Entry Kashiwara:2008:EDC from lnm2000.bib
Last update: Sat Oct 14 02:54:42 MDT 2017
              
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Kashiwara:2008:EDC,
  author =       "Masaki Kashiwara",
  title =        "Equivariant Derived Category and Representation of
                 Real Semisimple {Lie} Groups",
  journal =      j-LECT-NOTES-MATH,
  volume =       "1931",
  pages =        "137--234",
  year =         "2008",
  CODEN =        "LNMAA2",
  DOI =          "https://doi.org/10.1007/978-3-540-76892-0_3",
  ISBN =         "3-540-76891-2 (print), 3-540-76892-0 (e-book)",
  ISBN-13 =      "978-3-540-76891-3 (print), 978-3-540-76892-0
                 (e-book)",
  ISSN =         "0075-8434 (print), 1617-9692 (electronic)",
  ISSN-L =       "0075-8434",
  MRclass =      "22E46 (14F05; 14F10); 22E46 (14M15 18E30)",
  MRnumber =     "2409699 (2010e:22004)",
  MRreviewer =   "Corrado Marastoni",
  bibdate =      "Fri May 9 19:07:21 MDT 2014",
  bibsource =    "http://www.math.utah.edu/pub/tex/bib/lnm2000.bib",
  URL =          "http://link.springer.com/content/pdf/10.1007/978-3-540-76892-0_3.pdf",
  ZMnumber =     "1173.22010",
  acknowledgement = ack-nhfb,
  book-DOI =     "https://doi.org/10.1007/978-3-540-76892-0",
  book-URL =     "http://www.springerlink.com/content/978-3-540-76892-0",
  fjournal =     "Lecture Notes in Mathematics",
  journal-URL =  "http://link.springer.com/bookseries/304",
}
Related entries
- 22E46,
1931(0)1,
1931(0)259
 
- category,
1747(0)65,
1765(0)15,
1765(0)173,
1765(0)217,
1765(0)343,
1836(0)1,
1836(0)19,
1959(0)15,
1960(0)11,
1960(0)303,
1967(0)21,
1967(0)53,
1967(0)153,
1967(0)219
 
- derived,
1810(0)77,
1946(0)111,
1952(0)165,
1959(0)15,
1960(0)11,
1960(0)43,
1960(0)83,
1960(0)303,
1960(0)343,
1960(0)377
 
- group,
830(0)53,
1618(0)31,
1731(0)133,
1743(0)33,
1752(0)167,
1752(0)199,
1752(0)213,
1755(0)206,
1755(0)241,
1774(0)17,
1778(0)59,
1778(0)83,
1778(0)107,
1778(0)143,
1780(0)15,
1782(0)5,
1795(0)175,
1798(0)195,
1815(0)77,
1815(0)127,
1815(0)185,
1815(0)201,
1819(0)1,
1824(0)127,
1827(0)89,
1831(0)1,
1831(0)137,
1831(0)253,
1835(0)103,
1845(0)109,
1849(0)329,
1852(0)55,
1859(0)5,
1862(0)73,
1863(0)15,
1863(0)59,
1863(0)139,
1863(0)169,
1865(0)1,
1865(0)99,
1866(0)1,
1866(0)161,
1909(0)1,
1913(0)177,
1925(0)21,
1925(0)155,
1925(0)169,
1931(0)1,
1934(0)93,
1941(0)185,
1944(0)29,
1944(0)81,
1944(0)149,
1968(0)1,
1973(0)139,
1975(0)79,
1975(0)91
 
- Lie,
1755(0)241,
1824(0)127,
1845(0)109,
1859(0)5,
1887(0)101,
1925(0)69,
1931(0)1
 
- real,
523(0)9,
1746(0)79,
1746(0)97,
1746(0)127,
1773(0)83,
1848(0)49,
1848(0)109,
1850(0)179,
1857(0)95,
1903(0)1,
1903(0)99,
1911(0)229,
1938(0)55,
1941(0)47,
1941(0)143
 
- representation,
830(0)11,
830(0)53,
1618(0)31,
1735(0)53,
1755(0)123,
1757(0)1,
1757(0)79,
1757(0)88,
1767(0)67,
1770(0)135,
1776(0)193,
1794(0)199,
1815(0)3,
1815(0)161,
1815(0)201,
1830(0)151,
1832(0)81,
1832(0)370,
1846(0)185,
1863(0)15,
1873(0)71,
1874(0)47,
1899(0)343,
1909(0)15,
1909(0)37,
1918(0)27,
1918(0)151,
1931(0)1,
1931(0)259,
1934(0)295,
1935(0)11,
1968(0)1,
1979(0)365
 
- Semisimple,
1789(0)115,
1789(0)131,
1845(0)109