PST-marble Commands and Parameters

Colors

RGB colors can be specified in three formats:
[0.9060 .80 .608]
Red, green, and blue color components between 0 and 1 in square brackets.
[$\left.\begin{array}{lll}231 & 204 & 155\end{array}\right]$
Red, green, and blue color components between 0 and 255 in square brackets.
(e7cc9b)
Red, green, and blue (RrGgBb) hexadecimal color components between 00 and FF (or ff) in parentheses. In the command arguments [rgb ...] indicates a bracketed sequence of colors. For example:
[(c28847) [231 204 155] [0.635 0.008 0.094]]

Parameters

\psMarble[parameter-assignment, ..., parameter-assignment] (width, height)
\backslash psMarble [parameter-assignment, ..., parameter-assignment] $(x-, y-)(x+, y+)$
The comma separated parameter assignments are part of the $\backslash \mathrm{psMarble}$ command. In the list below, the default value for each parameter is shown to the right of the parameter name. Note that the values assigned to background=, colors=, seed=, actions=, and spractions= must be enclosed in curly braces $\}$.
background= \{[000 000$\}$
Specifies the color for regions where paint has not been dropped (or moved to).
bckg= true
When bckg=false the background color is not shown.
colors $=\{[0.2750 .5690 .796][0.9650 .8820 .302][0.1760 .3530 .129][0.6350 .0080 .094][0.0780 .1650 .518$
[0.824 0.592 0.031] [0.059 0.522 0.392] [0.816 0.333 0.475] [0.365 0.153 0.435] [0.624 0.588 0.439] \}
Specifies a color sequence accessible in paint-dropping commands as colors.
drawcontours $=$ false
When drawcontours=true paint contours are drawn with lines; when drawcontours=false contours are filled;
oversample=0
When oversample $=0$ a resolution-independent image is produced using contour-rendering. When the number of drops gets too large (>150) triangular artifacts start to appear. Changing to oversample=1 employs raster-rendering to more quickly compute each image pixel individually. When oversample $=2$ the rendering takes four times as long, but each pixel is the averaged over its four quarters, producing an image nearly as good as oversample=0. When oversample is between 0 and 1 , the rendering is on a coarser grid than oversample=1, speeding image production.
overscan= 1
When the overscan value is greater than 1, proportionally more image (outside of the specified area) is shown, and the specified area is outlined with a dashed rectangular border. This is a utility for developing marblings, new for version 1.4.
seed= \{Mathematical Marbling\}
Specifies the random seed used for Gaussian-drops and uniform-drops commands. Changing the seed value changes the positions of all drops from the Gaussian-drops and uniform-drops commands.
viscosity= 1000
Specifies the overall kinetic viscosity of the virtual tank fluid. Its units are $\mathrm{mm}^{2} / \mathrm{s}$; the default value of 1000 , which is 1000 times more viscous than water, is a typical value for marbling. Increasing viscosity reduces the fluid movement far from the tines.
actions $=\{0036$ colors 35 concentric-rings $\}$
Specifies the sequence of marbling commands to perform. The default is a single command dropping 35 colors in the colors sequence. The available commands are listed below.

```
spractions= \{\}
```

Specifies the sequence of spray commands to perform. Spray commands are performed after marbling.

Dropping Paint

$x y R_{d}$ rgb drop

Places a drop of color rgb and radius R_{d} centered at location x, y.
x y $R_{i}\left[\begin{array}{rl}r g b & . . .\end{array}\right] n$ concentric-rings
Places n rings in color sequence $\left[\begin{array}{rl}r g b & \ldots\end{array}\right]$ centered at location x, y, each ring having thickness R_{i}.
$x y \theta[R \ldots][r g b \quad .$.$]] R_{d}$ line-drops
Places drops of colors [rgb ...] (in sequence) of radius R_{d} in a line through x, y at θ degrees clockwise from vertical at distances [R...] from x, y.
$x y\left[\Omega_{x} \ldots\right] \quad\left[\Omega_{y} \ldots\right] \quad \theta[r g b \quad \ldots] R_{d}$ serpentine-drops
Places drops of colors [rgb ...] of radius R_{d} in a serpentine pattern (starting lower left to right; right to left; left to right...) at offsets $\Omega_{x} \times \Omega_{y}$ centered at location x, y and rotated by θ degrees clockwise from vertical. Orders of Ω_{x} and Ω_{y} matter.
$x y R \theta S \delta[r g b \quad . .]. n R_{d}$ coil-drops
Places n drops of colors [rgb \quad...] (in sequence) of radius R_{d} in an arc or spiral centered at x, y starting at radius R and θ degrees clockwise from vertical, moving S along the arc and incrementing the arc radius by δ after each drop.
$x y R \theta \epsilon\left[\begin{array}{ll}r g b & \ldots\end{array}\right] n R_{d}$ Gaussian-drops
Places n drops of colors [rgb ...] of radius R_{d} randomly in a circular or elliptical disk centered at x, y having mean radius R, θ degrees clockwise from vertical, and length-to-width ratio ϵ. For a circular disk, 63% of drops are within radius $R, 87 \%$ of drops are within $R \sqrt{2}$, and 98% of drops are within radius $2 R$.
$x y L_{x} L_{y} \theta\left[\begin{array}{ll}r g b & \ldots\end{array}\right] n R_{d}$ uniform-drops
Places n drops of colors [rgb \quad...] of radius R_{d} randomly in a L_{x} by L_{y} rectangle centered at location x, y and rotated by θ degrees clockwise from vertical.

Deformations

θ [R...] V S D rake

Pulls tines of diameter D at θ degrees from the y-axis through the virtual tank at velocity V, moving fluid on the tine path a distance S. The tine paths are spaced [$R \ldots$] from the tank center at their nearest points.

```
xb}\mp@subsup{y}{b}{}\mp@subsup{x}{e}{}\mp@subsup{y}{e}{}VD\mathrm{ stylus
```

Pulls a single tine of diameter D from x_{b}, y_{b} to x_{e}, y_{e} at velocity V. Legacy stroke also works.

$$
x y[R \ldots] \omega \theta D \text { stir }
$$

Pulls tines of diameter D in circular tracks of radii [$R \ldots$] (negative R is counterclockwise) around location x, y at angular velocity ω. The maximum angle through which fluid is moved is θ degrees.

$x y \Gamma t$ vortex

Rotates fluid clockwise around location x, y as would result from an impulse of circulation Γ after time t. At small t the rotational shear is concentrated close to the center. As time passes the shear propagates outward.

$\theta \lambda \Omega S$ wiggle

Applies sinsusoidal wiggle with period λ and maximum displacement S to whole tank. With $\theta=0$, a point at x, y is moved to $x+S \sin (360 y / \lambda+\Omega), y$.

θR shift

Shifts tank by R at θ degrees clockwise from vertical.
[$n S \Omega$ tines]
The tines command and its arguments are replaced by a sequence of n numbers. The difference between adjacent numbers is S and the center number is Ω when n is odd and $S / 2-\Omega$ when n is even.

Spray Actions

Spray actions are intended for drops small enough that they don't noticeably move paint boundaries. The radii of spray droplets are the cube roots of log-normal distributed values with mean R_{d}.
$x y R \theta \in[r g b \quad \ldots] n R_{d}$ Gaussian-spray
Places n drops of colors [rgb \quad...] randomly in a circular or elliptical disk centered at x, y having mean radius R, θ degrees clockwise from vertical, and length-to-width ratio ϵ. For a circular disk, 63% of drops are within radius $R, 87 \%$ of drops are within $R \sqrt{2}$, and 98% of drops are within radius $2 R$.

$$
x y L_{x} L_{y} \theta\left[\begin{array}{rl}
r g b & \ldots
\end{array}\right] n R_{d} \text { uniform-spray }
$$

Places n drops of colors [rgb \quad...] randomly in a L_{x} by L_{y} rectangle centered at location x, y and rotated by θ degrees clockwise from vertical.

