Last update: Sun Oct 15 02:39:02 MDT 2017
Top |
Symbols |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Sandri:1996:NCL,
author = "Marco Sandri",
title = "Numerical Calculation of {Lyapunov} Exponents",
journal = j-MATHEMATICA-J,
volume = "6",
number = "3",
pages = "78--84",
month = "Summer",
year = "1996",
CODEN = "????",
ISSN = "1047-5974 (print), 1097-1610 (electronic)",
ISSN-L = "1047-5974",
bibdate = "Sat Nov 6 13:34:12 MDT 2010",
bibsource = "http://www.math.utah.edu/pub/tex/bib/mathematicaj.bib;
http://www.mathematica-journal.com/issue/v6i3/",
URL = "http://www.mathematica-journal.com/issue/v6i3/article/sandri/contents/63sandri.pdf;
http://www.mathematica-journal.com/issue/v6i3/article/sandri/index.html",
abstract = "The Lyapunov characteristic exponents play a crucial
role in the description of the behavior of dynamical
systems. They measure the average rate of divergence or
convergence of orbits starting from nearby initial
points. Therefore, they can be used to analyze the
stability of limits sets and to check sensitive
dependence on initial conditions, that is, the presence
of chaotic attractors. This article shows how to use
Mathematica to compute the Lyapunov spectrum of a
smooth dynamical system.",
acknowledgement = ack-nhfb,
journal-URL = "http://www.mathematica-journal.com/",
}
Related entries
- analyze,
16(z)z-3
- article,
4(1)70,
4(2)54,
6(2)32,
6(2)41,
6(2)52,
6(2)60,
6(2)66,
6(3)28,
6(3)37,
6(3)44,
6(3)58,
6(3)73,
11(2)172,
11(2)284,
12(1)1,
12(1)2,
12(1)3,
12(1)4,
13(z)z,
13(z)z-1,
13(z)z-2,
13(z)z-4,
13(z)z-6,
14(z)z,
14(z)z-2,
14(z)z-5,
15(z)z,
15(z)z-1,
15(z)z-8,
16(z)z,
16(z)z-1,
16(z)z-3,
16(z)z-5,
16(z)z-6
- behavior,
2(1)75,
2(1)75-1,
4(2)54,
8(2)z-1,
12(1)1,
14(z)z,
14(z)z-9
- calculation,
2(3)z-4,
6(2)32,
11(2)284,
13(z)z-5,
14(z)z-9
- chaotic,
15(z)z-4
- compute,
4(1)81,
13(z)z-6,
16(z)z-4,
16(z)z-5
- condition,
13(z)z-6,
15(z)z,
16(z)z-5
- convergence,
13(z)z
- description,
6(2)66,
14(z)z-5
- dynamical,
4(4)z-4,
11(3)z-2
- exponent,
15(z)z-7
- how,
4(1)9,
4(1)74,
4(1)z-3,
4(2)10,
4(2)54,
6(2)41,
6(2)52,
6(2)66,
6(3)28,
8(4)z-4,
11(2)284,
12(1)1,
13(z)z-8,
13(z)z-9,
14(z)z-2,
15(z)z-2,
15(z)z-3,
15(z)z-5,
16(z)z,
16(z)z-7
- initial,
13(z)z-3,
13(z)z-6,
14(z)z-5
- limits,
2(2)54,
2(2)54-1,
4(1)28,
8(3)z-5
- measure,
4(2)10,
6(3)10,
6(3)73
- numerical,
1(2)84,
1(3)96-1,
1(3)z-6,
3(4)66,
4(1)z-4,
5(2)z-3,
6(1)z-3,
6(4)z-11,
8(3)z-1,
9(4)z-4,
13(z)z-6,
14(z)z,
14(z)z-9,
16(z)z-4
- orbit,
13(z)z-9
- point,
2(3)z-4,
4(1)64,
5(4)17,
6(3)14,
6(3)37,
13(z)z-3,
14(z)z-8,
15(z)z-6
- rate,
14(z)z,
14(z)z-6,
15(z)z-9
- role,
4(2)83,
16(z)z-2
- set,
2(1)91,
2(1)z-4,
4(1)64,
4(2)54,
9(2)z-10,
10(3)z,
12(1)3,
12(1)4,
13(z)z-6,
14(z)z,
14(z)z-1,
14(z)z-3,
14(z)z-4,
16(z)z-2,
16(z)z-5
- show,
4(1)9,
4(1)74,
4(1)z-3,
5(4)8,
6(3)28,
11(2)284,
13(z)z-5,
13(z)z-8,
15(z)z-2,
15(z)z-3,
16(z)z,
16(z)z-7
- smooth,
8(3)z-1,
9(3)z-4
- spectrum,
4(2)83,
15(z)z-4
- stability,
14(z)z-9
- starting,
13(z)z-3,
15(z)z-6
- system,
1(1)51,
2(1)z-8,
4(1)26,
4(1)64,
4(1)z-3,
4(4)z-6,
6(2)32,
6(3)14,
7(1)z-7,
8(2)z,
8(2)z-6,
10(4)z-2,
11(3)z-2,
12(1)1,
13(z)z-6,
14(z)z-9,
16(z)z,
16(z)z-7
- therefore,
11(2)284
- use,
4(1)44,
4(1)70,
4(4)37,
6(2)41,
6(2)52,
6(3)44,
12(1)1,
12(1)3,
13(z)z,
13(z)z-1,
13(z)z-8,
14(z)z-4,
14(z)z-9,
15(z)z-3,
16(z)z-2
- used,
2(3)z-4,
4(1)74,
4(1)81,
4(2)44,
4(2)83,
6(2)66,
6(3)10,
6(3)28,
6(3)44,
6(3)73,
11(2)172,
12(1)2,
13(z)z-1,
13(z)z-6,
13(z)z-7,
14(z)z-3,
14(z)z-7,
15(z)z,
15(z)z-2,
15(z)z-8,
16(z)z-1,
16(z)z-7