
FORMLETT: for Letters to Multiple Receivers
Zhuhan JIANG
School of Computing and Information Technology, University of Western Sydney, Vic-
toria Road, Parramatta NSW 2150, Australia. Email: z.jiang@uws.edu.au

(Last updated on 26 May 2003)

In this article, the author explains how to use a form-letter style formlett.sty,
designed for plain TEX and LaTEX or LaTEX2e. formlett.sty supports different
parameter input methods, parameter naming and defaulting mechanism, as well as
facilities for previewing parameter positions and printing labels. It is written for the
purpose of being powerful, robust and above all easy to use.

Introduction
In this modern world of ours, we often need to send a
set of form letters, personalised or non-personalised,
to many receivers at the same time. Or perhaps we
would like to have a collection of business letters or
information brochures which we would like to call
upon instantly whenever we need them.

Our purpose here is therefore to describe a com-
prehensive implementation of such a macro system,
handling form letters under TEX or LaTEX. The main
objective is to provide an easy way to output many
form letters with their own parameters, with or
without the use of multiple files. There will be a
coherent and simple format for putting parameters
inside a form letter, with a number of helping facil-
ities for such as naming parameters and previewing
their positions. A minimum support for printing
mailing labels is also provided.

The concept of macros [1] for form letters is not new:
there already exist macros in this connection such as
merge, textmerg and address to name a few, see
[2,3] for further details. Our stress here is therefore
laid on the ease to use, along with the power and
the robustness of the macros.

Format
In this section, we always assume that the file
formlett.sty or formlett.tex of version 2.3
has already been input. Certain version of
formlett.sty can be obtained via anonymous ftp
from CTAN sites at macros /generic.

Essentially, each form letter, or letter format
or letter template, will be included between
\beginletter and \endletter. Letter parameters
that will be specified later on for each particular let-
ter can be given by \paras[<m>][<n>], represent-
ing the <m>-th parameter of the <n>-the parameter
group, at the positions you want them to be. Let
a cluster denote a complete collection of parameters
that may be specified for a form letter. Then we can
specify letter parameters group by group for a clus-
ter such that inside each group the parameters are
given sequentially and a termination of one group

should not affect the resynchronisation for the next
group. For instance we can keep the address of a re-
ceiver as a single group, as it often contains different
number of (parameter) lines.

We often want to treat a particular group of let-
ter parameters somewhat uniformly. This can be
achieved by one of the following commands
\blockparas[<m>][<n>][<pre>][<post>]

\addressparas[<m>][<n>][<width>][<indent>]

They represent parameters in the <n>-th group,
from the <m>-th to the last parameter of that group.
For \blockparas, tokens <pre> and <post> are
those to be added in front and behind respectively
each of the legitimate parameters mentioned above.
If <post> is \relax, it will then not be appended
at the end. Instead, each chosen parameter will be
put into a {}- pair before preceded by the token
<pre>. The reason for this exception is that while
<pre> and <post> are meant to be the front and
end macros for each selected parameter, in the case
of <post> being \relax, we may regard <pre> as
acting upon each chosen parameter.

The command \addressparas, however, uses
\blockparas indirectly and will put the chosen pa-
rameters into a box of width <width>. If any se-
lected parameter is longer than <width>, then the
line will be wrapped around, with all wrapped po-
tions being indented by an <indent>. This may
be used to deal with very long address lines. Inci-
dentally, we may use \textbox or \addressbox or
\ADDRESSBOX to control the width of a single param-
eter. The general format reads
\textbox[<width]{<materials>}

\addressbox[<width>][<indent>]{<materials>}

\ADDRESSBOX{<width>}{<indent>}{<materials>}

where the meaning of the macro parameters are self-
explanatory.

For the macro parameters, we have for convenience
provided the following defaults for those in the
squared brackets
<m>=1

<n>=1

<pre>=\noindent

Jiang Z Formlett: for letters to multiple receivers 1

<post>=\par

<width>= 8truecm

<indent>= 1.5em

This way, for instance, \paras[1][1] is equivalent
to any of the following commands
\paras, \paras[1], \paras[][1],

\paras[1][], \paras[][]

and the following three commands are also the same
\addressbox{one address line}

\addressbox[8truecm]{one address line}

\addressbox[][1.5em]{one address line}

Incidentally this is the reason why we used the sec-
ond parameter <n> to represent the group num-
ber: the defaults can often be dropped off more fre-
quently. By default, all letter parameters specified
will be put into a group environment before putting
them into the form letter, unless \localparasfalse
is issued beforehand.

To output a new letter entity, i.e a complete letter,
we may use
\moreletter

para-1-1;para-1-2;para-1-3; ...

+para-2-1;para-2-2;...

+ ...

+para-n-1;para-n-2; ... ;para-n-m !

where ‘;’ separate parameters inside a same group,
‘+’ separates groups, ‘!’ ends a cluster of parameters,
and ‘...’ represent further letter parameters. These
three tokens are nothing special: we may change
them to for instance ‘....’, ‘----’ and ‘====’ re-
spectively by \blockmarks, and change them back
to ‘; + !’ by \defaultmarks. For more general
case, use
\delimiters{<A>}{}{<C>}

where <A>, and <C> are the new toks replacing
‘; + !’ respectively. If we have to use these three
special characters or tokens inside our letter param-
eters, then use \pstr, \gstr and \cstr respectively
instead.

For the case of many clusters, we may enclose them,
separated by any white spaces or empty lines, be-
tween \beginpilemode and \endpilemode so that
we don’t have to put \moreletter in front of each
cluster of parameters.

We may also enter letter parameters line by line. In
other words, we may essentially replace ‘;’ in the
\moreletter format by a normal line break. In this
case, we shall put clusters of parameters between
\beginblockmode and \endblockmode. Thus the
following commands
\beginblockmode

<para-1-1>

<para-1-2>

+ letter one

<para-2-2>

!

<addr-1-1>

<addr-1-2>

! letter two

\endblockmode

will produce the required form letter for each cluster
of parameters. The general rules are as follows:
• If a line contains \endblockmode or ! or +, then

everything else on that line is ignored and that
line serves as an end/cluster/group marking line
in the given priority order.

• Leading and trailing empty lines before or after
a complete cluster will be ignored, unless ‘;’ is
there to force the next (empty) line as a starting
parameter.

Obviously \blockmarks provides a more sensible de-
limiters for the blockmode, under which we could
have
\blockmarks\beginblockmode

....... force next empty line active

<para-1-2>

------- - mark end of 1st group

<para-2-2>

<para-2-3>

======== end of cluster

<other clusters>

\endblockmode

A simpler and perhaps more often encountered sce-
nario is to use names and addresses only. In this
case, there will be essentially only one group of pa-
rameters for each cluster. Thus we may use empty
lines to delimit the clusters, and use line by line
mode for the individual parameters. This way, each
block of consecutive nonempty lines in
\beginlinemode

<name-1>

<address-1-1>

<address-1-2>

<name-2>

<1st part of addr-2-1> %

<continued part of line addr-2-1>

<name-3> % letter three

\endlinemode

will output a new complete letter, corresponding to
the specified letter parameters.

Ideally, the name–address entries will be pro-
duced by a database utility. Since they often
contain special characters such as ‘#’ and ‘$’
explicitly, we may wish to change such charac-
ters in the parameters to the normal printable

Jiang Z Formlett: for letters to multiple receivers 2

ones. For this purpose, we could use correspond-
ingly the pair \beginrawblockmode{<token>}
with \endrawblockmode or the
pair \beginrawlinemode{<token>} with
\endrawlinemode. If <token> is not empty,
then we use <token> in place of \endrawblockmode
or \endrawlinemode. In other words, <token> is
the password to leave the raw text mode. Since
database utility will in general produce a fixed
number of <m> lines for each cluster of parame-
ters, we may use \begindatamode[<token>]{<m>}
and \enddatamode (or <token>) in place of
\beginrawlinemode and \endrawlinemode so that
each <m> raw text lines, including the empty ones,
will eject a form letter.

It is often desirable that a letter form or for-
mat and the actual parameters be kept in dif-
ferent files: it will help in archiving and retriev-
ing form letters. Furthermore, if a letter is quite
long such that the TEX can’t hold it in the mem-
ory, then we have to keep the letter content in
a separate file. Essentially we need to save ev-
erything between \beginletter and \endletter
into a separate file, say, letter.let, then later
on use \inputletter{letter.let} to load in the
letter format. Should one prefer to keep every-
thing inside a single file, however, he may use
\beginfile[password]{file.ext} and \endfile (or
password) to create files such as letter.let men-
tioned above as a temporary scratch file. We note
that letter.let will not contain \beginletter
and \endletter as \inputletter will add them
properly for us. Also the extension .let is preferred
in this connection as it can indicate that this type
of format file should not quite be regarded as the
normal TEX files.

Likewise, it is also desirable to have a separate
address or general letter parameter file. For the
address file, we remark that we have to keep
the pairing \beginlinemode with \endlinemode or
\beginblockmode with \endblockmode inside the
address file, if we are to use any of them for some
content of that file. Moreover, an extension .adr is
recommended for such files. Thus for a letter format
or template saved in letter.let, we may choose
letter.adr as the name for the related address file.

After a letter format is completed for sometime,
one may have difficulty in recalling what those pa-
rameters should refer to when using the form let-
ter again. For this purpose, we provide a simple
mechanism with \paranames and \showparas. To
be more precise, if one puts \paranames name-1-1;
...; <etc>! at the very beginning of the letter for-
mat, then one can use \showparas outside to output
a letter with its parameters replaced by their names.

An alternative way, or rather a way of highlight-

ing the positions of the letter parameters is to
use \preview. Under \preview, or \previewtrue,
all parameters given by \paras[<m>][<n>] will be

boxed with double borderlines, similar to 2 – 3 ,
the number <n>-<m> inside (corresponding to 2-3
in the shown box) denotes the <m>-th parame-
ter of the <n>-th group. However, the parame-
ters given by \blockparas or \addressparas will
be boxed with triple borderlines. Moreover, the
macro parameters <pre> and <post> will also be
displayed explicitly. Since \addressparas is essen-
tially a special way of using \blockparas, it is high-
lighted via that for the \blockparas. In particular,
\blockparas[3][6][\x][\y] for instance will dis-
play under \preview the following box

6 – 3 (+): macro:->\x <<paras>> macro:->\y

Sometimes we may want to have each given empty
letter parameter automatically replaced by a par-
ticular default parameter. This can be easily
done by using \loaddefaultparas inside your let-
ter format, i.e. essentially between \beginletter
and \endletter, before any calling of the letter
parameters via \paras etc. Of course, the ef-
fect of \loaddefaultparas is nil unless a com-
mand \paradefaults is issued inside or (better
still) outside the letter format. We note that
\paradefaults takes the macro parameters in the
exact way as \paranames does. One note of caution:
\paradefaults and \paranames always use the de-
fault delimiters ‘; + !’ no matter how you changed
them via \delimiters. This is to avoid unnecessary
complications.

We note that printing labels is no more than de-
signing a special letter template. The mechanism
provided in formlett however is to pick a subblock
of parameters as the address. Basically all the form
letter output inside \beginlabels and \endlabels
will produce labels instead, taking the first parame-
ter group as the address by default (see Appendix for
more details). Incidentally, labels can be printed in
single or double columns depending upon the choice
of label width.

To conclude this section, we remark that if you want
to put \input filename into a letter parameter,
make sure that there is a nontrivial space follow-
ing the filename. To be on the safe side, always use
\inputfile{filename.ext} instead. Also <!>, when
output to screen, is an invitation to read the log file
for a warning message.

Example
The following is an example. If you are running
plain TEX, add \input formlett at the top. But if
you are running LaTEX, then just add at the top the
line

Jiang Z Formlett: for letters to multiple receivers 3

0001\documentstyle[formlett]{article}

0002\begin{document}

The line numbering on the right hand side is for
reference only, as in the other occurrences later on.
The example reads as follows.

0003\beginletter

0004\paranames % optional

0005\tt<<FULL NAME>>;%

0006\tt<<ADDRESS-etc>>;%

0007+\tt<<GIVEN NAME>>;%

0008\tt<<MISSING ITEM>>;%

0009\tt<<PHONE NUMBER>>!

0010\loaddefaultparas % optional

0011

0012\NOPAGENUMBERS\parindent=0pt

0013\noindent{\it\paras[1]}\par

0014\blockparas[2]\par\bigskip

0015

0016Dear \paras[1][2],\par\medskip

0017We have been looking for

0018\paras[2][2] for quite a while

0019without any luck, could you help

0020us out? If so, please ring

0021\paras[3][2]. \par\medskip

0022Cheers!\hfill Michael\vfill\eject

0023\endletter

0024\preview \showparas

The above is a typical letter format or form letter.
Command \preview in the last line gives

1 – 1

1 – 2 (+): macro:->\noindent <<paras>> macro:->\par

Dear 2 – 1 ,

We have been looking for 2 – 2 for quite a while
without any luck, could you help us out? If so,

please ring 2 – 3 .

Cheers! Michael

and, the name of the parameters are displayed via
\showparas as follows

<<FULL NAME>>
<<ADDRESS-etc>>

Dear <<GIVEN NAME>>,

We have been looking for <<MISSING ITEM>> for
quite a while without any luck, could you help us
out? If so, please ring <<PHONE NUMBER>>.

Cheers! Michael

In other words, we can have a good understanding
about what a letter format does without reading its
source code, which will be very handy for archiv-
ing and retrieving letter templates. To provide de-
faults for letter parameters and output new letters
via blockmode, we may add

0025\paradefaults % optional

0026To whom this may concern

0027+Sir or Madam;something;%

0028061-225-9905!

0029

0030\blockmarks

0031\beginrawblockmode{}

0032

0033Mrs L Stenson

0034#1-20 Sunset Street

0035Hillside, Norway

0036------

0037Louise

0038a Bible

0039220-8888

0040=========

0041

0042......

0043

0044Above empty line active

0045

0046\endrawblockmode

We note the parameters contain special char-
acters #. That is the reason why we used
\beginrawblockmode. Now suppose we have to
wrap a very long address line, we could use
\addressbox to control an individual parameter.
The following is a typical case

0047\defaultmarks

0048\moreletter

0049S Wales,;%

0050\addressbox[2in][1em]{%

0051University of Manchester Institute

0052of Science and Technology, This is

0053a long address line: it will be

0054wrapped up automatically.}%

0055+;a \TeX\ package \gstr\ manual and

0056many more (\cstr)!

which is manifested in the following output

S Wales,
University of Manchester Institute

of Science and Technology, This
is a long address line: it will be
wrapped up automatically.

Dear Sir or Madam,

We have been looking for a TEX package + manual
and many more (!) for quite a while without any
luck, could you help us out? If so, please ring 061-
225-9905.

Cheers! Michael

Please note that the default parameters have been
used there. In the case of putting only name and

Jiang Z Formlett: for letters to multiple receivers 4

address into a form letter, we may typically use
linemode via e.g.

0057\beginlinemode

0058Z Jiang

0059UNE, Arimdale

0060

0061T Ribbons

0062UMIST, Manchester

0063\endlinemode

0064\end{document}

If one saves lines 4-22 to file myletter.let, lines
25-63 or simply lines 57-63 to file myletter.adr,
then we can for instance produce via LaTEX the form
letter for multiple receivers by
\documentstyle[formlett]{article}

\begin{document}

\inputletter{myletter.let}

\showparas \preview

\paradefaults To whom it may concern!

\inputfile{myletter.adr}

\beginlabels % 1st parameter group as address

\inputfile{myletter.adr} % for labels

\endlabels

\end{document}

If one puts commands \beginlables and
\endlabels at e.g. immediately after line 2
and 63 respectively, then one gets all the
posting labels instead. If one puts commands
\beginfile{scratch.adr} and \endfile there
respectively, then by adding after \endfile the
commands
\inputfile{scratch.adr}

\beginlabels \inputfile{scratch.adr} \endlabels

one gets both form letters and the labels. If
one insists on not writing out auxiliary scratch
files, then use \input formlett.sty \initstyle
[styles]{article}{preamble} to replace
\documentstyle [formlett, styles]{article}
preamble \begin{document}, which will be valid for
LaTEX but ignored for TEX , and will enable one to
use \labelsquit at the end to read in the current
document again with all the letters there converted
into the corresponding labels. If you only want to
execute certain commands the first time round (i.e.
before \labelsquit re-reads the file again), use
\firstread{commands} for this purpose.

Macros
One of the main technical features of this set of
macros is the extensive use of arrays, both one di-
mensional and two dimensional. The one dimen-
sional array STK that we use is essentially an user-
defined stack, while the two dimensional arrays LET
and DEF are more like structure or record in other
programming languages. First let us make clear that
an array (or stack) of name, say ABC, will contain el-
ements \ABCm~ for one dimensional and \ABCm*n~

for two dimensional case, where m and n are some
non-negative integers representing row and column
numbers respectively. The first element, if neces-
sary, will be used to denote the length of that raw.
Thus, \ABC1*0~ for instance will denote the num-
ber of elements in the first raw of a two dimensional
array ABC.

Let us now look at how a mechanism of default-
ing macro parameters is formulated. For this pur-
pose, we first define a stack STK and its stack pointer
\STKcount by
\def\make@STKcount{\csname newcount\endcsname

\STKcount\global\STKcount=0\relax}

\ifx\STKcount\undefined@\def\next{%

\make@STKcount}\else\def\next{}\fi\next

\long\def\push#1{\global

\advance\STKcount1\relax

\expandafter\gdef\csname STK\the

\STKcount\string~\endcsname{#1}}

\def\popnil{\expandafter\let

\expandafter\temp@macro\csname

STK\the\STKcount\string~\endcsname

\ifnum\STKcount>0\global\expandafter

\let\csname STK\the\STKcount

\string~\endcsname=\undefined@

\global\advance\STKcount-1%

\else

\def\temp@macro{}\global\STKcount=0%

\fi\relax }

\def\pop{\popnil\temp@macro}

The first four lines of code will ensure that the
stack pointer will not be flushed if this useful sub-
set of macros is loaded again by for instance an-
other style file in the middle of a TEX document.
With the above code, we can stack away anything
by \push{anything} and later use \pop to recall
them or \popnil to remove one element from the
stack.

So, how can we make defaults for certain empty
macro parameters? The simplest case is perhaps
\long\def\get@nepara[#1][#2]{{%

\def\next@{#2}%

\ifx\next@\empty\push{#1}\else

\push{#2}\fi}\ag@in}

\long\def\get@para\left@#1\right@{%

\def\check@{%

\ifx[\next@

\def\full@####1{\get@nepara[#1]####1}%

\else

\def\full@{\get@nepara[#1][#1]}\fi

\full@}%

\futurelet\next@\check@}

Basically, \get@onepara[<A>][] will push the
default <A> to the stack STK unless is nonempty.
And \get@para\left@<A>\right@ will look at the
next token to be read, if it is character ‘[’, then
reads in a macro parameter in the form of []

Jiang Z Formlett: for letters to multiple receivers 5

and then push to the stack STK, otherwise push
the default <A> to that stack. For the more general
case, we need to define
\long\def\do@nepara

\left@#1\right@#2\p@r@end{%

\gdef\p@r@data{#2}\global\advance

\p@r@count1\get@para\left@#1\right@}

\def\ag@in{\ifx\p@r@data\empty

\def\next@{\relax\getp@r@s\run@CMD}%

\else\def\next@{\expandafter\do@nepara

\p@r@data\p@r@end}%

\fi\next@}

\def\run@CMD{\csname STK\the\STKcount

\string~\endcsname}

\newcount\p@r@count

\long\def\st@ckparas#1\p@r@end{%

\global\p@r@count=0%

\gdef\p@r@data{#1}\ag@in}

so that \st@ckparas\left@<A>\right@...
\left@\right@... \p@r@end will look for pa-
rameters enclosed in [] one by one, exhausting all
the defaults paired by \left@ and \right@. If
future tokens inside [] are not found, or empty,
the default tokens inside the corresponding pair
\left@\right@ will be used. The new or default to-
kens will be pushed to the general-purpose stack STK
for a later use, while \p@r@count records the total
number of the default macro parameters. We note
that on exit of \st@ckparas, the control is passed
to \runCMD.

Once all macro parameters are pushed to the stack,
we may transfer them to separate toks \p@r@one to
\p@r@nine (an easier-to-use format) defined by
\newtoks\p@r@one\newtoks\p@r@two

\newtoks\p@r@three\newtoks\p@r@four

\newtoks\p@r@five \newtoks\p@r@six

\newtoks\p@r@seven\newtoks\p@r@eight

\newtoks\p@r@nine

\def\clrp@r@s{\global\p@r@one={}%

\global\p@r@two={}\global\p@r@three={}%

\global\p@r@four={}\global\p@r@five={}%

\global\p@r@six={}\global\p@r@seven={}%

\global\p@r@eight={}\global\p@r@nine={}}

where \clrp@r@s clears all the parameter toks. We
can then retrieve parameters from the stack STK to
the parameter toks via \getp@r@s with the following
code
\newcount\temp@count

\def\getp@r@s{\temp@count=\p@r@count

{\loop

\ifnum\temp@count>0

\expandafter\let\expandafter

\t@macro\csname STK\the\STKcount

\string~\endcsname

\ifcase\temp@count

\or\global\p@r@one=\expandafter{\t@macro}%

\or\global\p@r@two=\expandafter{\t@macro}%

\or\global\p@r@three=\expandafter{\t@macro}%

\or\global\p@r@four=\expandafter{\t@macro}%

\or\global\p@r@five=\expandafter{\t@macro}%

\or\global\p@r@six=\expandafter{\t@macro}%

\or\global\p@r@seven=\expandafter{\t@macro}%

\or\global\p@r@eight=\expandafter{\t@macro}%

\or\global\p@r@nine=\expandafter{\t@macro}%

\else

\errmessage

{Parameter capacity exceeded.}%

\fi \global\expandafter\let

\csname STK\the\STKcount

\string~\endcsname=\undefined@%

\global\advance\STKcount-1%

\global\advance\temp@count-1\relax

\fi

\ifnum\temp@count>0\repeat}}

We are now ready to use the above mechanism to
default macro parameters for some already defined
macros. Suppose we have already defined a macro
\crudemac[<A>][] which takes two macro pa-
rameters <A> and , and we want to define a new
macro \smartmac which behaves like \crudemac but
will default the macro parameters <A> and to for
instance 9 and 88 respectively. For this purpose, we
may define \smartmac via
\def\smartmac{\push{%

\edef\next@@{\noexpand

\crudemac[\the\p@r@one][\the\p@r@two]}%

\popnil\clrp@r@s\next@@}\st@ckparas

\left@9\right@\left@88\right@\p@r@end}

This way, all the followings
\crudemac[9][88], \smartmac[9][88],

\smartmac, \smartmac[], \smartmac[][],

\smartmac[9], \smartmac[9][], \smartmac[][88]

are the same under the assumption that we shall not
use characters ‘[’ and ‘]’ for the macro parameters
themselves, and that \crudemac will not change any
\catcode inside. The reason for this latter condi-
tion lies in the fact that when \smartmac looks at
the next character, the character is in a sense al-
ready read. If \crudemac changes the \catcode of
that particular character, then the one that is al-
ready read via \futurelet will have a misleading
\catcode. If one has to change \catcode inside
but wants to avoid this possible misbehavior, al-
ways put full number of empty brackets ‘[]’ for the
defaults, or put a \relax immediately afterwards.
Better still, make the last parameter to appear in a
mandatory ‘{}’ form rather than the ‘[]’ form via
the #{ mechanism [1], so that those square brackets
can be dropped off.

For example, we as a by-product also defined a 100%
verbatim mode by
\begin@@rawlist[A][B][C][D][E][F]G
<general text>

\endrawlist

Jiang Z Formlett: for letters to multiple receivers 6

where, for the line numbering of the raw text, A,
..., G represent respectively the initial value, incre-
ment step, number of digits, font, horizontal po-
sition of text, horizontal shift of numbering, and
the password to leave raw text mode. Inciden-
tally, \linecount records the current line number-
ing count. Our purpose is to define \beginrawlist
so that its format is
\beginrawlist[A][B][C][D][E][F]{G}

in which A to F are optional while {G} is manda-
tory even though G can be empty — implying
\endrawlist is the password to leave the raw-text
mode. For this purpose, we first define
\def\begin@rawlist[#1][#2][#3][#4][#5][#6]#{%

\begin@@rawlist[#1][#2][#3][#4][#5][#6]}%

to make ‘{}’ pair compulsory for #7, then we provide
the defaults for A to F as \linecount, 1, 0, \tiny,
0pt and 0pt respectively via
\def\beginrawlist{\push{%

\edef\next@@{\noexpand\begin@rawlist

[\the\p@r@one][\the\p@r@two][\the\p@r@three]%

[\the\p@r@four][\the\p@r@five][\the\p@r@six]}%

\popnil\clrp@r@s\next@@}% end of push

\font\tiny@rm=cmr5%

\edef\temp@macro{%

\noexpand\left@\the\linecount\noexpand\right@

\noexpand\left@1\noexpand\right@

\noexpand\left@0\noexpand\right@

\noexpand\left@\noexpand\tiny@rm

\noexpand\right@

\noexpand\left@0pt\noexpand\right@

\noexpand\left@0pt\noexpand\right@}%

\expandafter\st@ckparas\temp@macro\p@r@end}%

Likewise, we could also similarly define
\printfile[...]{filename.ext} so that ‘[...]’
takes a same defaulting scheme.

There are several tiny but very useful macros in
formlett which are used again and again. One of
such macros is for testing if one string contains an-
other string. The following \test@str tests if string
#1 is contained in string #2
\newif\iftemp@if \newtoks\temp@toks

% return \temp@iftrue if yes,

% \first@half,\second@half are global

\long\def\test@str#1#2{%

\long\def\strip@endmark##1\s@fetymarkI

#1\s@fetymark{\gdef\second@half{##1}}%

\long\def\strip@markI##1\s@fetymarkI

\s@fetymark{\gdef\first@half{##1}}%

\long\def\p@rse##1#1##2\s@fetymark{%

\gdef\first@half{##1}%

\gdef\second@half{##2}%

\ifx\second@half\empty

\strip@markI##1\s@fetymark\temp@iffalse

\else

\strip@endmark##2\s@fetymark\temp@iftrue

\fi}%

\temp@toks={#2\s@fetymarkI#1\s@fetymark}%

\expandafter\p@rse\the\temp@toks }%

The \first@half will contain the tokens upto but
excluding the substring #1, while the \second@half
will contain the tokens after the first appearance
of #1. Should #2 not contain string #1 at all,
then \first@half is the whole string #2 whereas
\second@half is empty.

The small macros such as the above one and
the stack utilities, though built for the main pur-
pose of formlett, provide also a good ‘infrastruc-
ture’ for other house-keepings. One of the side-
kicks of this type is our macro for commenting
out blocks of text inside a TEX file. Basically,
\begincomment{password} will set all characters of
code 0 to \MAX@CHR@CODE (=255 by default) to
catcode 11 or 12, and look for the password, or
\endcomment in the absence of a password, to quit
the comment mode. In comparison to a very com-
pact macro comment.sty (currently at version 3.0)
written by Victor Eijkhout, quitting comment mode
via a password here seems more flexible.

As for the other macros in formlett, it is difficult
to explain them without printing out all of them. So
instead, we shall explain simply one of the strategies
in parsing the letter parameters. Suppose W is a list
of parameters separated by ‘+’ and ended by ‘!’, i.e.
W is like <A>++...+<S>!. Then it will be easy
to parse all the parameters one by one (to a stack for
instance) if we can know whether there is precisely
one parameter left over. To detect it, we use
\newif\ifl@stline

\long\def\testl@stline

#1+#2!#3\s@fetymark{%

\def\next{#2}\ifx\next\empty

\l@stlinetrue\else\l@stlinefalse\fi

\def\next{#3}\def\nextsample{+!}%

\ifx\next\nextsample\l@stlinefalse\fi}

Then the command \testl@stline
W+!\s@fetymark will set \l@stlinetrue if there
is only one parameter left in W , and will set
\l@stlinefalse if otherwise.

Finally, for those wizard users who want to do
everything their own way, we just note that if
for instance the 3rd letter parameter of the 2nd
group of a cluster is given as <A>, then \LET2*3~
will contain \b@group\relax<A>\e@group right af-
ter a cluster is read in. \DEF2*3~, on the other
hand, contains the corresponding default parame-
ter in the same fashion. Furthermore, the command
\checkparas[m][n]{LET} will copy the content of
\paras[m][n], minus the ‘wrapping’ extra tokens
\b@group\relax and \e@group, to \cachedata and
set \ifemptyparas to true or false depending on
whether the content is empty or not. This way,
a user may even change the characteristics of his

Jiang Z Formlett: for letters to multiple receivers 7

letter template by first testing the content of the
supplied individual parameters. However, we note
that if \loaddefaultparas is executed, then the
LET array, when some of its elements are not sup-
plied, will contain the corresponding elements of the
DEF array. Hence care must be exercised under such
circumstances, when interpreting the \cachedata
generated by \checkparas[m][n]{LET}. If neces-
sary, we may use \delparadefaults to delete cur-
rent default parameter array DEF so as to conduct
\checkparas{LET} more precisely. So if anyone
wants to manipulate furthermore letter parameters
inside a letter template, he or she will now at least
know where to look at.

References
[1]. Knuth D E, The TEXbook, Reading, Mass.,

Addison-Wesley, 1992.
[2]. Piff M, Text merges in TEX and LaTEX, TUG-

boad, 13(4):518, 1993.
[3]. Damrau J and Wester M, Form letters with

3-across labels capacity, TUGboat, 13(4):510,
1991.

Appendix
In the followings, we give a brief summary of the
new commands given by formlett version 2.3.

Let m and n be numbers, p, q and r be dimen-
sions, A, B, P , G, C and T be tokens, and X be a
box. Furthermore, we shall denote by R a full set of
letter parameters ended by ‘!’, with ‘;’ separating
parameters inside a same group and ‘+’ separating
different parameter groups. We moreover denote R
by F , when ‘; + !’ there can be replaced by ‘P
G C’ respectively if \delimiters{P}{G}{C} is is-
sued. In the commands tabulated below, the macro
parameters contained in squared brackets support
default. In particular, the defaults are m=1,
n=1, p=8truecm, q=1.5em, r=3pt, A=\noindent,
B=\par, \previewfalse, \localparastrue and
\nodefaultsfalse.

\paras[m][n] mth parameter of nth

group
\blockparas[m][n][A][B] mth to the last param-

eter of nth group, each
preceded by A and fol-
lowed by B, wrapped by
{} if B=\relax

\addressparas[m][n][p][q] mth to the last pa-
rameter of nth group,
each put into a box of
width p with indent q for
wrapped portions

\loaddefaultparas fill empty parameters
with defaults

\checkparas[m][n]{T} mth parameter of
nth group copied
to \cachedata;
\ifemptyparas is true
if element is empty; T is
often LET or DEF

\moreletter F use parameters F to out-
put a new letter

\paranames R use R as parameter
names

\paradefaults R use R as default
parameters

\delparadefaults delete default parameters
\delimiters{P}{G}{C} use P , G, C as delimiters
\defaultmarks use ‘; + !’ as delimiters
\blockmarks use ‘....’, ‘----’, ‘====’

as delimiters
\preview highlight parameter

positions
\showparas display parameter

names, if any
\inputletter{file.ext} input letter content
\inputfile{file.ext} input file.ext{
\beginletter
\endletter

delimiters for letter con-
tent (template){

\beginpilemode
\endpilemode

normal letter parameters
cluster-wise{

\beginblockmode
\endblockmode

for line-by-line blocks of
parameters, empty lines
active within each cluster{

\beginlinemode
\endlinemode

for line-by-line parame-
ters, empty lines delimit
clusters{

\beginrawblockmode{T}
\endrawblockmode

raw text mode;
nonempty T replaces
\endrawblockmode to
mark end{

\beginrawlinemode{T}
\endrawlinemode

raw text parameters and
active spaces etc{

\begindatamode[T]{m}
\enddatamode

m raw text lines for one
form letter{

\begincolumns[a][b]
\endcolumns

a-columns separated by
distance b{

\begincomment{T}
\endcomment

comment out lines,
nonempty T replaces
\endcomment to mark
last full line for comment{

\beginfile[T]{file.ext}
\endfile

write text verbatim to
file file.ext (empty im-
plies scr@tch@.tex),
nonempty T replaces
\endfile to mark last
full line

\PAGENO=1 page number reset to 1
\NOPAGENUMBERS no page numbers
\textbox[p]{text} text into box of width p
\boxmore[r]{X} add borderline to box X

at a distance r
\addressbox[p][q]{text} text into box of width

p, with wrapped options
indented by q

\previewfalse given parameters instead
of highlighted boxes will
be shown

\localparastrue letter parameters put
into {} before displayed

\nodefaultsfalse take defaults for empty
letter parameters

\previewtrue cf. above
\localparasfalse
\nodefaultstrue

Table continues in the next page

Jiang Z Formlett: for letters to multiple receivers 8

{
\beginrawlist[a][b][c][d][e][f]{g}
\endrawlist

defaults:
a=\linecount,
b=1, c=0,
d=\tiny@rm,
e=0pt, f=0pt,
g=\endrawlist

verbatim listing, line
count from a, step b,
digits c, font d, text po-
sition e, numbering shift
f , end mark g

\printfile[a][b][c][d][e][f]{file.ext}

defaults: c=6 etc
verbatim listing of
file.ext{

\beginlabels[a][b][c][d][e][f]
\endlabels

defaults:
a=20pt,
b=\tt\raggedright,
c=1, d=1,
e=2.6in, f=2em

form letters become la-
bels: address taken from
cth to last parameter of
dth group, with width e,
indent f , borderspace a
and font toks b

\firstread{T} toks T will not be read
if the file is re-read via
\labelsquit

\initstyle[a]{b}{c} initiation for
\labelsquit,with styles
a, documentstyle b and
preamble c

\initclass[a][o]{b}{c} similar to \initstyle (o
is LaTEX2e options), but
retains native LaTEX2e

when applicable
\labelsquit[a][b][c][d][e][f]{file.ext}

defaults:
see that for \beginlabels

quit after converting let-
ters to labels by reading
the current document or
file.ext

\newarray\abc make array named abc
along with \abc and
\checkabc

\delarray\abc delete array named abc
\abc(m)={T} assign tokens T to

\abc(m); \abc(m) ≡
\abc(m1, ..., mk) for

m=1 +
∑k

1
(mi − 1) ∗

\dataheightk−i

\abc(m) value of \abc(m), if not
followed by ‘=’

\dataheight current array dimension:
cf. \abc(m)

\readarray{N}{a1& .. &an} equivalent to \N(1)=a1,
.., \N(n)=an

\checkabc(m) copy \abc(m) to
\cachedata; set
\ifemptydata to
true/false accordingly

\readstyles{f1, ..., fn} read files f1 to fn with
default extension .sty;
@’s catcode set to 11 dur-
ing input

Jiang Z Formlett: for letters to multiple receivers •End of Document• 9

