
The xsavebox Package, v0.12

Alexander Grahn
https://gitlab.com/agrahn/xsavebox

.

9th July 2018

Abstract

This package de�nes commands for saving content that can be repeatedly placed
into the document without replicating DVI/PDF code in the output �le, allowing
for smaller size of the �nal PDF �le and improved content caching for faster dis-
play in certain PDF viewers. The user commands are modelled after the standard
LATEX commands \savebox, \sbox, \usebox and the ‘lrbox’ environment. The
package supports all common TEX engines and back-ends, including ‘dvips’.

1 Introduction

Whenever the standard LATEX command \usebox{save-box} is issued to insert a pre-
viously de�ned save-box more than once, the typeset content stored therein is written
as DVI or PDF code into the output �le again. The redundant code adds to the overall
�le size and may impair the page caching facilities built into some PDF viewers.

The PDF �le format de�nes a powerful mechanism for packing readily typeset content
once into self-contained entities, so-called ‘Form XObjects’, that can be referenced at
other places within the PDF document.

The ‘xsavebox’ package makes this PDF feature accessible on the LATEX level as a set
of user commands which look similar to and are used in a similar way as the well-
known save-box related LATEX commands.

All common TEX engines and back-ends are supported, which are:

• pdfLATEX, LuaLATEX,

• LATEX → dvips→ ps2pdf/Distiller

• (X E)LATEX → (x)dvipdfmx

To enable ‘dvipdfmx’, pass it as a document class option.

It should be emphasized that ‘Form XObjects’ is a PDF feature. Content saved and
referenced using ‘Form XObjects’ is only visible in the �nal PDF output, but not in in-
termediate formats of the work-�ow if those are involved, namely DVI and PostScript.
Of course, PostScript converted back from PDF displays the content correctly.

1

https://gitlab.com/agrahn/xsavebox


2 Package Options

margin=<dimension>

When content is converted into a Form XObject, it is clipped to its bounding box. How-
ever, the font glyphs used for typesetting tend to be slightly bigger than their boxes.
In order to avoid clipping, the ‘xsavebox’ package temporarily adds an additional
margin of 3pt around the content. In rare cases, 3pt may turn out to be insu�cient,
e. g. if text is up-scaled before being put into a save box. This option allows the setting
of a larger margin to ensure that the content gets entirely into the save box. Note that
whichever value is chosen for ‘margin’, the spacing of the boxes, when inserted into
the document, remains unchanged. This is what every user de�nitely wants.

3 User commands

Content saving

\xsbox{<xsbox name>}{<content>}
\xsavebox{<xsbox name>}[<width>][<position>]{<content>}
\xsavebox*{<xsbox name>}[<width>][<position>]{<content>}

\begin{xlrbox}{<xsbox name>}
<content>

\end{xlrbox}

\begin{xlrbox*}{<xsbox name>}
<content>

\end{xlrbox*}

As for usage, the main di�erence of these commands as compared to their stand-
ard LATEX counterparts without the leading ‘x’ is the way of naming boxes. The label
<xsbox name> is an identi�er that may be composed of arbitrary non-active charac-
ters, such as letters, numbers, spaces, punctuation marks. A command for declaring
a box register does not exist; <xsbox name> is created upon using above-listed com-
mands and environments. Also, an existing <xsbox name> can be re-used, which
simply overwrites its old with new content. The package keeps track of box usage;
the content of a box is only written to the output �le if it is referenced at least once
later in the document.

The [<width>] and [<position>] options have the same meaning as with \savebox
and \makebox. As usual, the additional length commands

\width
\height
\depth
\totalheight

are de�ned for use in the [<width>] option and refer to the original dimensions of
<content>. The value of <position>may assume one of ‘l’, ‘r’, ‘c’ or ‘s’. The default
is ‘c’ for text centred in the box.

2



<content> is typeset in LR-mode. Longer text to be typeset in paragraph mode must
be put into a \parbox or ‘minipage’.

The starred (‘*’) versions of the commands allow for later colour injection into the
boxes at the place of their referencing. The colour which is active at the time of build-
ing the box is not saved with the content. This feature only works with pdfLATEX and
LuaLATEX.

Note that

\xsbox{image for frequent use}{\includegraphics{example}}

is particularly useful in the LATEX → dvips→ ps2pdf work-�ow. Although the other
engines and back-ends already take care of preventing multiple graphics �le inclusion,
a noticeable reduction of compilation time will be achieved in general.

Verbatim content can only be saved using the ‘xlrbox[*]’ environment.

With LATEX in DVI mode and X ELATEX, box saving commands should not be placed on
a line of their own with empty lines above and below. For technical reasons this will
produce an empty paragraph. Always place them at the beginning or at the end of
a paragraph in the input �le. Also, box saving commands cannot be placed in the
document preamble with LATEX (DVI) and X ELATEX.

In a right-to-left typesetting context (RTL) using the (pdf)LATEX or X ELATEX engines, the
<content> argument should be enclosed in a pair of \beginR and \endR commands
for correct typesetting results.

Referencing saved content

Previously saved content can be inserted with

\xusebox{<xsbox name>}
or
\the<xsbox name>

The second, shorthand form can be used if <xsbox name> is composed exclusively
of letters (‘a‘–‘z’, ‘A‘–‘Z’). For example, a box named ‘MyFirstExample’ could be
referenced as

\theMyFirstExample

but a box named ‘My 1st Example ;-)’ would require

\xusebox{My 1st Example ;-)}

The referencing commands \xusebox{<xsbox name>} and \the<xsbox name> can
again be placed inside the <content> body of box saving commands. There is no up-
per limit of nesting levels.

\xusebox{<xsbox name>} and \the<xsbox name> behave exacly like common TEX
boxes. Therefore, they can be scaled, rotated and resized using the corresponding com-
mands from the ‘graphicx’ package.

3



4 Example

An example with colour injection (pdfLATEX/LuaLATEX-only) follows:

Here is a

silly boxed para-
graph that no one
will ever use for anything.

The same sil
ly

bo
xe

d
pa

ra
-

gr
ap

h
th

at
no

on
e

w
ill

ev
er

us
e

was inserted again but with a di�erent colour and rotated by 90
degree.

\usepackage{xsavebox}
\usepackage{color}
\usepackage{graphicx}
...
\begin{xlrbox*}{SavedPar}% ‘*’ --> no colour at the time of saving

\begin{minipage}[b]{1in}
silly boxed paragraph that no one will ever use
\end{minipage}

\end{xlrbox*}
%colours injected into \theSavedPar
Here is a \fbox{\color{blue}\theSavedPar} for anything.

The same \fbox{\color{green}\rotatebox{90}{\theSavedPar}} was
inserted again but with a different colour and rotated by 90 degree.

4


	1 Introduction
	2 Package Options
	3 User commands
	4 Example

