Entry Lingas:1989:PCS from tcs1985.bib
Last update: Thu Sep 27 02:46:57 MDT 2018
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Lingas:1989:PCS,
author = "A. Lingas and A. Proskurowski",
title = "On parallel complexity of the subgraph homeomorphism
and the subgraph isomorphism problem for classes of
planar graphs",
journal = j-THEOR-COMP-SCI,
volume = "68",
number = "2",
pages = "155--173",
day = "30",
month = oct,
year = "1989",
CODEN = "TCSCDI",
ISSN = "0304-3975 (print), 1879-2294 (electronic)",
ISSN-L = "0304-3975",
bibdate = "Sat Nov 22 13:29:49 MST 1997",
bibsource = "http://www.math.utah.edu/pub/tex/bib/tcs1985.bib",
acknowledgement = ack-nhfb,
classification = "C1160 (Combinatorial mathematics); C4240
(Programming and algorithm theory)",
conflocation = "Pune, India; 17-19 Dec. 1987",
conftitle = "Seventh Conference on Foundations of Software
Technology and Theoretical Computer Science",
corpsource = "Dept. of Comput. and Inf. Sci., Linkoping Univ.,
Sweden",
fjournal = "Theoretical Computer Science",
journal-URL = "http://www.sciencedirect.com/science/journal/03043975/",
keywords = "bounded number; closed; computational complexity;
disjoint connecting paths; fixed pattern; forbidden
minor characterization; graph theory; NC algorithm;
nontrivial graph family; parallel algorithms; parallel
complexity; planar graphs; polynomial; recognition;
restriction; Robertson; Seymour; subgraph
homeomorphism; subgraph isomorphism problem; terminal
pairs; two-connected outerplanar graphs",
pubcountry = "Netherlands",
treatment = "T Theoretical or Mathematical",
}
Related entries
- bounded,
35(2)191,
35(2)295,
36(2)239,
40(1)3,
40(1)13,
40(2)163,
40(2)237,
51(3)255,
51(3)325,
52(3)251,
52(3)341,
54(2)331,
56(1)37,
57(1)87,
59(3)259,
59(3)309,
62(1)67,
63(2)185,
64(1)1,
65(2)221,
67(1)99,
67(2)283
- characterization,
35(1)17,
35(1)43,
35(2)261,
36(1)109,
36(2)341,
38(1)117,
39(1)27,
40(2)275,
43(1)1,
43(1)31,
44(2)225,
45(2)121,
46(1)91,
46(1)101,
49(1)23,
50(3)285,
51(1)27,
51(1)117,
51(1)205,
51(3)301,
52(1)165,
52(3)251,
53(2)335,
54(2)199,
57(1)47,
62(1)105,
62(1)221,
64(2)191,
66(3)299,
67(1)75,
67(2)143,
68(2)203,
69(3)289
- class,
35(1)17,
35(2)313,
37(2)123,
38(2)143,
38(2)157,
39(2)267,
40(1)57,
41(1)105,
42(2)123,
43(2)213,
44(2)237,
46(2)313,
47(1)1,
47(1)39,
47(1)71,
47(1)99,
47(2)111,
47(2)131,
47(3)247,
47(3)263,
48(2)145,
48(2)329,
52(3)177,
52(3)251,
54(1)87,
58(1)129,
60(3)255,
61(1)17,
61(2)103,
63(1)43,
64(2)203,
67(1)75,
67(1)99,
67(2)143,
67(2)283
- closed,
40(2)257,
41(1)95,
43(1)59,
47(2)159,
52(1)1,
64(1)55,
64(2)203,
66(1)1,
68(3)221
- disjoint,
41(1)61,
46(1)47,
63(3)303
- family,
36(2)345,
39(2)239,
39(2)281,
44(1)111,
54(2)165,
55(2)183,
58(1)69,
60(3)341,
61(2)175,
63(1)19,
63(2)157,
67(1)111
- fixed,
36(2)333,
37(3)357,
38(2)249,
39(1)15,
39(1)z,
41(2)125,
45(1)1,
61(2)289,
63(3)275,
63(3)303,
68(2)203,
68(3)303,
68(3)347
- forbidden,
40(2)195
- homeomorphism,
38(2)249
- isomorphism,
38(2)323,
39(2)207,
43(1)43,
47(3)263,
63(3)295
- NC,
47(3)277,
68(1)89
- nontrivial,
35(2)313,
36(2)203,
36(2)333,
36(2)345,
67(1)87
- number,
43(2)265,
44(1)1,
46(2)175,
47(2)205,
47(3)299,
48(2)257,
52(1)77,
54(2)299,
54(2)341,
55(2)265,
56(3)289,
58(1)209,
60(3)231,
64(1)119,
65(2)123,
65(2)131,
65(2)153,
65(2)189,
65(2)197,
65(2)213,
65(2)221,
65(2)249,
68(2)203
- outerplanar,
63(3)295
- pair,
35(2)179,
39(2)337,
41(2)223,
51(1)27,
60(3)285,
66(2)117,
67(2)203
- path,
36(1)27,
37(1)77,
40(2)257,
40(2)323,
43(2)213,
48(2)273,
57(1)131,
57(1)153,
58(1)103,
68(1)1
- pattern,
38(2)249,
43(1)31,
43(2)239,
47(1)61,
48(2)145,
52(3)177,
60(3)231,
62(3)267,
63(1)1,
66(1)99
- planar,
53(2)267,
54(1)129,
58(1)209,
61(1)33
- recognition,
35(2)271,
39(2)89,
41(2)231,
43(1)31,
43(2)239,
43(2)315,
44(1)111,
47(3)315,
48(2)145,
52(3)177,
57(1)97,
60(3)231,
60(3)341,
63(1)1,
63(2)203,
64(1)107,
66(1)99
- restriction,
35(2)129,
56(1)59,
58(1)69,
67(1)129
- subgraph,
36(2)345,
38(2)249,
63(3)295
- terminal,
35(2)329