
QSQL
CONTEXT

1

Contents

1 Introduction 1

2 Presets 1

3 Templates 2

4 Queries 3

5 Converters 4

6 Typesetting 6

7 Methods 7

8 Helpers 7

9 Example 7

10 Colofon 9

1 Introduction

Although ConTEXt is a likely candidate for typesetting content that comes from databases it was only

in 2011 that I ran into a project where a connection was needed. After all, much document related

typesetting happens on files or dedicated storage systems.

Because we run most projects in an infrastructure suitable for TEX, it made sense to add some helper

scripts to the ConTEXt core distribution that deal with getting data from (in our case) MySQL data-

bases. That way we can use the already stable infrastructure for installing and updating files that

comes with ConTEXt.

As Lua support is nicely integrated in ConTEXt, and as dealing with information from databases in-

volves some kind of programming anyway, there is (at least currently) no TEX interface. The examples

shown here work in ConTEXt, but you need to keep in mind that Lua scripts can also use this interface.

Although this code is under construction the interfaces are unlikely to change, if only because we use

it in production.

2 Presets

In order to consult a database you need to provide credentials. You also need to reach the database

server, either by using some client program or via a library. More about that later.

Because we don’t want to key in all that information again and again, we will collect it in a table. This

also permits us to store it in a file and load it on demand. For instance:

local presets = {

database = "test",

username = "root",

password = "none",

host = "localhost",

port = 3306,

}

You can put a table in a file presets.lua like this:

return {

2

database = "test",

username = "root",

password = "none",

host = "localhost",

port = 3306,

}

and then load it as follows:

local presets = table.load("presets.lua")

A sqlite database has a much simpler preset. The default suffix of the file is db. The other fields are

just ignored.

return {

database = "test",

}

If you really want, you can use some library to open a connection, execute a query, collect results and

close the connection, but here we use just one function that does it all. The presets are used to access

the database and the same presets will be used more often it makes sense to keep a connection open

as long as possible. That way you can execute much more queries per second, something that makes

sense when there are many small ones, as in web related services. A connection is made persistent

when the presets have an id key, like

presets.id = "myproject"

3 Templates

A query often looks like this:

SELECT

`artist`, `title`

FROM

`cd`

WHERE

`artist` = 'archive' ;

However, often you want to use the same query for multiple lookups, in which case you can do this:

SELECT

`artist`, `title`

FROM

`cd`

WHERE

`artist` = '%artist%' ;

In the next section we will see how %artist% can be replaced by a more meaningful value. You can a

percent sign by entering two in a row: %%.

As with any programming language that deals with strings natively, you need a way to escape the

characters that fence the string. In sql a field name is fenced by `` and a string by ''. Field names

can often be used without `` but you can better play safe.

3

`artist` = 'Chilly Gonzales'

Escaping of the ' is simple:

`artist` = 'Jasper van''t Hof'

When you use templates you often pass a string as variable and you don’t want to be bothered with

escaping them. In the previous example we used:

`artist` = '%artist%'

When you expect embedded quotes you can use this:

`artist` = '%[artist]%'

In this case the variable artist will be escaped. When we reuse a template we store it in a variable:

local template = [[

SELECT

`artist`, `title`

FROM

`cd`

WHERE

`artist` = '%artist%' ;

]]

4 Queries

In order to execute a query you need to pass the previously discussed presets as well as the query

itself.

local data, keys = utilities.sql.execute {

presets = presets,

template = template,

variables = {

artist = "Porcupine Tree",

},

}

The variables in the presets table can also be passed at the outer level. In fact there are three levels

of inheritance: settings, presets and module defaults.

presets a table with values

template a query string

templatefile a file containing a template

resultfile a (temporary) file to store the result

queryfile a (temporary) file to store a query

variables variables that are subsituted in the template

username used to connect to the database

password used to connect to the database

host the ‘machine’ where the database server runs on

4

port the port where the database server listens to

database the name of the database

The resultfile and queryfile parameters are used when a client approach is used. When a library

is used all happens in memory.

When the query succeeds two tables are returned: data and keys. The first is an indexed table where

each entry is a hash. So, if we have only onematch and thatmatch has only one field, you get something

like this:

data = {

{

key = "value"

}

}

keys = {

"key"

}

5 Converters

All values in the result are strings. Of course we could have provided some automatic type conversion

but there are more basetypes in MySQL and some are not even standard sql. Instead the module

provides a converter mechanism

local converter = utilities.sql.makeconverter {

{ name = "id", type = "number" },

{ name = "name", type = "string" },

{ name = "enabled", type = "boolean" },

}

You can pass the converter to the execute function:

local data, keys = utilities.sql.execute {

presets = presets,

template = template,

converter = converter,

variables = {

name = "Hans Hagen",

},

}

In addition to numbers, strings and booleans you can also use a function or table:

local remap = {

["1"] = "info"

["2"] = "warning"

["3"] = "debug"

["4"] = "error"

}

5

local converter = utilities.sql.makeconverter {

{ name = "id", type = "number" },

{ name = "status", type = remap },

}

I use this module for managing ConTEXt jobs in web services. In that case we need to store jobtickets

and they have some common properties. The definition of the table looks as follows:1

CREATE TABLE IF NOT EXISTS %basename% (

`id` int(11) NOT NULL AUTO_INCREMENT,

`token` varchar(50) NOT NULL,

`subtoken` INT(11) NOT NULL,

`created` int(11) NOT NULL,

`accessed` int(11) NOT NULL,

`category` int(11) NOT NULL,

`status` int(11) NOT NULL,

`usertoken` varchar(50) NOT NULL,

`data` longtext NOT NULL,

`comment` longtext NOT NULL,

PRIMARY KEY (`id`),

UNIQUE INDEX `id_unique_index` (`id` ASC),

KEY `token_unique_key` (`token`)

)

DEFAULT CHARSET = utf8 ;

We can register a ticket from (for instance) a web service and use an independent watchdog to consult

the database for tickets that need to be processed. When the job is finished we register this in the

database and the web service can poll for the status.

It’s easy to imagine more fields, for instance the way ConTEXt is called, what files to use, what results

to expect, what extra data to pass, like style directives, etc. Instead of putting that kind of information

in fields we store them in a Lua table, serialize that table, and put that in the data field.

The other way around is that we take this data field and convert it back to Lua. For this you can use

a helper:

local results = utilities.sql.execute { ... }

for i=1,#results do

local result = results[i]

result.data = utilities.sql.deserialize(result.data)

end

Much more efficient is to use a converter:

local converter = utilities.sql.makeconverter {

...

{ name = "data", type = "deserialize" },

...

1 The tickets manager is part of the ConTEXt distribution.

6

}

This way you don’t need to loop over the result and deserialize each data field which not only takes

less runtime (often neglectable) but also takes less (intermediate) memory. Of course in some cases

it can make sense to postpone the deserialization.

A variant is not to store a serialized data table, but to store a key-value list, like:

data = [[key_1="value_1" key_2="value_2"]]

Such data fields can be converted with:

local converter = utilities.sql.makeconverter {

...

{ name = "data", type = utilities.parsers.keq_to_hash },

...

}

You can imagine more converters like this, and if needed you can use them to preprocess data as well.

"boolean" This converts a string into the value true or false. Valid values for true are: 1,

true, yes, on and t

"number" This one does a straightforward tonumber on the value.

function The given function is applied to value.

table The value is resolved via the given table.

"deserialize" The value is deserialized into Lua code.

"key" The value is used as key which makes the result table is now hashed instead of

indexed.

"entry" An entry is added with the given name and optionally with a default value.

6 Typesetting

For good reason a ConTEXt job often involves multiple passes. Although the database related code is

quite efficient it can be considered a waste of time and bandwidth to fetch the data several times. For

this reason there is another function:

local data, keys = utilities.sql.prepare {

tag = "table-1",

...

}

-- do something useful with the result

local data, keys = utilities.sql.prepare {

tag = "table-2",

...

}

-- do something useful with the result

The prepare alternative stores the result in a file and reuses it in successive runs.

7

7 Methods

Currently we have several methods for accessing a database:

client use the command line tool, pass arguments and use files

library use the standard library (somewhat tricky in LuaTEX as we need to work around bugs)

lmxsql use the library with a Lua based pseudo client (stay in the Lua domain)

swiglib use the (still experimental) library that comes with LuaTEX

All methods use the same interface (execute) and hide the dirty details for the user. All return the

data and keys tables and all take care of the proper escaping and parsing.

8 Helpers

There are some helper functions and extra modules that will be described when they are stable.

There is an ‘extra’ option to the context command that can be used to produce an overview of a

database. You can get more information about this with the command:

context --extra=sql-tables --help

9 Example

The distribution has a few examples, for instance a logger. The following code shows a bit of this (we

assume that the swiglib sqlite module is present):

require("util-sql")

utilities.sql.setmethod("sqlite")

require("util-sql-loggers")

local loggers = utilities.sql.loggers

local presets = {

-- method = "sqlite",

database = "loggertest",

datatable = "loggers",

id = "loggers",

}

os.remove("loggertest.db") -- start fresh

local db = loggers.createdb(presets)

loggers.save(db, { -- variant 1: data subtable

type = "error",

action = "process",

data = { filename = "test-1", message = "whatever a" }

})

loggers.save(db, { -- variant 2: flat table

8

type = "warning",

action = "process",

filename = "test-2",

message = "whatever b"

})

local result = loggers.collect(db, {

start = {

day = 1,

month = 1,

year = 2016,

},

stop = {

day = 31,

month = 12,

year = 2116,

},

limit = 1000000,

-- type = "error",

action = "process"

})

context.starttabulate { "||||||" }

for i=1,#result do

local r = result[i]

context.NC() context(r.time)

context.NC() context(r.type)

context.NC() context(r.action)

if r.data then

context.NC() context(r.data.filename)

context.NC() context(r.data.message)

else

context.NC()

context.NC()

end

context.NC() context.NR()

end

context.stoptabulate()

-- local result = loggers.cleanup(db, {

-- before = {

-- day = 1,

-- month = 1,

-- year = 2117,

-- },

-- })

In this example we typeset the (small) table):

1520926471 error process test-1 whatever a

1520926471 warning process test-2 whatever b

9

10 Colofon

author Hans Hagen, PRAGMA ADE, Hasselt NL

version March 13, 2018

website www.pragma-ade.nl – www.contextgarden.net

copyright c b a n

