
The widetable package
Claudio Beccari∗

Version number v.1.5; last revision 2018-12-14.

Contents
1 Legalese 1

2 Introduction 2

3 Normal use of widetable 2

4 The method 3

5 The long division algorithm 4

6 Using the εTEX facilities 4

7 Usage 4

8 Warnings 6

9 Acknowledgements 7

10 Implementation 7

11 Conclusion 11

Abstract
This package allows to typeset tables of specified width, provided they

fit in one page. Instead of introducing an infinite stretching glue, which has
an unsymmetrical effect in standard LATEX, here the \tabcolsep dimension
is computed so as to have the table come out with the proper width.

1 Legalese
This file is part of the widetable package.

This work may be distributed and/or modified under the conditions of the
LaTeX Project Public License, either version 1.3 of this license or (at your op-
tion) any later version. The latest version of this license is in http://www.latex-
project.org/lppl.txt and version 1.3 or later is part of all distributions of LaTeX
version 2003/12/01 or later.

This work has the LPPL maintenance status “maintained”.
The Current Maintainer of this work is Claudio Beccari
The list of all files belonging to the distribution is given in the file ‘manifest.txt’.
The list of derived (unpacked) files belonging to the distribution and covered

by the LPPL is defined by the unpacking scripts (with extension .ins) which are
part of the distribution.

∗claudio dot beccari at gmail dot com

1

2 Introduction
It is well known that when the standard environment tabular* is opened with a
specified width, it is necessary to introduce in the delimiter declaration @{...} of
(possibly) the first cell of the model row a declaration such as

\extracolsep{\fill}

in addition to other possible printable delimiters, such as vertical lines, and other
fixed spacing commands. The effect is that the extra stretchable glue operates only
on the left of each cell after (to the right of) the cell that received the declaration;
the first cell will never get larger in spite of the presence of this glue.

Another package, tabularX, normally distributed by the LATEX3 Team with
every version of the TEX system distribution, allows to create expandable cells,
provided they contain only text. These expandable cells are identified with the
column identifier X; this identifier defines a paragraph-like cell, the width of which
gets determined after some runs of the typesetter on the same source tabular
material, so as to find out the correct width of the textual columns.

The approach here is a little bit different: the cell contents need not be textual
and no cell width is determined in one or more runs of the typesetter; instead
the inter column glue is determined so as to fill every cell on both sides with
the proper space. The macros contained in this package are insensitive to the
particular kind of cell descriptors and to the presence of multiple \multicolumn
commands. It proved to work properly also if the array package extensions are
used. Nevertheless if multiple \multirow commands in different rows “interlace”
the columns they work on, poor results are obtained, and sometimes no result at
all is obtained except a warning message.

On the other hand, as well as for tabularX, it needs to typeset the table
three times; the first two times with standard values for the inter column glue
\tabcolsep, in order to find the exact parameters of the linear dependence of
the table width from the value of that glue; then executes some computations so
as to extrapolate the final correct value of \tabcolsep, and on the third run it
eventually typesets the table with the specified width.

The time increase needed for these three table typesettings is in general rather
negligible, nevertheless if a specific document contained many dozens of such ta-
bles, the compilation time might become perceivable.

It might be noticed that in order to perform the necessary computations a
fractional division algorithm must be used; since 2009 any TEX installation uses
the εTEX extensions; therefore fractional division is not any more an issue as it
was in previous versions of this package.

3 Normal use of widetable

This package issues an error message in case the environment includes other unhid-
den environment; this is explained in the Implementation section. In plain words,

2

if a widetable environment is nested into another one, the inner environment
must be “hidden” within a group (a pair of braces).

Here it is assumed that the user typesets the table to its natural width with
tabular; should it appear too small, and should it be typeset at a larger width, for
example for filling the total \linewidth available at that specific point, then and
only then the user changes the tabular environment to widetable. Should the
initial table be moderately larger than the \linewidth, then it might be shrunk
to \linewidth with widetable, provided there are enough columns, and therefore
delimiters, to be reduced in size. Of course it’s impossible to typeset any table
with any negative value of \tabcolsep; or better, it is possible, but the result in
general is very messy.

In other words widetable should be used as a second resort, so as to correct
some typesetting features not considered aesthetically acceptable.

The syntax for tusing the environment widetable is the same as that of the
tabular* environment; the only difference is the name. Therefore one has to
specify:

\begin{widetable}{〈width〉}[〈alignment〉]{〈column descriptors〉}
〈row of cells〉\\
〈row of cells〉\\
...
〈row of cells〉\\
〈row of cells〉\\
\end{widetable}

4 The method
The principle on which this little package is based is the following; suppose a
certain table is typeset with an inter column glue t0 = 0 and that its width turns
out to be l0; suppose the same tabular material is typeset again with an inter
column glue t1 > 0 so that the table table gets as large as l1 > l0. Then, if the
table has to be as wide as l the inter column glue must equal the value

t = l − l0
l1 − l0

· t1

Therefore we need to run the typesetting of the same tabular material with
the two values of the inter column glue set to zero and to t1, respectively, so as to
find the widths l0 and l1. Afterwards it has to determine the correct final value t,
and typeset once again the same tabular material for the last time.

Of course the first two runs must put their results into suitable boxes so as to
avoid shipping them to the output file, while at the same time allowing to record
the width of the enclosing boxes.

3

5 The long division algorithm
In previous versions of this package we provided a fractional length division macro
to perform such computations; the subtractions and multiplication could be done
with regular primitive commands of the TEX engine; but the fractional division
required a special long division algorithm.

With the εTEX extensions to the typesetting engine pdftex (native in xetex
and luatex, therefore available in XeLaTeX and LuaLaTeX) there is no need to
create any long division macro, because such computation is already provided in
those engines as a primitive command.

6 Using the εTEX facilities
In facts the εTEX extension provides the scaling operation: given the length L1
and two homogeneous quantities X1 and X2 (where such quantities may be either
two integer numbers, or two dimensions), such scaling operation scales L1 to L2
by computing

L2 = L1 ·
X2

X1

The intermediate results are actually done with integer arithmetics (internally
length are coded as integer numbers of scaled points) but are done in double words
so as to avoid underflow and overflows almost always. Some unusual situations
might exist where underflows or overflows may occur, but they must be very
unusual, and very unlikely to happen for the calculations of this package. In case
of overflow a \maxdimen value is automatically obtained and computations go on
as possible, may be giving rise to other errors or warnings, for example overfull
lines.

The use of the εTEX extensions implies that this package works correctly only
with modern engines and kernel formats. This is why the package starts with a
statement where the kernel format is required to be quite recent.

7 Usage
As explained above, the normal usage of widetable requires the same syntax as
that of tabular* except that no explicit stretchable glue has to be inserted in
the column separators as it is necessary to do with tabular*. Examine the table
shown in table 1 that is typeset at its natural width.

The same table can be built with tabular* as in table 2.
As it can be seen, large inter column spaces are inserted right at the left of the

contents of every cell except the first one, and the table appears too much spread
out.

The table can be built also with the environment tabularx, defined by the
tabularx package; see the result in table 3.

As it is noticeable the whole space to enlarge the table has been taken from
the X column, and the table does not look right.

4

Name role age activity
William John father 45 employee
Mary Elisabeth mother 42 elementary school

teacher
Joan Laura daughter 14 junior high school

student
Jack Johnathan son 8 elementary school pupil

Table 1: A regular table typeset with tabular and its width is its natural one

Name role age activity
William John father 45 employee
Mary Elisabeth mother 42 elementary school

teacher
Joan Laura daughter 14 junior high school

student
Jack Johnathan son 8 elementary school pupil

Table 2: A table typeset with tabular* where the total width has been set to
\textwidth

Name role age activity
William John father 45 employee
Mary Elisabeth mother 42 elementary school teacher
Joan Laura daughter 14 junior high school student
Jack Johnathan son 8 elementary school pupil

Table 3: A table typeset with tabularx where the total width has been set to
\textwidth

5

Name role age activity
William John father 45 employee
Mary Elisabeth mother 42 elementary school

teacher
Joan Laura daughter 14 junior high school

student
Jack Johnathan son 8 elementary school pupil

Table 4: A table typeset with widetable where the total width has been set to
\textwidth

Now we show the difference by using the widetable environment in table 4.
In table 4 the column specifications are the same as those used in the code

of table 1, but only the spaces separating the columns have been modified, not
the column types and widths. Of course one my object that the table spaces are
too wide and table 1 looks better. But if, for example, in a certain document
tables must span the whole width, the the solution given in table 4 is the only
one acceptable among the four shown in these examples. It’s up to the user to
chose among these four solutions in terms of the actual table contents and the
stylistic constraints the document must fulfil. If the examples were typeset with
the horizontal and vertical rules that emphasise each cell (instead of using only the
booktabs horizontal rules) it would be more evident how the various environments
shape the cells and where they insert the extra spacing so as to reach the desired
width.

8 Warnings
Normally widetable works well as described in the example shown in table 4.
Nevertheless there are some issues that may alter its smooth working.

One such issue takes place when the specified table width is shorter the the
natural width. In this case the table is typeset as in table 1 at its natural width,
but a warning is issued that explains why: it looks like this

Package widetable Warning: The natural width 225.19809pt of the tabular
(widetable) material is larger than the specified width 177.5pt.

(widetable)
(widetable) The table is typeset with the default
(widetable) column spacing on input line 392.

As usual the warning is contained into the .aux file.
When a nested tabular environment is contained in widetable is not hidden

within a group of paired braces, the inner environment is substituted with a framed
box that contains a message, and a more descriptive warning is included into the
.aux file.

6

When some adjacent cells are grouped with the \multicolumn command; the
table might come out of the correct specified width even if the spanned cells (in
different rows) do not belong to the same columns, but the table looks very ugly;
we cannot say that widetable is responsible of this ugliness, or if the table is ill
formed because of using such overlapping spanned cells; the best suggestion is to
never use such “acrobatic” table compositions.

9 Acknowledgements
I must deeply thank Enrico Gregorio for the revision of this package macros and
for his wise suggestions about the correct programming style. If some glitch still
remains in the programming style, that is just my fault. Deep thanks also go
to Frank Mittelbach who spotted an error and suggested some useful modifica-
tions; this new version of the package and its documentation comes from Frank’s
suggestions.

10 Implementation
The package is already identified by the same statement used for this .dtx file.
The necessary LATEX kernel date must be specified in order to be sure that the
εTEX extensions are available.

1 \NeedsTeXFormat{LaTeX2e}[2018/01/01]

We suppose that the user might wish to use also the extensions of the array
package; in order to avoid possible option clashes we defer loading this array
package to the begin document statement and we check if the user has already
loaded that package so as not to reload it. This task could be left to the internal
workings of the \RequirePackage macro, but we prefer to do our checks with a
more direct statement. By so doing, this package already has available all the
facilities of the array package, in particular the \newcolumntype command, the
column types m and b, and the various special codes to add commands at the
beginning and the end of all the cells of a given column.

2 \AtBeginDocument{%
3 \@ifpackageloaded{array}{}{\RequirePackage{array}}%
4 }

Next we define a certain number of TEX dimensions and counters; these dimen-
sion and counter registers might be selected among the extra registers available
with the εTEX extensions. In facts such extensions allow to use registers identified
by numbers higher than 255, a limit of the good-old-TEX; Enrico Gregorio in 2009
suggested to avoid such kind of usage; heremarked that not all users upgrade so
often their TEX system; OK, may be they have their good reasons for not upgrad-
ing, and they have available the previous versions of this package; may be they
use a basic installation of the TEX system and add new packages when they need
to use them. Therefore we follow Enrico’s suggestion and use some of the scratch
registers always available to programmers.

7

5 \dimendef\wt@Numer=2
6 \dimendef\wt@Denom=4
7 \countdef\wt@Num=2
8 \countdef\wt@Den=4

We require the xparse package in order to define the environment widetable
with its extended commands.

9 \RequirePackage{xparse}

We define a local scaling macro \WT@scale to execute the scaling operation
that is of interest to the widetable package. We provide some tests so as to set
some values for very unusual situations. The four arguments are as such: #1:
length to be scaled; #2: numerator of the scaling ratio; #3: denominator of the
scaling ratio; #4: scaled length.
10 \newcommand\WT@scale[4]{\begingroup
11 \wt@Num #2\relax \wt@Den #3\relax
12 \ifnum#3=\z@
13 \@tempdima\ifnum#2<0-\fi\maxdimen
14 \else
15 \@tempdima\dimexpr#1*#2/#3\relax
16 \fi
17 \edef\x{\noexpand\endgroup\noexpand\setlength{#4}{\the\@tempdima}}%
18 \x}

At this point it will be the widetable environment responsibility to call
\WT@scale with the proper arguments.

Now we define the dimension register that is to contain the desired table width.
19 \newdimen\wt@width

We further define the start of the tabular typesetting that will be useful in
a while. Actually the table preamble is being saved into a macro, so that when
the 〈width〉 and the 〈column descriptors〉 are given to the opening environment
statement, these saved quantities can be used again and again.

A new boolean, wt@scartare, is defined; this boolean variable will be set true
in order to detect if the table body is is not well formed, with \begin and \end
statements that don’t match, and the like; actually the widetable environment
can contain other environment, even another widetable environment, but the ex-
ternal one should not be upset by the internal ones. In order to achieve this result,
it is necessary that any embedded environment is hidden int a group delimited by
a pair of matching braces.
20 \newif\ifwt@scartare\wt@scartarefalse
21

The environment opening as well as the environment closing are defined by
means of low level commands. Due to the syntax of the opening command that
requires two compulsory arguments, these are saved in the recently defined dimen-
sion register and to a macro respectively; another macro \wt@getTable is used to
get the body of the table; the \end{widetable} statement represents the ending
delimiter of the table contents.
22 \DeclareDocumentCommand\widetable{m O{c} m}

8

23 {% OPENING WIDETABLE
24 \def\@tempC{widetable}%
25 \setlength{\wt@width}{#1}%
26 \def\wt@preamble{#3}%
27 \def\wt@starttabular{\tabular[#2]{#3}}%
28 \wt@getTable}%

The closing statement will actually do the greatest part of the job. First of all
if the above mentioned boolean variable is true, it skips everything and it does not
set any table; but if the boolean variable is false, the table body is well formed and
it can do the job as described in the previous sections. It first sets \tabcolsep
to zero and sets the resulting table in box zero; the lower level tabular with the
information saved into \wt@startabular and the body of the table contained into
the token register zero.

Then it sets \tabcolsep to 1 cm (arbitrarily chosen) and typesets again the
table into box two. The width of box zero is l0 and that of box two is l1; these
are the lengths needed by the equation that evaluates the final typesetting inter-
column spacing. The arbitrary constant of 1 cm is t1, and the specified width l is
the dimension saved into \wt@width. The subtractions are operated directly on
the dimension registers \wt@width (the numerator), and on the auxiliary register
\@tempdimenb; the \WT@scale command is executed in order to get the scaling
ratio and the final definitive value of \tabcolsep is eventually computed. The
table is finally typeset without using boxes, while the contents of box zero and two
are restored upon exiting the environment to any value they might have contained
before entering widetable.
29 \def\endwidetable{% CLOSING WIDETABLE
30 \ifwt@scartare
31 \noindent\null
32 \else
33 \tabcolsep=\z@
34 \setbox\z@=\hbox{\wt@starttabular\the\toks@\endtabular}%
35 \tabcolsep=6pt\relax
36 \setbox\tw@=\hbox{\wt@starttabular\the\toks@\endtabular}%
37 \ifdim\wt@width<\wd\z@
38 \@tempdimb=\dimexpr\wd\tw@-\wd\z@\relax
39 \PackageWarning{widetable}{%
40 The natural width \the\wd\z@ \space of the tabular\MessageBreak
41 material is larger than the specified width
42 \the\wt@width.\MessageBreak\MessageBreak
43 The table is typeset with the default\MessageBreak
44 column spacing}%
45 \else
46 \@tempdimb=\dimexpr\wt@width-\wd\z@\relax
47 \fi
48 \@tempdimc=\dimexpr\wd\tw@-\wd\z@\relax
49 \WT@scale{\tabcolsep}{\@tempdimb}{\@tempdimc}{\tabcolsep}\relax
50 \wt@starttabular\the\toks@\endtabular
51 \fi
52 \ignorespacesafterend

9

53 }
54

Of course other actions must be performed before executing the closing envi-
ronment statement. We need a macro wt@finetabella that is equivalent to the
ending environment statement.
55 \def\wt@finetabella{\end{widetable}}%
56

We finally can define the most important macro that gets the table body;
it requires two delimited arguments: in #1 the table body and, after the \end
command, the closing environment name will be set in #2. The environment
name is assigned to the macro \@tempB, which is checked against the correct
name widetable saved in macro \@tempC by the opening command. If the names
match, then the table body is assigned to the token register zero, to be used later
on by the typesetting macros. But if the names don’t match, then something went
wrong and a package message is issued to explain what happened and how the
program will manage the situation.

Specifically the names may not match if a cell contained another environment
and its whole \begin{...}...\end{...} was not closed within a pair of matched
braces. If an enclosed environment is hidden within a group, the delimited argu-
ment macro \wt@getTable will ignore such embedded environment, otherwise it
will get a non matching name and messy things might happen. Besides warning
about this fact, the body of the table, at least what has been read by the macro,
will be discarded and substituted with a box containing a message; therefore a
table will be typeset, but not the desired one. The remaining part of the body
remains in the input stream and might cause, presumably, strange errors, such as
& characters used outside a tabular or array environment. We must take care of
this so that the typesetting procedure does not crash.
57 \def\wt@getTable#1\end#2{\def\@tempB{#2}%
58 \ifx\@tempB\@tempC
59 \toks@={#1}%
60 \expandafter\wt@finetabella
61 \else
62 \PackageWarning{widetable}{%
63 The table contains environment ‘\@tempB’ %
64 \MessageBreak
65 not enclosed in braces. This is expressly forbidden!%
66 \MessageBreak
67 The table is not typeset and is substituted%
68 \MessageBreak
69 with a framed box}%
70 \advance\wt@width-2\fboxsep
71 \noindent\fbox{\parbox{\wt@width}{The table was not typeset
72 because it contains a visible \texttt{\char‘\\end} in one
73 or more cells.}}\par
74 \expandafter\wt@finishTable
75 \fi
76 }

10

77

In order to avoid a complete mess, we have to iteratively gobble the rest of the
input stream until a valid \end{widetable} is encountered; actually the following
macro will do a nice job in general, but it is not infallible if the input stream is
really composed in a very bad way. In facts it calls itself again and again, always
gobbling it arguments, until a valid terminating environment name matches the
name widetable.
78 \def\wt@finishTable#1\end#2{%
79 \def\@tempB{#2}%
80 \ifx\@tempB\@tempC
81 \wt@scartaretrue\expandafter\wt@finetabella
82 \else
83 \expandafter\wt@finishTable
84 \fi
85 }

11 Conclusion
Tables should always have their natural width, but. . . The default value of\tabcolsep
is fixed by the document class, it is not prescribed by a supreme law: therefore
what does it mean “natural width”. Probably the one determined by the class
default value of \tabcolsep so all tables have the same general look.

Nevertheless sometimes a table is slightly wider than the current measure; why
not shrink the table by shrinking \tabcolsep by the right amount in order to fit
the measure? The result might be a table where only the inter column spaces
are shrunk, not the whole table, fonts, drawings, and figures included, a result
easily obtainable with a \resizebox command available through the graphicx.sty
package. Nobody forbids to follow this technique, of course, but the widetable
route might yield a better result.

The same is true when a natural width table is slightly shorter than the mea-
sure; enlarging it by retouching the \tabcolsep inter column space might be the
right solution in order to avoid a multitude of slightly different indents or left
margins.

This package might be useful also for copying some macros so as to avoid some
programming in other packages; this use is certainly permitted by the LaTeX
Project Public License, which sets the observance of very light obligations.
86
87 \endinput

11

