Entry Jung:1990:CCC from tcs1990.bib
Last update: Wed Sep 26 02:11:46 MDT 2018
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Jung:1990:CCC,
author = "A. Jung",
title = "{Cartesian} closed categories of algebraic {CPOs}",
journal = j-THEOR-COMP-SCI,
volume = "70",
number = "2",
pages = "233--250",
day = "26",
month = jan,
year = "1990",
CODEN = "TCSCDI",
ISSN = "0304-3975 (print), 1879-2294 (electronic)",
ISSN-L = "0304-3975",
bibdate = "Sat Nov 22 13:24:22 MST 1997",
bibsource = "http://www.math.utah.edu/pub/tex/bib/tcs1990.bib",
acknowledgement = ack-nhfb,
classification = "C1160 (Combinatorial mathematics); C4210 (Formal
logic)",
corpsource = "Fachbereich Math., Tech. Hochschule Darmstadt, West
Germany",
fjournal = "Theoretical Computer Science",
journal-URL = "http://www.sciencedirect.com/science/journal/03043975/",
keywords = "algebraic CPOs; algebraic function space; complete
lattice; continuous functions; countably based
algebraic CPOs; formal logic; graph theory; L-domain;
largest cartesian closed full subcategory; least
element; natural extension; number theory; profinite
domains",
pubcountry = "Netherlands",
treatment = "T Theoretical or Mathematical",
}
Related entries
- based,
72(2)z,
81(2)269,
81(2)305,
92(1)191,
93(1)115,
99(1)65,
113(2)259,
120(2)215,
122(1)97,
131(1)197
- cartesian,
70(1)65,
70(1)159,
70(2)193,
73(1)101,
88(2)231,
98(2)263,
107(2)169,
111(1)89,
111(1)145,
119(1)103,
124(2)195,
136(1)109,
136(1)125
- category,
70(1)3,
70(1)65,
70(1)85,
70(1)159,
70(2)193,
73(1)101,
77(1)73,
77(3)267,
79(2)359,
91(2)239,
102(1)1,
107(2)169,
109(1)123,
111(1)103,
111(1)145,
111(1)191,
111(1)211,
111(1)253,
111(1)z,
115(1)77,
118(2)301,
119(2)293,
123(1)117,
132(1)37,
135(2)221,
135(2)289,
136(1)21,
136(1)57,
136(1)109,
136(1)125,
136(1)163,
136(2)487
- closed,
70(1)65,
70(1)159,
70(2)193,
73(1)101,
74(3)325,
76(2)243,
86(1)35,
111(1)145,
115(1)3,
115(2)321,
121(1)71,
122(1)49,
125(1)61,
125(1)149,
132(1)347,
133(1)95,
136(1)109,
136(1)125
- complete,
70(1)127,
71(3)347,
72(2)265,
74(1)3,
75(1)85,
75(1)z,
75(3)357,
76(2)179,
80(2)203,
81(1)1,
83(2)337,
85(1)75,
87(1)1,
88(1)33,
88(1)83,
89(2)207,
91(1)101,
94(2)281,
96(2)305,
97(2)183,
98(1)27,
98(1)z,
100(2)365,
102(1)135,
104(2)263,
111(1)125,
111(1)z,
112(2)255,
114(1)63,
114(2)231,
118(2)167,
118(2)315,
119(1)127,
119(1)z,
120(1)83,
121(1)351,
122(1)97,
124(1)1,
129(2)309,
130(1)203,
131(1)95,
131(2)311,
132(1)229,
133(2)205,
134(1)27,
136(2)487,
136(2)507
- continuous,
76(2)309,
79(2)357,
83(2)219,
95(1)143,
111(1)89,
111(1)103,
113(2)191,
114(2)201,
119(1)103,
121(1)351,
121(1)411,
133(1)z,
136(1)21
- CPOs,
70(1)151
- domain,
70(1)65,
70(1)151,
73(1)101,
75(1)15,
75(3)289,
76(1)3,
76(1)53,
76(2)309,
77(1)73,
79(2)359,
82(2)409,
87(1)1,
87(1)163,
90(1)127,
90(1)171,
90(2)369,
91(1)23,
91(2)285,
94(1)37,
94(1)63,
103(1)107,
103(2)311,
111(1)59,
111(1)89,
111(1)103,
111(1)z,
114(1)63,
114(2)201,
115(1)77,
118(2)301,
119(1)23,
119(1)103,
119(1)z,
120(1)101,
121(1)113,
121(1)179,
121(1)187,
122(1)3,
124(2)195,
124(2)221,
132(1)347,
133(1)165,
135(1)111,
135(2)289,
136(1)21,
136(1)57,
136(1)109
- element,
74(2)163,
79(2)357,
96(2)325,
97(1)67,
110(1)99,
111(1)89,
119(2)267,
123(1)89,
123(2)407,
129(2)397
- extension,
78(1)137,
84(2)151,
90(1)209,
93(1)75,
94(2)281,
97(1)157,
97(2)263,
98(1)5,
107(1)31,
114(1)63,
119(1)103,
125(2)167,
131(2)475
- full,
90(1)151,
118(2)301,
126(1)77
- Jung, A.,
79(2)359,
91(1)23
- largest,
130(1)101
- lattice,
86(1)3,
95(1)143,
97(2)263,
100(2)365,
114(2)201,
121(1)351,
123(1)95,
125(2)229,
126(2)237,
133(2)387
- least,
70(1)65,
75(1)45,
75(1)85,
75(1)139,
76(2)309,
92(1)87,
121(1)411,
131(1)95,
131(1)121
- natural,
70(1)35,
70(1)65,
70(1)85,
77(3)237,
81(2)201,
85(2)333,
87(1)25,
87(1)43,
87(1)189,
88(1)83,
88(2)191,
89(1)161,
91(1)23,
95(1)115,
97(2)183,
98(2)289,
102(1)1,
104(2)235,
104(2)299,
110(2)249,
111(1)145,
115(1)3,
115(1)151,
116(1)33,
123(1)31,
123(1)131,
127(2)351,
133(2)205,
134(2)537,
136(1)57
- number,
70(1)65,
70(1)85,
71(3)425,
72(1)3,
77(3)237,
78(2)377,
81(1)49,
81(1)147,
81(2)311,
82(1)71,
83(2)219,
85(2)333,
86(2)325,
87(1)25,
88(1)171,
88(2)313,
92(2)249,
94(2)161,
94(2)223,
94(2)261,
95(2)307,
98(2)163,
98(2)249,
100(1)105,
102(2)307,
102(2)355,
103(1)137,
106(2)327,
107(1)3,
108(2)385,
111(1)145,
112(2)391,
112(2)399,
112(2)419,
115(1)151,
116(2)421,
117(1)113,
117(1)303,
123(1)89,
123(1)95,
123(1)139,
123(1)145,
123(1)z,
123(2)291,
123(2)389,
123(2)427,
127(1)1,
127(2)333,
129(2)263,
131(2)431,
133(1)85,
134(1)209,
134(2)537
- space,
70(1)159,
71(3)347,
73(1)1,
74(1)115,
74(2)183,
74(3)273,
75(1)15,
75(1)85,
76(2)179,
77(3)221,
80(2)289,
82(1)1,
82(1)165,
85(2)353,
86(1)3,
87(1)1,
87(1)43,
88(1)83,
91(1)1,
92(1)3,
92(1)33,
92(1)87,
93(1)143,
93(2)201,
94(2)175,
95(2)231,
95(2)245,
96(1)157,
96(1)z,
96(2)411,
97(2)183,
99(1)121,
101(1)99,
101(2)239,
103(2)283,
110(1)99,
111(1)89,
111(1)103,
111(1)191,
111(1)z,
113(2)191,
114(2)273,
119(1)63,
123(1)139,
124(1)1,
124(2)195,
124(2)343,
125(2)295,
125(2)345,
125(2)355,
127(1)171,
127(2)199,
129(2)397,
130(1)85,
130(1)203,
132(1)319,
133(1)49,
134(1)131,
134(2)529,
135(2)171
- subcategory,
118(2)301