Entry Jacob:1977:ACC from tcs1975.bib
Last update: Thu Sep 27 02:46:39 MDT 2018
Top |
Symbols |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
Y |
Z
BibTeX entry
@Article{Jacob:1977:ACC,
author = "G. Jacob",
title = "An algorithm for calculating the cardinal, finite or
infinite, of the semigroups of matrices",
journal = j-THEOR-COMP-SCI,
volume = "5",
number = "2",
pages = "183--204",
month = oct,
year = "1977",
CODEN = "TCSCDI",
ISSN = "0304-3975 (print), 1879-2294 (electronic)",
ISSN-L = "0304-3975",
bibdate = "Sat Nov 22 13:36:07 MST 1997",
bibsource = "http://www.math.utah.edu/pub/tex/bib/tcs1975.bib",
acknowledgement = ack-nhfb,
classification = "C1110 (Algebra); C4220 (Automata theory)",
corpsource = "Dept. d'Informatique, Univ. Lille I, Villeneuve
d'Ascq, France",
fjournal = "Theoretical Computer Science",
journal-URL = "http://www.sciencedirect.com/science/journal/03043975/",
keywords = "cardinality; commutative field; finite automata;
finite automaton; finite set; K-automaton; matrices;
matrix semigroup",
language = "French",
pubcountry = "Netherlands",
treatment = "T Theoretical or Mathematical",
}
Related entries
- algebra,
1(3)227,
1(4)331,
2(3)305,
3(1)35,
4(1)23,
4(1)77,
5(2)101,
5(2)205,
7(1)1,
7(1)117,
7(2)127,
7(3)239,
7(3)251,
7(3)325,
8(1)31,
8(2)189,
8(3)359
- algorithm,
1(1)13,
1(1)21,
1(1)27,
1(2)103,
1(2)185,
1(3)193,
1(3)215,
1(3)227,
1(4)269,
1(4)289,
2(1)73,
2(2)183,
2(2)228,
2(3)345,
3(2)267,
3(3)293,
3(3)321,
3(3)349,
4(1)59,
4(1)77,
4(2)155,
4(2)171,
4(3)321,
5(1)25,
5(2)113,
5(2)135,
5(2)205,
5(3)275,
6(1)41,
6(1)93,
6(2)109,
6(2)223,
6(3)233,
6(3)281,
6(3)317,
7(1)1,
7(1)79,
7(1)99,
7(2)127,
7(3)239,
7(3)273,
8(1)45,
8(1)57,
8(1)73,
8(3)271,
8(3)325,
8(3)379,
9(1)1,
9(1)39,
9(1)83,
9(1)127,
9(2)329,
9(2)347
- automata,
1(1)77,
1(2)95,
1(4)269,
1(4)297,
1(4)317,
2(1)1,
2(1)29,
2(1)49,
2(1)115,
2(2)147,
2(2)155,
2(3)271,
3(2)173,
3(2)213,
3(2)243,
3(2)261,
3(3)305,
4(2)143,
4(3)245,
5(2)101,
6(1)1,
6(1)25,
6(2)175,
7(1)25,
7(2)149,
7(2)185,
7(3)311,
7(3)333,
8(2)227,
8(2)239,
8(2)255,
9(1)127,
9(1)141,
9(2)221,
9(2)311,
9(2)385
- automaton,
1(2)95,
2(3)271,
5(2)101,
7(2)149
- C1110,
1(3)227,
3(1)35,
4(1)77,
5(2)101,
5(2)205,
7(1)1,
7(1)117,
7(3)239,
7(3)325
- C4220,
1(1)77,
1(2)95,
1(4)269,
1(4)297,
1(4)317,
2(1)1,
2(1)29,
2(1)49,
2(1)115,
2(2)147,
2(2)155,
2(3)271,
3(2)173,
3(2)213,
3(2)243,
3(2)261,
3(3)305,
4(2)143,
4(3)245,
5(2)101,
6(1)1,
6(1)25,
6(2)175,
7(2)149,
7(2)185,
7(3)311,
7(3)333,
8(2)227,
8(2)239,
8(2)255,
9(1)127,
9(1)141,
9(2)221,
9(2)311
- commutative,
5(2)211,
9(2)207
- field,
7(3)239,
8(3)359
- finite,
1(1)59,
1(2)95,
2(1)29,
2(3)271,
2(3)323,
3(2)261,
3(3)305,
5(2)101,
5(2)205,
6(2)175,
7(2)149,
7(2)211,
7(3)287,
8(1)69,
8(3)271,
9(2)221,
9(2)311
- infinite,
2(1)45
- matrix,
1(1)13,
3(3)371,
5(2)101,
7(1)1,
7(2)127,
7(3)239,
8(1)31,
8(2)189,
9(2)221,
9(2)377
- semigroup,
3(1)35,
5(2)101
- set,
1(1)77,
1(4)331,
2(1)77,
2(3)383,
3(1)23,
4(1)99,
4(2)125,
5(2)179,
5(3)257,
6(3)233,
7(3)273,
7(3)311,
8(1)13,
8(2)135,
8(3)271,
8(3)379,
9(1)141,
9(2)153,
9(2)207