1520(0)261,
1525(0)29,
1526(0)113,
1526(0)189,
1537(0)74,
1540(0)25,
1550(0)149,
1586(0)118,
1607(0)9,
1607(0)113,
1609(0)208,
1613(0)181,
1626(0)218,
1627(0)1,
1627(0)148,
1640(0)103,
1656(0)191,
1659(0)127,
1660(0)44,
1670(0)125,
1683(0)29,
1683(0)69,
1686(0)166,
1686(0)188,
1688(0)103,
1707(0)13,
1709(0)291,
1709(0)315
- dimensional,
1417(0)287,
1423(0)35,
1433(0)57,
1435(0)143,
1450(0)64,
1469(0)127,
1481(0)175,
1497(0)112,
1540(0)309,
1585(0)1,
1585(0)47,
1585(0)109,
1611(0)25,
1611(0)61,
1632(0)74,
1669(0)117,
1704(0)303,
1715(0)1,
1715(0)65
- II,
1358(0)65,
1415(0)43,
1418(0)57,
1418(0)175,
1419(0)136,
1420(0)247,
1434(0)103,
1435(0)201,
1436(0)101,
1448(0)25,
1453(0)21,
1478(0)1,
1479(0)131,
1479(0)196,
1499(0)81,
1523(0)111,
1540(0)149,
1588(0)96,
1595(0)74,
1633(0)103,
1650(0)199,
1657(0)66,
1721(0)207
- infinite,
1440(0)22,
1450(0)64,
1481(0)175,
1486(0)187,
1514(0)124,
1561(0)29,
1617(0)43,
1632(0)74,
1649(0)1,
1674(0)106,
1704(0)303,
1715(0)65,
1718(0)185
- integral,
1419(0)7,
1419(0)25,
1419(0)38,
1419(0)97,
1419(0)131,
1426(0)15,
1426(0)137,
1444(0)141,
1445(0)1,
1446(0)16,
1450(0)196,
1452(0)65,
1453(0)51,
1453(0)101,
1455(0)160,
1455(0)243,
1455(0)373,
1461(0)26,
1461(0)35,
1461(0)95,
1461(0)129,
1461(0)154,
1461(0)182,
1465(0)26,
1465(0)55,
1468(0)94,
1468(0)408,
1473(0)53,
1475(0)64,
1475(0)204,
1480(0)165,
1494(0)39,
1494(0)73,
1494(0)142,
1497(0)46,
1505(0)1,
1526(0)11,
1526(0)70,
1540(0)39,
1549(0)1,
1549(0)137,
1555(0)193,
1573(0)409,
1575(0)42,
1586(0)118,
1592(0)45,
1592(0)51,
1592(0)85,
1592(0)106,
1603(0)161,
1620(0)349,
1627(0)1,
1679(0)77,
1683(0)47,
1683(0)109,
1684(0)70,
1686(0)73,
1686(0)137,
1703(0)73,
1711(0)67,
1719(0)51
- Kurtz, Thomas G.,
1627(0)1,
1627(0)z,
1627(0)z-1
- Protter, Philip E.,
1627(0)1,
1627(0)z,
1627(0)z-1
- stochastic,
1442(0)54,
1442(0)99,
1442(0)126,
1442(0)131,
1442(0)216,
1444(0)63,
1444(0)128,
1444(0)141,
1469(0)1,
1485(0)95,
1485(0)121,
1486(0)123,
1486(0)141,
1486(0)196,
1520(0)1,
1520(0)217,
1526(0)1,
1526(0)113,
1526(0)189,
1538(0)117,
1538(0)125,
1546(0)89,
1557(0)159,
1583(0)122,
1592(0)121,
1606(0)109,
1613(0)44,
1613(0)117,
1613(0)181,
1626(0)218,
1627(0)1,
1627(0)96,
1655(0)207,
1656(0)191,
1686(0)73,
1686(0)137,
1686(0)166,
1686(0)188,
1688(0)103,
1690(0)123,
1692(0)7,
1692(0)33,
1692(0)77,
1695(0)3,
1709(0)1,
1709(0)291,
1709(0)315,
1714(0)39,
1720(0)87
- S{\l}omi{\'n}ski, Leszek,
1627(0)1,
1627(0)96,
1627(0)148
- weak,
1364(0)58,
1422(0)93,
1425(0)91,
1431(0)73,
1442(0)1,
1448(0)93,
1448(0)99,
1455(0)373,
1475(0)110,
1494(0)113,
1494(0)185,
1511(0)75,
1526(0)32,
1530(0)161,
1540(0)269,
1614(0)1,
1626(0)218,
1627(0)1,
1670(0)69