Last update: Tue Jun 10 02:01:48 MDT 2025
Return to index directory
Math
-
$-th distance distributions for generalized Gauss--Poisson process in $,
172(z)z--99999999
-
$-th moment $, 160(z)z--99999999
-
$0$, 172(z)z--99999999, 173(z)z--99999999
-
$ + 1 $, 197(z)z--99999999
-
$1$, 172(z)z--99999999, 173(z)z--99999999, 193(z)z--99999999,
207(z)z--99999999
-
$2$, 182(z)z--99999999, 189(z)z--99999999, 210(z)z--99999999
-
$ 2 H K \leq 1 $, 157(z)z--99999999
-
$ (2 + \iota) $, 158(z)z--z
-
$ 2 \times 2 $, 214(z)z--99999999
-
$3$, 157(z)z--99999999, 179(z)z--99999999
-
$ \alpha $, 156(z)z--99999999, 158(z)z--99999999, 160(z)z--99999999,
173(z)z--99999999, 181(z)z--99999999, 195(z)z--99999999,
208(z)z--99999999, 220(z)z--99999999
-
$ \beta $, 178(z)z--99999999
-
$c$, 210(z)z--99999999
-
$ {\cal S}^\prime $, 208(z)z--99999999
-
$D$, 159(z)z--99999999, 215(z)z--99999999
-
$ \delta $, 164(z)z--99999999, 208(z)z--99999999, 213(z)z--99999999
-
$ D(u_n) $, 220(z)z--99999999
-
$ E $, 174(z)z--99999999
-
$ \ell_1 $, 165(z)z--99999999
-
$ \epsilon $, 189(z)z--99999999
-
$f$, 168(z)z--99999999
-
$G$, 156(z)z--99999999, 171(z)z--99999999, 184(z)z--99999999,
186(z)z--99999999, 193(z)z--99999999, 195(z)z--99999999,
198(z)z--99999999, 206(z)z--99999999, 214(z)z--99999999,
223(z)z--99999999
-
$g$, 169(z)z--99999999, 189(z)z--99999999
-
$ H > 1 $, 157(z)z--99999999
-
$ H \in (0, 1 / 2) $, 206(z)z--99999999
-
$ H \rightarrow 0 $, 181(z)z--99999999
-
$I$, 181(z)z--99999999
-
$ \infty $, 223(z)z--99999999
-
$k$, 162(z)z--99999999, 171(z)z--99999999, 176(z)z--99999999,
180(z)z--99999999, 182(z)z--99999999, 203(z)z--99999999,
213(z)z--99999999, 225(z)z--99999999
-
$ \kappa = 8 $, 205(z)z--99999999
-
$L$, 165(z)z--99999999, 216(z)z--99999999
-
$ L_1 $, 157(z)z--99999999, 186(z)z--99999999
-
$ L_2 $, 157(z)z--99999999, 206(z)z--99999999
-
$ L_F^\infty (\mu) $, 181(z)z--99999999
-
$ L^\infty $, 163(z)z--99999999
-
$ L_k $, 197(z)z--99999999
-
$ \log {\rm GARCH} $, 214(z)z--z
-
$ L^p $, 206(z)z--99999999, 210(z)z--99999999, 219(z)z--99999999,
223(z)z--99999999
-
$ L_p $, 183(z)z--99999999, 201(z)z--z
-
$M$, 162(z)z--99999999
-
$ m $, 185(z)z--99999999
-
$m$, 183(z)z--99999999, 208(z)z--99999999, 210(z)z--99999999,
214(z)z--99999999, 216(z)z--99999999
-
$ \mathbb {L}^p $, 223(z)z--z
-
$ \mathbb {R} $, 193(z)z--99999999
-
$ \mathbb {Z}_+^\star $, 223(z)z--99999999
-
$ \mathcal {C}^2 $, 184(z)z--99999999
-
$N$, 157(z)z--99999999
-
$n$, 179(z)z--99999999, 185(z)z--99999999, 203(z)z--99999999,
218(z)z--99999999, 221(z)z--99999999, 225(z)z--99999999
-
$ (n - k + 1) $, 221(z)z--99999999
-
$ optimal ranked set sampling design with $, 224(z)z--99999999
-
$p$, 168(z)z--99999999, 179(z)z--99999999, 183(z)z--99999999,
187(z)z--99999999, 194(z)z--99999999
-
$ p \in (1, 2) $, 223(z)z--99999999
-
$ \Phi $, 168(z)z--99999999
-
$ \phi $, 206(z)z--99999999
-
$Q$, 168(z)z--99999999
-
$q$, 197(z)z--99999999, 210(z)z--99999999, 214(z)z--99999999
-
$R$, 159(z)z--99999999, 211(z)z--99999999, 213(z)z--99999999
-
$ \rho $, 221(z)z--99999999
-
$ {\rm SO}(3) $, 169(z)z--99999999
-
$s$, 167(z)z--99999999, 186(z)z--99999999
-
$ (s^2) $, 158(z)z--99999999
-
$ \sigma $, 177(z)z--99999999
-
$ {SLE_{\kappa }} $, 205(z)z--99999999
-
$^{\star } $, 214(z)z--99999999
-
$T$, 189(z)z--99999999, 208(z)z--99999999
-
$t$, 157(z)z--99999999, 159(z)z--99999999, 193(z)z--99999999
-
$ T^2 $, 168(z)z--99999999
-
$ \tau $, 217(z)z--99999999
-
$U$, 182(z)z--99999999, 187(z)z--99999999, 193(z)z--99999999,
210(z)z--99999999
-
$ W_2 $, 195(z)z--99999999
-
$^X$, 207(z)z--99999999
-
$ Z^d $, 167(z)z--99999999