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Abstract

This document describes techniques for speeding up matrix multiplication on
some high-performance computer architectures, including the IBM RS-6000, the
IBM 3090/600S-VF, the MIPS RC3240 and RC6280, the Stardent 3040, and the
Sun SPARCstation. The methods illustrate general principles that can be applied
to the inner loops of scientific code.
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1 Introduction

This report is derived from material in a much larger document [2] describing the results
of a series of matrix multiplication benchmarks, written in Fortran and C, that have been
carried out by the author on a variety of machines of interest to the University of Utah
campus computing community.

That document supplies many interesting comparisons between commonly-available
computing systems, and it also contains several surprises.

It is the purpose of this report to discuss in detail some conclusions that have been
drawn from the benchmarking activity. Examples exist where rather straightforward
rearrangements of program code can change performance by over a factor of twenty.

This suggests that many scientific programs ported to some newer high-performance
machines may perform far below their potential. Achieving high performance requires
an understanding of the underlying hardware architecture, and how to exploit it in pro-
grams written in high-level languages, like C and Fortran.

The tables in this report have been derived automatically from the benchmark out-
put files using the UNIX awk utility [1]. Most of them do not appear in [2], although
the data presented in them could be (laboriously) deduced from the extensive tables pre-
sented there.

2 Matrix multiplication as a benchmark

Matrix multiplication was chosen as a convenient benchmark of machine performance
for several reasons. It is easily scaled for a wide range of performance, because the work
grows likeN3 for matrices of orderN . There are three nested loops in the code; the in-
ner loop is short, consisting, in the simplest implementation, of a single multiply and
add. With care, the loops can be parallelized or vectorized to achieve high performance
on many machines. Versions of the benchmark can be prepared for different data types
(the large report uses short and long integers, and short and long floating-point preci-
sion), and in different languages.

Comparisons between performance figures for different data types on the same ma-
chine prove interesting; on some of these machines, long floating-point precision is
fastest by far. Some RISC architectures lack integer multiply hardware, and such ma-
chines may accordingly exhibit unusually low integer performance.

Comparisons between programming languages on the same machine may be bene-
ficial in selecting a target language for implementation of new software. On some ma-
chines, C code is significantly faster, and on others, Fortran wins.

3 The matrix multiplication algorithm

Matrix multiplication, usually written compactly as A = BC, in component form is
defined by

Aij =

N∑
k=1

BikCkj (i = 1 . . . N, j = 1 . . . N)
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This translates straightforwardly into Fortran, but SFTRAN3 [10] structured Fortran
syntax will be used here to avoid the need for ugly statement labels:

DO FOR J = 1,N
DO FOR I = 1,N

DO FOR K = 1,N
A(I, J) = A(I, J) + B(I, K)*C(K, J)

END FOR
END FOR

END FOR

Note, however, that this is not the only way to compute the matrix product; the mathe-
matical form says nothing whatever about the order in which theAij elements are to be
computed. Since all such elements are independent of one another, in the best case, they
could be computed in parallel in one multiply-add time byN2 processors. The order of
the three loops does not matter mathematically, but it does affect performance; see the
discussion of virtual memory faults below.

The legacy of Fortran loops unfortunately leads the non-expert programmer into
thought patterns of sequential one-element-at-a-time processing, resulting in programs
that are far from optimal on some architectures. We shall see later that performance
boosts may require computing several elements at once, and this can be done even on
scalar machines.

4 Can matrix multiplication be speeded up?

As we have written it, the matrix multiplication algorithm has complexityO(N 3),1 be-
cause N 2 product elements must be computed, each from a dot product of N -element
vectors.

There is a class of matrix multiplication algorithms, known by the names of Strassen,
Pan, and others [9, 16], whose complexity grows by smaller powers of N ; the best re-
sult known by 1985 was O(N2.496). While at first sight this is a very attractive result,
these methods have remained largely of theoretical interest. They are quite difficult to
implement, they are much more susceptible to virtual memory paging problems, and
the constant multiplying the power of N is quite large, so that in practice, they do not
become competitive with the standard O(N 3) method until the matrices are very large.

There is also a variant of the standard method, due to Winograd [18]. It trades half
the multiplications for the same number of additions, as follows:

Aij =

N/2∑
k=1

(Bi,2k−1 + C2k,j)(Bi,2k + C2k−1,j)− (ξi + ηj) + ((1− (−1)N )/2)BiNCNj

ξi =

N/2∑
k=1

Bi,2k−1Bi,2k

1O(n) means of the order of n.
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ηj =

N/2∑
k=1

C2k−1,jC2k,j

Unfortunately, the method is numerically unstable if ‖Bi,2k−1/C2k,j‖ is much larger,
or much smaller, than one. Also, the tendency on modern machines is to make floating-
point addition and multiplication execute in one clock cycle, so the savings from this
method are not expected to be large.

In this section, we shall therefore restrict ourselves to the programming problem of
improving the performance of matrix multiplication by code modifications that imple-
ment the standard O(N 3) algorithm.

Matrix multiplication benchmarks tend to overemphasize performance, because they
are compute bound, I/O free, and have a simple inner loop that most compilers can gen-
erate good code for.

Nevertheless, on some architectures, it is possible to significantly increase the speed
of a matrix multiplication, without having to resort to assembly language coding. Why
is this the case? The answer lies in an understanding of some general features of mod-
ern computer architectures, and some details of the specific machine that code is being
optimized for.

Modern architectures have a memory hierarchy:

• At the lowest level, computations are usually done in registers, or between reg-
isters and memory. Only a few architectures, such as the DEC VAX, support
memory-to-memory operations.

Registers can be thought of as a form of very fast, but small, memory; indeed,
on the DEC-20, they are mapped into the first few words of memory, but imple-
mented in faster hardware.

Registers may be general purpose, or dedicated to certain instructions (notably in
the Intel 80xxx family), and there may or may not be separate sets of registers for
integer and floating-point computations, and for different processes.

The Intel 80xxx CPUs have 8 80-bit floating-point registers, but only one 32-bit
integer register can be used for arithmetic.

The MIPS R3000 has 32 32-bit integer and 16 64-bit floating-point registers.

The IBM RS/6000 has 32 32-bit integer and 32 64-bit floating-point registers.

The IBM 360 architecture (including the 3090) has 16 scalar 32-bit general reg-
isters used for integer arithmetic, and 8 32-bit floating-point registers (giving 4
pairs of 64-bit registers). The vector facility adds 8 vector registers, each with
256 64-bit elements.

The Sun SPARC has 24 32-bit integer registers (8 for input arguments, 8 for lo-
cals, and 8 for called routine arguments), and 32 32-bit (or 16 64-bit) floating-
point registers, for a single routine. However, the architecture supports up to 520
registers that are used to form overlapping register windows in nested calls; regis-
ters only need to be saved when no more register windows are available. Current
implementations of the SPARC architecture support 7 or 8 windows.

Registers can be accessed by the CPU in less than one machine cycle.
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• Cache memory is at the next level. It is conceptually similar to normal mem-
ory, but is implemented in faster (and more expensive) hardware. Machines that
have caches load registers from the cache, which in turn references main memory.
Caches vary in size from 8 bytes to 256KB.2 A cache may hold both instructions
and data, or there may be separate caches for each. On most architectures, a pro-
cess context swap flushes the cache.

Cache access typically takes few (less than 10) machine cycles; the fastest ma-
chines, such as the IBM 3090, can fetch a DOUBLE PRECISION number from
cache memory in one cycle.

Cache memory is transparent to the programmer, and to most of the operating
system. No machine instructions are available to the user to manipulate the cache,
or even to determine its size.

• Random-access memory (RAM), or central memory, is still called core memory
by old-timers. It holds the working storage of programs, and on most machines
(other than the smaller members of the Intel 80xxx family), is a linearly address-
able array. Addressing is usually by byte, but some older machines, and Cray
supercomputers, use word addressing.

Older machines usually had memories limited to at most a few hundred thou-
sand words; the IBM 360 introduced byte addressing and a 24-bit (16MB) address
space. The IBM 370-XA extended architecture increased this to 31-bit addressing
(2GB). Most machines developed since the mid-1970s have used 32-bit address-
ing (4GB), but the IBM RS/6000 uses 52-bit addressing (4.5× 1015 bytes); that
appears to be the largest address space of any current machine.

The increased address space of the IBM RS/6000 is certainly timely, because with
memory prices falling below US$40 per megabyte in some markets in late 1990,
4GB of memory might only cost about US$160 000; that is small compared to
the costs of the largest machines today.3

Current memory price trends seem likely to continue, so it is reasonable to predict
that by the end of this decade, such an amount of memory may cost no more than
a workstation does today.

Access time of a single byte is typically of the order of 80 nsec to 150 nsec; in-
terleaving of consecutive bytes in separate memory banks allows several bytes to
be fetched in essentially constant time.

RAM access may take from 8 to 25 times longer than register access.

• External storage (slow memory, disk, tape, . . .) provides potentially unlimited
storage for computer programs, at the expense of special programming to access
it. Access times are often in milliseconds, and benchmarked transfer rates on
the machines included in this collection range from about 25 KB/sec to about 5
MB/sec.

21 byte = 8 bits, 1KB = 1024 (210) bytes, 1MB = 1 048 576 (220) bytes.
3The actual cost of memory today for the IBM RS/6000 is far higher, because of an uncommon memory

chip configuration, and lack of third-party competition. At present, IBM is a sole supplier, and charges about
US$600 per megabyte.
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With the exception of personal computers, and the Cray supercomputer, almost
all modern machines support the notion of virtual memory; physical central mem-
ory may be quite limited, but to the programmer, it appears as if the entire address
space is available. Pages of memory are swapped in and out to external storage
as needed.

This four-level memory hierarchy has a significant effect on performance; data ac-
cess should be restricted to the lowest levels possible.

Ideally, one would like the entire computation of inner loops to reside in registers,
with no memory accesses, no subroutine calls (they can invalidate the cache, causing
it to be flushed and reloaded from main memory), and no I/O. Alas, few useful com-
putations fall into this category, with the possible exception of fractal computations for
things like the Mandelbrot set and the Julia set.

Compilers with good optimizers are usually capable of recognizing scalar variables
in loops, and assigning them to registers. Currently, only a few compilers are good
enough to recognize array references as candidates for such assignments. That is why
the inner loop of the matrix multiplication benchmark programs is written as

SUM = SUM + B(I, K)*C(K, J)

instead of as

A(I, J) = A(I, J) + B(I, K)*C(K, J)

Most programming languages give the user no control over whether a variable is as-
signed to a register or not; the C language is a notable exception. Thus, a good optimiz-
ing compiler is essential for high-performance computing.

If you think about what kinds of machine instructions have to be generated for the
matrix multiplication inner loop, you can see that there have to be loads, possibly array
index arithmetic, a floating-point multiplication, a floating-point addition, and a test and
branch back to the top of the loop. Of all of these instructions, the only ‘useful’ ones
are the floating-point operations. To get higher performance, we have to increase the
fraction of floating-point instructions in the inner loop code.

One way to do this is loop unrolling; that is, we compute several terms of the sum-
mation in one iteration of the loop. Here is the equivalent code, unrolled to a depth of
five:

SUM = 0.0
DO FOR K = 1, (N/5)*5, 5

SUM = SUM +
X B(I, K + 0)*C(K + 0, J) +
X B(I, K + 1)*C(K + 1, J) +
X B(I, K + 2)*C(K + 2, J) +
X B(I, K + 3)*C(K + 3, J) +
X B(I, K + 4)*C(K + 4, J)
END FOR
DO FOR K = (N/5)*5 + 1, N
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SUM = SUM + B(I, K)*C(K, J)
END FOR
A(I, J) = SUM

The first loop steps K through 1, 6, 11, . . . , accomplishing ten floating-point operations
in each pass through the loop. The second loop handles the remaining 0 to 4 elements,
in the event that N was not a multiple of 5.

Loop unrolling usually helps to reduce loop overhead, provided there are sufficient
registers available, and that the loop code is not made so long that it is too big to fit in
the instruction cache. The reason is that many compilers will be able to compute the
base address of B(I,K+0) once, and obtain the following 4 elements without further
address arithmetic.

RISC machines have pipelined functional units, and branch execution can often be
made to overlap that of loads, so there is very little penalty for a branch. With a good
compiler, almost all of the array indexing arithmetic is moved outside the loop, and con-
sequently, loop unrolling is likely to be of less use on RISC systems. On some vector
machines (e.g. IBM 3090/xxx-VF), unrolling may inhibit vectorization, while on others
(e.g. Cray), it may enhance vectorization. There is no hard-and-fast rule; either bench-
marks, or examination of compiler-generated code, or vendor literature, must be con-
sulted to determine the best strategy for any given system.

There is no explicit control over cache available to the programmer, but it is never-
theless possible to program in such a way that the cache is not reloaded unnecessarily.
There are two steps that can be taken to reduce cache misses:

• In array processing, use a stride of one. That is, successive array elements should
be fetched from consecutive memory locations.

Unit stride is desirable because caching is not done on individual memory words,
but instead on a line. A line is a group of consecutive memory words that are
fetched from central memory into the cache. The first element referenced causes
a cache load, but subsequent elements come directly from the cache, until the next
cache line is reached, and central memory must again be referenced.

For matrix multiplication, achieving a stride of one means that one should trans-
pose one of the factors first (an N2 operation) so that the N3 multiplication can
be done more efficiently.

• If the cache is reasonably large (capable of holding at least a few thousand num-
bers), it will be useful to process arrays in strips, such that the combined strip
sizes are smaller than the cache size. This technique is known as strip mining.

In the matrix multiplication context, this means that instead of 3 nested loops, one
may expand the code to 6 nested loops, where the inner 3 run over contiguous
subsets of the index ranges.

Strip-mining is tedious, and error-prone, to code. It therefore makes sense to im-
plement suitable primitives that can hide the messiness, and reduce the number
of times the code has to be written. The higher-level Basic Linear Algebra Sub-
routines (BLAS) [5, 6, 8, 11] are a good step in this direction.



5 SELECTED CASE STUDIES 7

Rare is the compiler that can automatically strip mine arrays, but one may expect
that more will do so in the future.

Memory references can be reduced by maximizing re-use of data, provided the data
can be held in registers, or at least in cache, during the loop.

Virtual memory page faults should be avoided, since they introduce relatively enor-
mous delays (equivalent to tens of thousands, or more, lost cycles). This can be achieved
by localizing consecutive array element accesses, stepping through the array in storage
order.

In Fortran, this means that one should have the first (row) subscript varying most
rapidly; in most other languages, including Ada, C, and Pascal, it should be the last
(column) subscript. The Fortran loops above were written in J-I-K order to minimize
page faults.

This detail is very important when translating programs between these languages.
The commercial Fortran-to-C translator used to prepare the C versions of the bench-
mark programs reverses the index order of all arrays so as to preserve the memory ac-
cess patterns. The EISPACK library [7, 15] was based on Algol procedures that were
developed and published during the 1960s [17], when few machines, other than the IBM
360, had virtual memory. In the hand translation of Algol to Fortran, array indexes were
not exchanged, so EISPACK code can sometimes cause serious page thrashing. This
deficiency is remedied in the developing LAPACK project, which will supercede both
EISPACK and LINPACK [4].

Storage access order considerations may need modification on vector machines, be-
cause there are sometimes tradeoffs between vector register re-use and memory access;
see [12, p. 67] for details.

5 Selected case studies

The IBM RS/6000 [3, 13] provides a good case study for investigation of the effect of
the memory hierarchy described in the preceding section, because it has a large register
set, a large cache, and a good optimizing compiler, but is still a scalar machine. We will
compare it with IBM 3090/600S-VF results with and without vectorization, and also
with the Stardent 3040 (a machine that is both parallel and vector), two MIPS machines,
and the Sun SPARCstation.

Although the long report [2] contains data for four different data types, and many
different compilers and optimization levels, in these case studies, we will show only
the DOUBLE PRECISION results, compiled at the highest optimization level, unless
otherwise stated.

The normal inner loop of the benchmark programs looks like

DO FOR K = 1,N
SUM = SUM + B(I,K)*C(K,J)

END FOR

On the IBM RS/6000, the code generated for this loop has only two incrementing loads,
one multiply-add, and one branch; that is perfect assembly code for that loop. For the
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100 × 100 matmr8 benchmark, on the model 530 (25 MHz, 40 nsec cycle time), the
maximum speed reached is 18 Mflops. Unrolling the loops to include five multiplica-
tions reduces the rate to 16 Mflops.

Note that the B matrix is being accessed with non-unit stride, i.e. across the rows.
Replacing the matrix with its transpose has little effect on the RS/6000, because all three
matrices fit in the cache for this example, so the non-unit stride did not cause a serious
penalty.

In order to improve performance further, we need to increase the ratio of floating-
point instructions to loads in the loop. The way this can be done is to compute more
than one element of the product matrix at a time:

DO FOR K = 1,N
SUM0 = SUM0 + B(I,K)*C(K,J+0)
SUM1 = SUM1 + B(I,K)*C(K,J+1)
...
SUMP = SUMP + B(I,K)*C(K,J+P)

END FOR

This of course requires that the surroundingJ loop be modified to work in steps ofP+1,
and that a following loop be installed to handle the remaining J values.

The main reason for the increase is that we are able to re-use data in the inner loop;
as the loop is written above, it needs P + 1 loads, and the same number of multiply-
add instructions. Since the pipelining permits the overlap of the loads and the multiply-
adds, the loop becomes dominated by floating-point instructions, and pushes towards
peak performance of 2 flops per instruction executed.

An alternate scheme is to compute P × P blocks in the inner loop. A 2 × 2 case
would look like

DO FOR K = 1,N
SUM00 = SUM00 + B(I+0,K)*C(K,J+0)
SUM10 = SUM10 + B(I+1,K)*C(K,J+0)
SUM01 = SUM01 + B(I+0,K)*C(K,J+1)
SUM11 = SUM11 + B(I+1,K)*C(K,J+1)

END FOR

This is even better than computing several row or column elements individually, be-
cause now each loaded element gets used twice on average, instead of just once. In
fact, there are P 2 multiply-adds for 2P loads, so the data re-use grows like P . How-
ever, large P values mean that several columns of C have to be accessed, so there is a
tradeoff against cache refilling.

Since this kind of optimization is likely to be useful on other register-rich architec-
tures, like the MIPS RISC system, I expanded the benchmark code during early Novem-
ber, 1990, to include P × P unrolling (P = 2 . . . 5), and to repeat the tests with a
transposed B matrix, denoted by BT . Since the transposition can be done in O(N2)
operations, except for virtual memory paging, it should have little impact on the over-
all performance, and the time to do so has been excluded from the benchmark figures.
Transposition would be unnecessary in the case of symmetric matrices.
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The following subsections summarize the results of the case studies, using the ex-
panded benchmark programs.

5.1 IBM RS/6000

The RS/6000 has 32 32-bit integer registers and 32 64-bit floating-point registers. Mod-
els 320 and 520 have 32 KB of cache, and models 530, 540, 550, 730, and 930 have 64
KB of cache. A cache line holds 128 bytes (8 DOUBLE PRECISION numbers).

On the IBM RS/6000-530, the benchmark results are as follows:

IBM RS/6000-530
DOUBLE PRECISION

100× 100 Matrix Multiplication
Loop type no-opt opt opt/

Mflops Mflops no-opt

A = BC
normal 1.24 18.09 14.6
unrolled 2.46 16.25 6.6
2 × 2 2.21 30.61 13.9
3 × 3 3.09 33.17 10.7
4 × 4 3.92 44.22 11.3
5 × 5 4.55 31.84 7.0

A = BTC
normal 1.27 18.09 14.2
unrolled 2.75 15.92 5.8
2 × 2 2.15 28.43 13.2
3 × 3 3.09 33.17 10.7
4 × 4 3.90 39.80 10.2
5 × 5 4.60 33.17 7.2

There are several things to notice in this table:

• The speed-ups in the last column show that compiler code optimization is abso-
lutely essential to obtain high performance on this system. This is generally the
case for most RISC and vector architectures.

• Linear loop unrolling to a depth of 5 doubles performance in the unoptimized
code, but reduces performance of optimized code.

• P ×P unrolling improves performance of both optimized and unoptimized code
up to P = 4, and then performance falls. With P = 5, there are 25 partial sums
and 10 matrix elements in the loop. This is too many to hold in the 32 avail-
able floating-point registers, so some values must be stored back into the cache.
The significant performance jumps that happen with increasing P suggest that it
should be possible to make use of even more floating-point registers than the 32
available in the RS/6000 architecture.
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• The optimized 4× 4 unrolling result of 44 Mflops is reasonably close to the RS/
6000-530’s peak performance of 50 Mflops, and was obtained in portable Fortran
without having to resort to assembly coding.

• Changing the normal matrix multiplication code to the 4× 4 unrolling improves
performance by a factor of 2.4; this demonstrates the sensitivity of this architec-
ture to the problem’s algorithm.

• The best results for the RS/6000-530 are 10 times faster than those for the top-
end Sun 4/490 (4.2 Mflops), and 775 times faster than those of the entry-level Sun
3/50 (0.057 Mflops). The latter is based on the Motorola 68020 architecture used
in numerous other workstations, and in many Apple Macintosh personal comput-
ers. Given that the Sun 3/50 was introduced to the market about 1986, this is a
stunning performance improvement in four years.

Surprisingly, transposition of the first product matrix does not help in most cases for
this matrix.

For the 100×100 case, there are a total of 30 000 DOUBLE PRECISION numbers,
requiring 240KB of memory. This is substantially larger than the cache size of 64KB
on the model 530. However, computation of one column of A requires all of B and
only one column ofC, so the main demand on cache is from only one of the matrices.
This suggests that larger matrices might show the effect of cache overflow. I therefore
made a special version of the benchmark program, with the following results:
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IBM RS/6000-530
DOUBLE PRECISION
Matrix Multiplication

A = BC A = BTC
Loop type Size Mflops Mflops
normal 100 13.27 18.95

200 2.17 17.35
300 1.86 17.71
400 1.69 18.29
500 1.49 18.28

unrolled 100 14.21 16.58
200 2.17 15.65
300 1.87 16.66
400 1.68 16.77
500 1.49 17.15

2 × 2 100 26.53 28.43
200 5.41 29.56
300 5.45 30.29
400 5.30 30.44
500 4.87 30.51

3 × 3 100 28.43 33.13
200 9.56 31.60
300 10.43 32.77
400 9.26 32.70
500 8.40 33.17

4 × 4 100 39.81 44.18
200 16.80 40.41
300 17.25 42.62
400 15.50 43.34
500 14.56 43.40

5 × 5 100 36.19 30.61
200 19.46 31.29
300 18.92 31.90
400 17.19 32.57
500 16.66 33.06

Notice the drastic plunge in performance for the normal and unrolled cases when the
matrix size increases beyond 100×100; this happens because the matrices can no longer
fit in cache memory. One way to fix this performance problem would be to introduce
strip mining of the outer loops.

P × P unrolling reduces the effect of the cache overflow, but performance of the
normal multiplication, A = BC, is still often less than half of that of the transposed
case, A = BTC. It appears that P = 4 is a good choice for this machine, provided
the first matrix is transposed before the multiplication.
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The sharp-eyed reader may have noticed that the performance for the 100×100 case
is lower than that given in the preceding table. The reason is that in the last table, all
matrices were dimensioned for the 500 × 500 case; this leaves memory gaps between
successive columns for the smaller matrices, and results in some virtual memory paging
degradation.

5.2 IBM 3090/600S-VF

Let us now examine the same benchmarks on the IBM 3090/600S-VF. The 3090/600S
has a 128KB cache, and a 15 nsec cycle time, but the architecture has only eight 32-bit
(or four 64-bit) floating-point registers. With the vector facility, there are eight vec-
tor registers, each holding 256 DOUBLE PRECISION words. Transfer of a DOUBLE
PRECISION word from cache to a register takes 1 cycle; memory-to-register time is
22 cycles.

Transfers between the 2GB extended memory and the 256MB central memory are
done in 4KB pages at the rate of one DOUBLE PRECISION word per cycle, but there
is a startup overhead of 70 µsec, so a page takes 4096/8×15 nsec+70 µsec = 78 µsec,
or an average of one DOUBLE PRECISION word every 10 cycles. On the IBM 3090,
extended memory is normally used by the operating system for virtual memory paging
storage, avoiding much slower disk accesses.
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IBM 3090/600S-VF
DOUBLE PRECISION
Matrix Multiplication
A = BC A = BTC

Loop Size Mflops Mflops vector/ Mflops Mflops vector/
type scalar vector scalar scalar vector scalar
normal 100 9.35 70.06 7.5 12.22 32.53 2.7

200 7.84 61.99 7.9 11.24 35.53 3.2
300 5.31 57.26 10.8 11.30 35.49 3.1
400 3.40 59.05 17.4 11.35 38.24 3.4
500 3.27 60.95 18.6 11.45 40.51 3.5

unrolled 100 11.73 63.10 5.4 13.05 16.54 1.3
200 9.79 53.84 5.5 12.15 20.04 1.6
300 6.77 49.47 7.3 12.16 23.12 1.9
400 4.29 50.99 11.9 12.27 24.98 2.0
500 4.09 53.13 13.0 12.41 27.11 2.2

2 × 2 100 9.62 46.38 4.8 10.80 22.14 2.0
200 9.13 48.11 5.3 10.60 25.87 2.4
300 8.09 52.02 6.4 10.64 26.11 2.5
400 6.84 54.25 7.9 10.68 27.79 2.6
500 6.67 56.47 8.5 10.72 28.66 2.7

3 × 3 100 10.34 19.33 1.9 10.90 16.94 1.6
200 10.13 23.76 2.3 10.82 20.52 1.9
300 9.39 26.89 2.9 10.83 20.58 1.9
400 8.47 27.28 3.2 10.85 21.82 2.0
500 8.21 28.17 3.4 10.90 22.50 2.1

4 × 4 100 10.79 15.37 1.4 10.98 16.08 1.5
200 10.53 20.11 1.9 11.05 19.44 1.8
300 10.02 22.64 2.3 11.02 19.14 1.7
400 9.44 24.16 2.6 11.02 20.29 1.8
500 9.23 25.33 2.7 11.04 20.71 1.9

5 × 5 100 10.84 13.41 1.2 11.03 15.32 1.4
200 10.70 18.32 1.7 11.09 18.24 1.6
300 10.38 20.78 2.0 11.05 17.90 1.6
400 10.06 22.38 2.2 11.10 18.92 1.7
500 9.94 23.59 2.4 11.11 19.16 1.7

The results for the IBM 3090 are qualitatively different from those for the RS/6000.
With vectorization, unrolling linearly, or in P × P blocks, worsens performance; the
3090 vectorizer clearly does best when presented with the simplest code. In scalar mode,
linear unrolling is best, but the 3090/600S is substantially out-performed by the RS/
6000-530. Vectorization can boost scalar performance by a factor of nearly twenty, and
the -O3V results are the best of any machine tested up to early November, 1990.

The A = BTC case has surprisingly low performance; further investigation is
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needed to find out why. I expected that it would be uniformly better than theA = BC
form because it ensures unit stride.

Optimal code for the 3090 and RS/6000 machines is quite different, suggesting that
naive porting of code from one to the other will usually suffer significant performance
penalties.

This machine has sufficient memory that the first time the arrays are referenced, they
very likely become resident in physical memory; the benchmark programs actually per-
form the multiplication several times, and then average the performance results.

The plunging scalar performance seen for larger matrices in the A = BC case
is due mainly to cache overflow; further details can be found in an excellent paper by
two IBM researchers [12], on matrix multiplication, and in an earlier report from this
Institute [14] on factorization of large matrices.

5.3 MIPS RC3240 and RC6280

MIPS Computer Systems is the company that was formed to commercialize the Stan-
ford RISC CPU developed by John Hennessy and colleagues. Sun’s SPARC grew out
of the work by David Patterson’s group at UC/Berkeley. MIPS produces workstations
and mainframes, and also sells CPU chips and compiler technology to other vendors.
Their Fortran and C compilers provide four levels of scalar optimization.

At present, MIPS chips are used in products from Stardent (15xx and 30xx series),
DEC (DECstation series), and Silicon Graphics. They are also used by AT&T in tele-
phone switching circuitry. DEC and Silicon Graphics use MIPS compilers; Stardent
developed its own.

All MIPS Computer Systems’ own products so far have been single-CPU scalar pro-
cessors; Stardent produces vector and parallel machines, and Silicon Graphics, parallel
processors.

MIPS Computer Systems has produced at least four generations of CPUs, the R2000,
R3000, R4000, and R6000, with associated floating-point coprocessors, Rx010. The
R4000 and R6000 have so far been available only in machines built by MIPS. The R6000
is implemented in bipolar ECL, to date the only commercially-available RISC chip to
use this advanced technology.

Benchmark results for the MIPS R4000- and R6000-based products therefore give a
hint of things to come from other vendors that currently use the R2000 and R3000 chip
generations. The MIPS R6000 and IBM RS/6000 chips give the highest scalar perfor-
mance in the industry today in machines with list prices under US$150 000.

Here are results for the RC3240 (25 MHz R3000 CPU and R3010 FPU) and the
RC6280 (66.7 MHz R6000 CPU and R6010 FPU). MIPS literature quotes DOUBLE
PRECISION Fortran LINPACK results of 3.9 Mflops and 10.3 Mflops, respectively,
for these machines. The machine on which the benchmarks were run had a reduced
clock rate of 60 MHz; that lowers the last number to 9.26 Mflops, which agrees with
the results shown here.
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MIPS RC3240
DOUBLE PRECISION

100× 100 Matrix Multiplication
Loop type -O0 -O1 -O2 -O3

Mflops Mflops Mflops Mflops

A = BC
normal 0.66 0.76 3.80 3.85
unrolled 1.05 1.86 2.89 2.95
2 × 2 0.99 1.87 3.48 3.48
3 × 3 1.26 2.30 4.12 4.09
4 × 4 1.51 2.56 3.69 3.66
5 × 5 1.67 2.77 4.04 4.00

A = BTC
normal (B transpose) 0.66 0.76 3.92 3.92
unrolled (B transpose) 1.16 1.87 3.00 2.98
2 × 2 (B transpose) 1.00 1.85 3.37 3.37
3 × 3 (B transpose) 1.28 2.29 4.15 4.16
4 × 4 (B transpose) 1.52 2.57 3.87 3.86
5 × 5 (B transpose) 1.64 2.75 4.22 4.23

MIPS RC6280
DOUBLE PRECISION

100× 100 Matrix Multiplication
Loop type -O0 -O1 -O2 -O3

Mflops Mflops Mflops Mflops

A = BC
normal 1.46 1.65 8.65 8.63
unrolled 2.50 4.20 7.01 6.82
2 × 2 2.21 3.86 7.06 6.94
3 × 3 2.84 4.95 8.68 8.75
4 × 4 3.38 5.73 8.20 8.11
5 × 5 3.75 5.88 8.96 8.99

A = BTC
normal (B transpose) 1.46 1.67 8.80 8.80
unrolled (B transpose) 2.76 4.25 7.01 7.17
2 × 2 (B transpose) 2.23 3.90 7.09 7.06
3 × 3 (B transpose) 2.85 4.91 8.63 8.70
4 × 4 (B transpose) 3.38 5.67 8.48 8.50
5 × 5 (B transpose) 3.73 5.82 9.36 9.42

For both of these machines, P × P unrolling more than doubles performance with
-O0, and triples performance with -O1. With the two highest optimization levels, it
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produces only about a 5% improvement. High-performance code would normally be
compiled at the highest optimization level, so unrolling may not be worthwhile in most
programs.

5.4 Stardent 3040

Let us now look at a rather different architecture, the Stardent 3040, formerly known
as the Ardent Titan-4 P-3. This machine has four MIPS R3000 CPUs, with 16 64-bit
scalar floating-point registers.

Each CPU has a 64-bit vector unit whose design is quite unusual: it can be config-
ured as one register with 1024 elements, two registers with 512 elements, four registers
with 256 elements, . .. , 1024 registers of 1 element. Current versions of the Fortran and
C compilers choose to subdivide it into 32 vector registers, each with 32 64-bit elements.
In conversations with the compiler developers, I have been told that memory and cache
access are often the limiting factor in reaching peak performance on this machine; the
actual length of the vector registers is not critical, provided that the pipeline can be kept
full of data. A choice of 32 vector registers seems to be rich enough to cover almost
all practical applications, allowing all vector quantities in the inner loop to be kept in
vector registers.

The compiler has four optimization levels:

-O0 Turn off all optimizations.

-O1 Perform common subexpression elimination and instruction scheduling.

-O2 Perform -O1 and vectorization.

-O3 Perform -O2 and parallelization.

The interesting results will be found in comparisons of the three highest levels, since
this illustrates the ratios of scalar : vector : vector + parallel:
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Stardent 3040
DOUBLE PRECISION

100× 100 Matrix Multiplication
Loop -O0 -O1 -O2 -O3 -O2/ -O3/ -O3/
type Mflops Mflops Mflops Mflops -O1 -O2 -O1

A = BC
normal 2.75 2.74 8.31 28.16 3.03 3.39 10.26
unrolled 3.40 3.28 4.13 13.09 1.26 3.17 3.99
2 × 2 4.56 4.75 10.62 29.85 2.24 2.81 6.28
3 × 3 4.69 4.78 10.55 30.46 2.21 2.89 6.38
4 × 4 3.17 4.03 12.04 31.09 2.99 2.58 7.72
5 × 5 3.65 4.10 6.75 16.86 1.65 2.50 4.11

A = BTC
normal 2.77 2.77 7.71 23.14 2.78 3.00 8.34
unrolled 3.27 3.33 4.38 15.47 1.32 3.53 4.65
2 × 2 4.66 4.90 9.82 32.45 2.00 3.30 6.62
3 × 3 4.86 4.85 10.05 28.16 2.07 2.80 5.81
4 × 4 3.91 4.09 11.22 33.54 2.74 2.99 8.20
5 × 5 3.47 4.04 6.80 16.58 1.68 2.44 4.11

From the -O0 and -O1 columns, it is evident that modest speed-ups are obtained
by loop unrolling.

From the -O2 column, which is vectorization on a single processor, 4×4 unrolling
is a clear winner

From the -O3 column, which is vectorization and parallelization across four pro-
cessors, 4× 4 unrolling is again the best strategy.

The behavior is very much like the IBM RS/6000 and unlike the IBM 3090/600S-
VF.

The -O2/-O1 column shows the speed-ups from vectorization on a single proces-
sor; they are much smaller than we found on the IBM 3090/600S-VF.

The -O3/-O2 column shows the speed-up from parallelization; the limit is 4.0, so
these numbers are really quite good.

Finally, the last -O3/-O1 column shows the overall speed-up obtained by vector-
ization and parallelization over a purely scalar MIPS R3000 processor. These extra fa-
cilities give very definite performance boosts.

Stardent has a processor upgrade for the 3040 that more than doubles the floating-
point performance that we have shown here. In an advertisement in the July 1990 is-
sue of Supercomputing Review, Stardent claims a LINPACK 1000× 1000 result of 77
Mflops. By contrast, the IBM 3090/180S-VF (one processor) achieves 92 Mflops (the-
oretical peak: 133 Mflops), and the IBM 3090/600S-VF (six processors parallelized)
reaches 518 Mflops (theoretical peak: 798 Mflops). On the 1000× 1000 tests, vendors
are permitted to make system-dependent changes to the code, including rewriting the
loop structure, or coding in assembly language. The theoretical peak rates are deter-
mined by assuming that every cycle generates at least one floating-point result.
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5.5 Sun SPARCstation SLC

As a final example, let us look at the Sun SPARCstation SLC. With an entry-level list
price of about $5000, it is one of the cheapest RISC-based workstations on the market
in late 1990. It is purely a scalar machine, but the compiler does provide four different
levels of optimization. What is of interest is to see whether the loop unrolling tech-
niques that were so beneficial on the IBM RS/6000 are of any value on the Sun SPARC
architecture.

Sun SPARCstation SLC
DOUBLE PRECISION

100× 100 Matrix Multiplication
Loop type -O0 -O1 -O2 -O3

Mflops Mflops Mflops Mflops

A = BC
normal 0.46 0.47 1.18 1.16
unrolled 0.55 0.63 1.07 1.07
2 x 2 0.50 0.51 1.13 1.12
3 x 3 0.59 0.59 1.12 1.10
4 x 4 0.64 0.65 1.19 1.19
5 x 5 0.68 0.67 1.21 1.21

A = BTC
normal 0.47 0.47 1.20 1.21
unrolled 0.64 0.62 1.03 1.01
2 x 2 0.51 0.50 1.44 1.36
3 x 3 0.59 0.58 1.33 1.30
4 x 4 0.64 0.64 1.37 1.30
5 x 5 0.67 0.67 1.33 1.37

Without optimization, unrolling helps, but with optimization, it reduces performance.
P×P unrolling is always better than the normal loop, but the total improvement is very
small, only about 10%. I expect that similar results would be found for most conven-
tional scalar machines.

6 The future

On the basis of the case studies presented here, and the results of the long report [2],
what can we conclude about the prospects of future performance increases in affordable
machines for high-performance computing?

The MIPS R6000 CPU today uses the most advanced practical fabrication technol-
ogy, bipolar ECL. Gallium arsenide technology is being used in the Cray 3, but devel-
opment schedules have been delayed by difficulties with that technology. Indium phos-
phide lies beyond gallium arsenide, but neither are likely to be available for many years
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yet in quantities and prices that make them usable in desktop workstations, and in any
event, they may require substantial cooling systems.

The MIPS R6000 has a 66.7 MHz clock rate, 50% higher than the next fastest clocks
on machines in this price range, those of the 41.7 MHz IBM RS/6000-550, and the 40
MHz Sun SPARCstation 2. The cycle time of the fastest supercomputers today is around
5 nsec, equivalent to a 200 MHz clock rate. We may see clock speeds in desktop systems
reach 50 to 80 MHz in the next few years, but decreased cycle time alone does not offer
much hope for improved performance.

I would like to offer several observations about the future of increased performance
on affordable machines:

• Scalar performance is reaching its practical limit in current chip technologies.
The bipolar ECL in the MIPS R6000 requires additional cooling, making it un-
suitable for desktop workstation configurations.

• Additional performance will be seen primarily through vector and parallel archi-
tectures.

• Performance differences between CPUs at similar clock rates are going to arise
mainly from cleverness in the instruction set, since that allows reducing the num-
ber of instructions needed. Reduced instruction set architectures were introduced
to make better use of chip circuitry than complex instruction sets can. However,
improving instruction sets usually means making them more complex, which con-
flicts with this goal. In the RS/6000, IBM seems to have been able to produce a
superior RISC architecture, for at least these reasons:

– Integer multiply and divide instructions are available; they are often needed
for array indexing computations. The Sun SPARC architecture does not
provide them.

– Auto-incrementing load instructions make it possible to fetch an array ele-
ment and point to the next one in a single clock cycle.

– The floating-point multiply-add instruction gives two flops in one cycle, and
is very often usable in the inner loops of scientific and engineering code. It
also gives higher accuracy, because the multiply is exact; only one round-
ing, instead of two, is required to obtain the result.

– Separate branch, integer, and floating-point functional units offer possibili-
ties of speed-ups from instruction overlap. For example, the 18 Mflops ob-
tained in the normal loop for the RS/6000-530 corresponds to 110 nsec per
loop iteration. However, the four instructions in the loop should take 4 cy-
cles, or 160 nsec. Overlap has therefore reduced the effective iteration time
to 110/160× 4 = 2.8 cycles.

• Other RISC architectures, including MIPS, Motorola 88000, and Sun SPARC,
will not be able to compete against the IBM RS/6000 unless they evolve to in-
corporate auto-incrementing loads and stores, floating-point multiply-adds, and
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increased functional unit overlap. Any clock speed increases made by one ven-
dor can soon be matched by another; the winner will be the one with the fewest
instructions in the inner loop, assuming comparable speeds of cache and central
memory.

Such architectural changes would introduce binary incompatibility in the soft-
ware market, unless users are willing to pay a penalty of having run-time soft-
ware emulation of new instructions on older hardware. Each vendor will have to
weigh the commercial consequences of architectural changes against sales losses
to the faster competition.

Because UNIX has become a de facto operating system in scientific and engineer-
ing computing, and the X Window System is available on virtually all worksta-
tions at very low cost, customers’ software investments no longer need tie them
to particular computer vendors, as was the case only a few years ago.

This situation, combined with the relatively low cost of desktop systems, makes
it likely that users will switch vendors more often, in response to performance
differences in machines on the current market. This trend to the commodity mar-
ket of consumer goods, like automobiles, laundry detergent, and televisions, has
already been evident in the IBM PC clone market. Workstations are clearly next,
and the impact on the computing world will be substantial. Competition and in-
creased sales volumes will drive down prices, and smaller vendors will disappear
from the low-margin marketplace. Technological innovations from small groups,
such as happened initially with personal computers and Sun workstations, will be
increasingly unlikely to succeed.

• Specialized RISC architectures, like the Intel i860, may offer temporary perfor-
mance boosts with third-party add-in boards for conventional workstations, but
they require additional, and probably expensive, compiler support. So far, the
only vendor to incorporate the Intel i860 in a desktop system has been Stardent,
which uses it to implement the vector unit of the recently-announced desktop
model 500.

• The wide performance ranges seen on the IBM RS/6000 and Stardent 3040 clearly
demonstrate the importance of fast memory and large caches, and suggest that
these newer machines are not well-balanced between CPU and memory speeds.
While memory prices continue to fall, and chip capacities increase, memory speeds
have regrettably not improved very much in the last decade. At present, it is eco-
nomically infeasible to produce desktop systems with several tens of megabytes
of cache memory.

Programmers on these machines will therefore have to pay much more attention
to code tuning than they did in the past.

• Benchmark results for parallel machines, like those from Silicon Graphics and
Stardent, demonstrate that compiler-generated automatic parallelization for com-
putations similar to that of the benchmark code is indeed feasible, and worth-
while. Convex and Stardent offer four-processor systems, IBM six (on the 3090
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only), and Silicon Graphics eight. IBM has not yet announced a multi-processor
version of the RS/6000, but such a product must certainly be in development.

On the basis of these benchmarks, and several published studies that I have read
in recent years, the useful limit for parallelization of standard programs may be
reached with somewhere between 8 and 32 processors. Beyond that, new algo-
rithms will likely be necessary. The extreme parallel system today is the 64K-
processor Connection Machine, for which quite different programming techniques
are required to obtain substantial speed-ups.

7 Conclusions

We can express a hope that compilers will eventually be able to do strip mining and loop
expansions automatically. In the meantime, it is evident that routines like the level-2
and level-3 Basic Linear Algebra Subroutines (BLAS) [5, 6, 8, 11] make a great deal of
sense.

They can be written for a particular architecture with the ugly details of the optimiza-
tions described above hidden from the user, yet the user code remains portable across
architectures.

With a good optimizing compiler, there is likely little to be gained from program-
ming such primitives in assembly code; they can be kept in a higher-level language, like
Fortran.

Ideally, optimized versions of the BLAS should be part of every computer vendor’s
standard software. Just as Fortran programmers have been accustomed to having ele-
mentary scalar functions (exp(), log(), sin(), sqrt(), . . .) available as a standard part of the
language, it is clearly time to provide matrix and vector functions in a standard fashion.
I am certainly not calling here for changes to programming languages, in the directions
taken by the Fortran 90 committee; I believe that such actions are premature, and detri-
mental to code portability. However, making a set of highly-tuned standard matrix and
vector functions available would be very beneficial. Since simple untuned implementa-
tions can be easily written, code portability to architectures that lack optimized versions
is not compromised.

The various techniques of loop unrolling here are critical for pushing towards the
limits of high-performance vector and parallel, or highly pipelined, machines, like the
Stardent, IBM 3090, and IBM RS/6000; they offer only modest performance increases
on conventional machines like the Sun SPARCstation SLC.

Careful tuning of matrix primitives is essential on high-performance RISC and vec-
tor machines; naive code could easily run more than twenty times slower.
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