
Typesetting spectral sequences in LATEX with

luasseq.sty

Tilman Bauer∗

November 6, 2010

1 Introduction

The present package, luasseq, facilitates the typesetting of mathematical objects
called spectral sequence charts (henceforth simply called “chart”). It is a re-coded
and largely code-compatible version of the older package sseq with new func-
tionality and much higher typesetting speed and lower memory requirements. It
requires to be run with luatex, a TEXextension by the Lua programming language
nowadays included in many TEXdistributation.

From a typographical point of view, a chart is a two-dimensional grid with
integer coordinates; at every position (x,y), there may be any number of symbols
(usually dots, little circles or boxes, digits etc.), possibly decorated with labels,
and between any two such symbols may or may not be a connection—e. g., a line,
an arrow, or some curved line.

The luasseq package is built on top of the pgf package by Till Tantau. Pre-
vious versions of sseq (pre-2.0) were based on the graphics package xy-Pic; the
current version produces higher quality output and allows for more customization,
at the cost of requiring a fairly recent TEXdistribution (or, at least, the packages
pgf and xkeyval should be installed and the former should be no older than from
2006) as well as LuaTeX.

This package automates the following functions:

• Automatic drawing of the grid and the axis labels;

• Clipping. Anything outside the displayed portion of the chart is clipped
away. This has the advantage that a large chart, which does not fit on a
page, can be cut into smaller pieces which contain exactly the same sseq

code, but different clipping regions.

• Arranging. Multiple symbols dropped at the same integer coordinates will
be automatically arranged so that they usually do not overlap. The algo-
rithm for doing this is rather primitive, but still powerful enough for most
applications.

∗tilman@alum.mit.edu

1



• Simplified “turtle graphics” syntax. Every primitive element of a chart is
typeset with a macro defined by sseq.

• Control structures (loops, if/then, etc.) are allowed inside the sseq environ-
ment.

2 Loading

The luasseq package is loaded with
\usepackage{luasseq}.
All options from previous versions of sseq are deprecated.

3 Basic usage

A spectral sequence is typeset by the codesseq

\begin{sseq}[〈options...〉]{〈x-range〉}{〈y-range〉}
〈sseq commands...〉
\end{sseq}

In the simplest case, a range is of the form 〈min〉...〈max 〉, where 〈min〉 and
〈max 〉 are two integers with 〈min〉 ≤ 〈max 〉.

Thus \begin{sseq}{2...5}{-3...-1}\end{sseq} will typeset

2 4
−3

−1

.

It is also possible for ranges to be a comma-separated list of ranges of the
above form, e.g. 0...3,8...10. In this case, the chart is broken into several
pieces. Here is an example:

\begin{sseq}{-1...3,5...8,20...24}

{0...2,4...4}

\end{sseq}
− 1 1 3 5 7 20 22 24

0

2

4

The minimum value of one block always has to be at least two greater than
the maximum of the previous block; 0...2,3...5 is illegal.

The following options are defined for the sseq environment. Options in bold
face are the default setting.

grid= 〈none,crossword,go,dots,chess〉 Select an option of drawing the back-
ground grid.

2



none crossword go dots chess

With the chess option, all squares with coordinates (x,y) with x+y even are
white.

gridstroke=〈thickness〉 For the grid types crossword and go, this sets the line
width. The default is .1pt. A good option is to set it to the resolution of
your output device.

gapsize=〈size〉,xgapsize=〈size〉,ygapsize=〈size〉 This sets the size of the gap
between two pieces in a range (i.e. in the above example, the distance
between the 3-column and the 5-column). The gapsize option sets both
xgapsize and ygapsize to the same given value. The default is 3mm.

entrysize=〈size〉 Specify the size of each square of the grid. The default is 4mm.

labels=〈labels〉,xlabels=〈labels〉,ylabels=〈labels〉 Specify how labels on the
x- and y-axis are drawn, respectively. The labels option sets both xlabels

and ylabels to the same. Possible values are none, numbers, or an explicit
list of semicolon-separated labels {〈x1〉;〈x2〉;. . . } which will be typeset in
math mode. If the range consists of more than one block, the labels for
the separate blocks are separated by a comma; see the example below. The
default is numbers. Inside the label strings, one can use the following place-
holder:

&n will be replaced by the coordinate

&c will be replaced by the number of the piece in a multi-piece range (start-
ing with 0)

&i will be replaced by the index within the current piece (starting with 0)

labelstep=〈step〉,xlabelstep=〈step〉,ylabelstep=〈step〉 Frequently it is not
desirable that every label is printed, but only every second or third label.
This can be done by setting this option to a positive integer. The default is
2.

The following example illustrates how labels can be customized:

\begin{sseq}[xlabelstep=1,ylabelstep=4,

xlabels={x_{&n},y_1;y_2;y_3}]

{1...3,10...11}{0...4}

\end{sseq}

x1x2x3 y1 y2
0

4

leak=〈size〉,xleak=〈size〉,yleak=〈size〉 When a line is drawn from within the
visible range of the chart to a point outside, or vice versa, this line will
protrude beyond the boundaries of the grid. These values define how far;
the default is one third of gapsize. Do not set this to a value larger than
half of gapsize.

3



arrows=〈arrow type〉 Sets the default arrow type to use in the spectral sequence.
Here are some default arrow types:

stealth
latex

to

Other arrow types can be defined by the user or loaded from a library; see
the pgf package documentation for details.

packing= 〈auto,horizontal,vertical,diagonal〉 Specify which algorithm you want
to use to arrange multiple objects in a grid square. The following charts
illustrate the effect:

1 2 3 4 5

auto

1 2 3 4 5

diagonal

1 2 3 4 5

vertical

1 2 3 4 5

horizontal

Notice for advanced users: you can define your own packing algorithm, say
mypack, by defining a Lua function sseq_packing_mypack(i,n) which re-
turns a pair of coordinates (in TEX scaled points) indicating the offset of
the center of object i out of a total of n dropped objects from the lower left
corner of the square.

4 sseq commands

Inside an sseq environment there is defined a virtual cursor, which starts out at
position (0, 0) (even if that position is not within the visible range!). Most drawing
commands are relative to the current cursor position; this facilitates reusage of
sseq code when a certain pattern has to be repeated, as is often the case in
mathematical spectral sequences.

To move the cursor to the absolute position (x,y), use \ssmoveto{x}{y}.\ssmoveto

To move the cursor relative to the current position by (x,y), use \ssmove{x}{y}.\ssmove

The command \ssdrop[〈options〉]{〈mathcode〉} will display mathcode at the\ssdrop

current cursor position. The argument is always interpreted in math mode. The
following options can be given:

circled A circle is drawn around the object.

boxed A box is drawn around the object.

color=〈color〉 The object is drawn in the specified color. Any LATEX color can
be used, e.g. predefined colors such as black, blue, PineGreen, etc., or user
defined rgb colors.

name=〈name〉 This is equivalent to issuing \ssname{〈name〉} after \ssdrop, see
below.

4



If the argument is \bullet, \circle, or \square, the object is replaced by a
better-spaced graphics primitive.

\ssname{〈name〉} gives the object most recently dropped the name 〈name〉. If\ssname

the previous command is one of the drop commands, then it refers to that object;
if it is not, then if there is one and only one object at the current cursor position,
it refers to that object; if that is also not the case, an error message is generated.
New in luasseq: The argument name is a space-separated list of alphanumerical
strings, such as 3 alpha beta2 beta2; the order of the strings is irrelevant, thus
this name is equal to beta2 alpha 3 beta2.

After an object has been given a 〈name〉 with \ssname, the cursor can be\ssgoto

moved back to that object at any time by issuing \ssgoto{〈name〉}. This becomes
necessary when there is more than one object in one position.

Often the mechanism provided by \ssname/\ssgoto is not flexible enough to\ssprefix

deal with repeated code. In that case, \ssprefix{〈prefix 〉} defines a “multiplier”
for all names that follow; i.e. a \ssname{〈name〉} after such a command will really
define a name 〈prefix 〉 〈name〉 (with a space in between, so that the order is irrele-
vant). However, since \ssgoto also observes the prefix, \ssgoto{〈name〉} will still
work. \ssprefix commands can be iterated; the prefices are then concatenated.

This command resets the prefix defined by (a sequence of) \ssprefix to the\ssresetprefix

empty prefix.
This is a version of \ssgoto that ignores the current prefix.\ssabsgoto

This command decorates the previously typeset object with a label. It is used\ssdroplabel

in the form \ssdroplabel[〈options...〉]{〈label〉}.
The 〈label〉 will then be typeset next to the most recently dropped object (for

a definition for what that is, exactly, consult the description of \ssname). If you
specify one of U,LU,RU,L,R,LD,RD,D as an option, the label is positioned relative to
the object it labels (default: U=up). As in \ssdrop, an option color=〈color〉 will
typeset the label in the LATEX color 〈color〉.

The command \ssdropextenstion[〈options...〉] has only optional arguments\ssdropextension

and is rather specialized. It refers to a previously dropped object (see \ssname),
draws a circle or box around it (default: a circle, can be changed by giving the
option boxed, and considers that circle a new object. Thus it produces a new
object that is attached to the original object, and not subject to the packing
algorithm that tries to make objects non-overlapping. Further options are color

and name with the same usage as in \ssdrop.
There are two ways of typesetting connections between objects. One of them is\ssstroke

the command \ssstroke, which requires that the cursor recently moved from one
object to another. It takes no non-optional arguments and typesets a line between
the two objects. Example: Suppose there are two objects, which have been given
the names a and b by \ssname. Drawing a line between them is achieved by the
command \ssgoto{a} \ssgoto{b} \ssstroke.

The following options can be given in the form \ssstroke[options]:

color=color the connection is drawn in the given LATEX color

curve=value the connection is curved to the left by an amount proportional to
the value given.

5



dashed[=dashing type] the connection is drawn in a dashed style. The optional
dashing type is an expression of the form {{a}{b}...}, where each of a, b,
. . . is a length (like 2pt or 3mm). The line then consists of a stroke of length
a, followed by a gap of length b, followed by a stroke of length ... etc.

dotted[=dashing type] the connection is drawn in a dotted style. If the op-
tional dashing type is given, this option behaves exactly like dashed.

arrowfrom[=arrow style] An arrow is drawn at the beginning of the line. The
global arrow style can be overridden by specifying an arrow style.

arrowto[=arrow style] An arrow is drawn at the end of the line.

void This option says that the target of the connection is not another object;
instead, the connection should just point into the correct direction.

Instead of specifying arrowfrom or arrowto in ssstroke, you can issue these\ssarrowhead

\ssinversearrowhead commands afterwards to typeset an arrow head onto the beginning resp. end of
the connection most recently typeset. There is one optional parameter [〈arrow
style〉] which selects the arrow tips of style 〈arrow style〉, cf. the documentation
of \ssstroke.

A second way of producing connections is \ssline[〈options...〉]{〈x 〉}{〈y〉}.\ssline

This command draws a connection from the most recent object (cf. \ssname)
to an object at relative position (〈x 〉,〈y〉), and it moves that cursor to that new
position. If \ssline is followed by a drop command, then the line is attached to
this newly dropped object (note the slightly out-of-order execution!), no matter
how many other objects there are at the target position. However, if it is not
followed by a drop command, then there has to be one and only one object at the
target position, otherwise an error message is generated. The options are exactly
the same as for \ssstroke.

\ssarrow[〈options...〉]{〈x 〉}{〈y〉} is an abbreviation for\ssarrow

\ssline[〈options...〉,arrowto]{〈x 〉}{〈y〉}
\ssbullstring{x}{y}{n} is a shortcut for \ssdrop{\bullet} followed by\ssbullstring

n− 1 copies of \ssline{x}{y} \ssdrop{\bullet}.
\ssinfbullstring{x}{y}{n} is a shortcut for \ssdrop{\bullet} followed by\ssinfbullstring

n−1 copies of \ssline{x}{y} \ssdrop{\bullet}, followed by \ssarrow[void]{x}{y}.
The cursor finishes on the last bullet.

(new in luasseq) This command, which has as only optional argument a color,\ssgrayout

can be given at any point in the sseq code and changes the color of the most recent
object (cf. \ssname) to the color given (gray by default), along with all lines
connected to this object. Any line drawn to that object after issuing ssgrayout

will not be affected. This is used for typesetting differentials in spectral sequences.

5 Examples

Example 1 The following code generates a 5× 5 grid with labels between −2 and
2. The size of every square is (.8cm)2, and labels are written on every square. The
grid is chess-style. A bullet is drawn at coordinate (0,0).

6



\begin{sseq}[grid=chess,labelstep=1,

entrysize=.8cm]{-2...2}{-2...2}

\ssdrop{\bullet}

\end{sseq}

− 2 − 1 0 1 2

−2

−1

0

1

2

Example 2 This example demonstrates how to move the cursor and drop objects
and labels. Note how the last bullet, which is dropped at position (8,4), is outside
the grid and thus clipped. The grid style is the default (crossword).

\begin{sseq}{0...6}{0...6}

\ssdrop{\bullet}

\ssdroplabel[U]{(0,0)}

\ssmove 2 1

\ssdrop{\clubsuit}

\ssdropextension

\ssdropextension

\ssdropextension

\ssdroplabel[RU]{(2,1)}

\ssmove 0 4

\ssdropcircled{8}

\ssmoveto 5 4

\ssdropboxed{\spadesuit}

\ssdroplabel[R]{(5,4)}

\ssmove 3 0

\ssdrop{\bullet}

\end{sseq}

0 2 4 6
0

2

4

6

♣

8
♠

(0, 0)

(2, 1)

(5, 4)

Example 3 This example illustrates the different ways of drawing connections.

\begin{sseq}[grid=go]{0...9}{0...6}

\ssdrop{\bullet}

\ssmove 4 4

\ssdrop{\bullet} \ssstroke

\ssstroke[curve=-.5]

\ssstroke[curve=.1,dashed] \ssarrowhead

\ssmove 4 0 \ssdropcircled{T}

\ssstroke

\ssmoveto 0 6

\ssdrop{\bullet}

\ssline {1} {-1} \ssdrop{\bullet}

\ssline[curve=.2] 7 {-1}

\end{sseq}

0 2 4 6 8
0

2

4

6

T

7



Example 4 This sample code shows how to use names for objects dropped in
spectral sequence; this is particularly useful when more than one item is dropped
at one position. It also demonstrates void arrows, which do not need a target.

\begin{sseq}[grid=dots]{0...4}{0...4}

\ssdrop{\bullet} \ssname{a} \ssvoidarrow 0 1

\ssdrop{\bullet} \ssname{b} \ssvoidarrow 0 1

\ssdrop{\bullet} \ssname{c} \ssvoidarrow 0 1

\ssdropextension \ssname{d}

\ssmove 4 4

\ssdrop{\bullet} \ssname{e}

\ssdrop{\bullet} \ssname{f}

\ssgoto a \ssgoto f \ssstroke

\ssgoto e \ssstroke

\ssgoto d \sscurve{.2}

\ssline 4 0 \ssdrop{\bullet}

\end{sseq}

0 2 4
0

2

4

Example 5 This final example shows how to take advantage of loops, prefices,
and \ssgrayout

\newcount\cnti

\def\drawstring#1#2{

\ifnum#2=1

\ssdrop{\bullet}

\ssname{#1}

\else

\ssdrop{\bullet}

\ssname{#1}

\ssline 1 0

\ssprefix{i}

\cnti=#2

\advance \cnti by -1

\drawstring{#1}

{\the\cnti}

\fi

}

\def\drawlines#1#2#3{

\ifnum#3>0

\cnti=#3

\ssgoto{#1} \ssgoto{#2}

\ssstroke \ssarrowhead

\ssprefix{i}

\advance \cnti by -1

\drawlines{#1}{#2}

{\the\cnti}

\fi

}

\begin{sseq}[grid=none]

{0...8}{0...3}

\ssmoveto 0 3

\drawstring{a}{8}

\ssmoveto 0 3

\ssresetprefix

\drawstring{b}{8}

\ssmoveto 0 0

\ssresetprefix

\drawstring{c}{8}

\ssresetprefix

\drawlines{c}{a}{8}

\ssresetprefix

\drawlines{b}{i i c}{6}

\ssresetprefix

\ssgoto{c}

\ssgrayout[red]

\ssgoto{c i i i i}

\ssgrayout[green]

\end{sseq}

The result is shown in the following chart:

0 2 4 6 8
0

2

8



6 Final remarks

This package has been extremely helpful for my own mathematical work, and it
most likely carries the characteristics of a tool initially developed for my own pur-
poses only. Before any published version, there was a version of sseq which was
much less powerful; and what is worse, this version is not fully upward compat-
ible with the previous one. (Every object that was dropped was forgotten right
afterwards; thus connections could not properly connect objects but were always
drawn from the center of the box corresponding to a coordinate to the center of the
box corresponding to the target coordinate, resulting in fairly ugly pictures.) The
published version 1.0 of sseq used xy-Pic and had most of the functionality of the
current package, but was extremely slow and a memory hog. Version 2.0 of sseq
was recoded using the graphics package pgf, improving the typesetting greatly.
The current version 2.1 of luasseq migrated most of the TEXcode to Lua, which
greatly improved typesetting speed and memory requirements, while enabling new
features such as \ssgrayout, more flexible labelling and packing algorithms, and,
again, type quality.

Many things remain to be desired:

• While objects are placed next to each other, no attempt is made not to make
connections overlap

• Labelling lines between objects is not supported.

• Have some features that make repetitions of sseq code redundant (which
occurs for example when an Er term of a spectral sequence has a polynomial
generator).

Given time and leisure, I might or might not implement one or more of these
improvements and make them available; of course, I would be even more happy if
somebody else did it. (Needless to say, I would request that I be informed of and
sent the enhancements.) I do guarantee that all further versions of luasseq that
might or might not be written by me will be compatible with the documented
code written for this version.

9


