Entry Helffer:2005:MHP from lnm2000.bib
Last update: Sat Oct 14 02:54:42 MDT 2017
              
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Helffer:2005:MHP,
  author =       "Bernard Helffer and Francis Nier",
  title =        "8. {Maximal} Hypoellipticity for Polynomial of Vector
                 Fields and Spectral Byproducts",
  journal =      j-LECT-NOTES-MATH,
  volume =       "1862",
  pages =        "79--87",
  year =         "2005",
  CODEN =        "LNMAA2",
  DOI =          "https://doi.org/10.1007/978-3-540-31553-7_8",
  ISBN =         "3-540-24200-7 (print), 3-540-31553-5 (e-book)",
  ISBN-13 =      "978-3-540-24200-0 (print), 978-3-540-31553-7
                 (e-book)",
  ISSN =         "0075-8434 (print), 1617-9692 (electronic)",
  ISSN-L =       "0075-8434",
  bibdate =      "Fri May 9 19:07:05 MDT 2014",
  bibsource =    "http://www.math.utah.edu/pub/tex/bib/lnm2000.bib",
  URL =          "http://link.springer.com/content/pdf/10.1007/978-3-540-31553-7_8.pdf",
  acknowledgement = ack-nhfb,
  book-DOI =     "https://doi.org/10.1007/b104762",
  book-URL =     "http://www.springerlink.com/content/978-3-540-31553-7",
  fjournal =     "Lecture Notes in Mathematics",
  journal-URL =  "http://link.springer.com/bookseries/304",
}
Related entries
- field,
523(0)85,
1741(0)78,
1761(0)59,
1764(0)127,
1765(0)335,
1776(0)39,
1778(0)107,
1797(0)27,
1798(0)13,
1831(0)263,
1864(0)59,
1877(0)249,
1887(0)35,
1900(0)63,
1910(0)99,
1927(0)1,
1943(0)35,
1962(0)145,
1983(0)203
 
- Helffer, Bernard,
1862(0)1,
1862(0)11,
1862(0)19,
1862(0)27,
1862(0)43,
1862(0)65,
1862(0)73,
1862(0)89,
1862(0)97,
1862(0)113,
1862(0)133,
1862(0)147,
1862(0)163,
1862(0)173,
1862(0)181,
1862(0)189,
1862(0)193,
1862(0)195
 
- Hypoellipticity,
1862(0)11,
1862(0)73
 
- maximal,
1785(0)3,
1785(0)73,
1785(0)145,
1807(0)169,
1807(0)223,
1855(0)65,
1862(0)97,
1896(0)183,
1910(0)117,
1975(0)199
 
- Nier, Francis,
1862(0)1,
1862(0)11,
1862(0)19,
1862(0)27,
1862(0)43,
1862(0)65,
1862(0)73,
1862(0)89,
1862(0)97,
1862(0)113,
1862(0)133,
1862(0)147,
1862(0)163,
1862(0)173,
1862(0)181,
1862(0)189,
1862(0)193,
1862(0)195
 
- polynomial,
830(0)11,
1745(0)27,
1752(0)239,
1761(0)87,
1794(0)321,
1795(0)107,
1795(0)133,
1795(0)153,
1795(0)175,
1807(0)20,
1817(0)1,
1817(0)25,
1817(0)167,
1832(0)60,
1834(0)83,
1870(0)105,
1875(0)13,
1877(0)35,
1883(0)1,
1883(0)119,
1883(0)229,
1883(0)255,
1885(0)61,
1899(0)235,
1939(0)101,
1957(0)1,
1979(0)147
 
- spectral,
1724(0)239,
1794(0)199,
1807(0)37,
1821(0)173,
1857(0)95,
1862(0)113,
1880(0)235,
1934(0)1,
1934(0)19,
1957(0)1,
1957(0)1
 
- vector,
1741(0)78,
1764(0)127,
1772(0)15,
1780(0)15,
1798(0)13,
1841(0)127,
1863(0)139,
1918(0)85,
1927(0)1,
1987(0)71,
1987(0)97