Entry Potthoff:1994:MCQ from tcs1990.bib
Last update: Wed Sep 26 02:11:46 MDT 2018
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Potthoff:1994:MCQ,
author = "Andreas Potthoff",
title = "Modulo-counting quantifiers over finite trees",
journal = j-THEOR-COMP-SCI,
volume = "126",
number = "1",
pages = "97--112",
day = "11",
month = apr,
year = "1994",
CODEN = "TCSCDI",
ISSN = "0304-3975 (print), 1879-2294 (electronic)",
ISSN-L = "0304-3975",
bibdate = "Mon Jul 19 22:18:02 MDT 1999",
bibsource = "http://www.elsevier.com/cgi-bin/cas/tree/store/tcs/cas_free/browse/browse.cgi?year=1994&volume=126&issue=1;
http://www.math.utah.edu/pub/tex/bib/tcs1990.bib",
URL = "http://www.elsevier.com/cgi-bin/cas/tree/store/tcs/cas_sub/browse/browse.cgi?year=1994&volume=126&issue=1&aid=1551",
acknowledgement = ack-nhfb,
classification = "C1160 (Combinatorial mathematics); C4210 (Formal
logic)",
corpsource = "Inst. fur Inf. und Praktische Math., Christian
Albrechts Univ, Kiel, Germany",
fjournal = "Theoretical Computer Science",
journal-URL = "http://www.sciencedirect.com/science/journal/03043975/",
keywords = "finite trees; first-order logic; formal languages;
formal logic; logical definability; logical systems;
modulo-counting quantifiers; monadic second-order
logic; tree languages; trees (mathematics)",
pubcountry = "Netherlands",
treatment = "T Theoretical or Mathematical",
}
Related entries
- definability,
80(2)153
- first-order,
73(1)47,
85(2)213,
93(2)169,
94(1)63,
95(1)75,
96(1)249,
97(1)157,
100(1)45,
102(1)207,
103(2)387,
104(1)109,
104(1)129,
105(1)57,
106(2)337,
108(1)83,
111(1)145,
111(1)211,
111(1)253,
112(1)99,
113(1)3,
118(2)167,
118(2)231,
120(1)69,
122(1)69,
123(1)31,
123(1)117,
124(2)221,
127(1)1,
131(1)95,
133(2)307,
135(1)139
- logical,
71(2)227,
74(3)273,
80(2)263,
82(2)403,
85(1)75,
87(1)43,
90(1)61,
90(2)433,
92(2)291,
94(2)237,
94(2)311,
96(1)35,
96(1)73,
96(1)z,
97(1)143,
99(1)121,
103(1)143,
103(2)283,
104(1)89,
105(1)57,
106(1)3,
106(2)221,
107(1)145,
110(2)377,
111(1)59,
111(1)191,
111(1)211,
111(1)253,
114(1)3,
116(1)3,
116(1)33,
116(1)151,
118(2)99,
118(2)193,
119(1)145,
120(2)215,
121(1)89,
122(1)119,
122(1)201,
131(1)197,
132(1)37,
136(1)163
- monadic,
80(2)153,
83(2)323,
84(2)165,
88(1)139,
93(2)227,
97(2)233,
101(1)3,
103(1)143,
109(1)49,
113(1)119,
116(1)151,
126(1)53,
134(1)175
- order, first-,
73(1)47,
85(2)213,
93(2)169,
94(1)63,
95(1)75,
96(1)249,
97(1)157,
100(1)45,
102(1)207,
103(2)387,
104(1)109,
104(1)129,
105(1)57,
106(2)337,
108(1)83,
111(1)145,
111(1)211,
111(1)253,
112(1)99,
113(1)3,
118(2)167,
118(2)231,
120(1)69,
122(1)69,
123(1)31,
123(1)117,
124(2)221,
127(1)1,
131(1)95,
133(2)307,
135(1)139
- order, second-,
80(2)153,
87(1)25,
88(1)139,
89(1)137,
97(1)157,
101(1)3,
101(1)35,
103(1)143,
103(2)395,
109(1)49,
111(1)59,
111(1)z,
126(1)53
- quantifier,
81(2)223,
83(1)29,
97(2)233,
102(1)207,
103(2)387,
107(1)145
- second-order,
80(2)153,
87(1)25,
88(1)139,
89(1)137,
97(1)157,
101(1)3,
101(1)35,
103(1)143,
103(2)395,
109(1)49,
111(1)59,
111(1)z,
126(1)53