
MS-DOS KERMIT USER GUIDE

For the IBM PC Family, Compatibles, and Other MS-DOS Systems

Version 2.32

C. Gianone, F. da Cruz

Columbia University Center for Computing Activities
New York, New York 10027

J.R. Doupnik

CASS and EE, Utah State University, Logan, UT 84322

December 11, 1988

Copyright (C) 1981,1988
Trustees of Columbia University in the City of New York

Permission is granted to any individual or institution to use, copy,
or redistribute this document so long as it is not sold for profit, and

provided this copyright notice is retained.

1. MS-DOS KERMIT Page 1

1. MS-DOS KERMIT
Program: Joe R. Doupnik (Utah State University), with contributions by James Harvey (Indiana/Purdue

University), James Sturdevant (A.C. Nielson Company), and many others. Originally by
Daphne Tzoar and Jeff Damens (Columbia University). See History.

Language: Microsoft Macro Assembler (MASM)

Version: 2.32

Released: December 11, 1988.

Documentation: Christine Gianone, Frank da Cruz (Columbia University),
Joe R. Doupnik (Utah State University)

Dedicated To: Peppi

Kermit-MS Capabilities At A Glance:

Local operation: Yes
Remote operation: Yes
Transfers text files: Yes
Transfers binary files: Yes
Wildcard send: Yes
File transfer interruption: Yes
Filename collision avoidance: Yes
Can time out: Yes
8th-bit prefixing: Yes
Repeat count compression: Yes
Alternate block check types: Yes
Terminal emulation: VT102, H19, VT52, Tektronix 4010
Communication settings: Speed, Parity, Flow Control, Echo
Transmit BREAK: Yes (and Long BREAK)
IBM mainframe communication: Yes
Transaction logging: Yes
Session logging (raw download): Yes
Raw upload: Yes
Act as server: Yes
Talk to server: Yes
Advanced server functions: Yes
Advanced commands for servers: Yes
Local file management: Yes
Command/init files: Yes
Command macros: Yes
Extended-length packets: Yes
Local area networks: Yes (NetBIOS and other support)
MS-Windows compatibility: Yes
Attribute packets: Yes
Sliding windows: No

MS-DOS Kermit, or "Kermit-MS" (or MS-Kermit), is a program that implements the Kermit file transfer protocol
for the entire IBM PC family, including the PS/2 series, IBM compatibles, and several other machines based on the
Intel 8086 processor series (8088, 80286, 80386, etc) and the DOS operating system family (PC-DOS or MS-DOS,
henceforth referred to collectively as MS-DOS or simply DOS).

It is assumed you are acquainted with your PC and with DOS, and that you are familiar with the general ideas of
data communication and Kermit file transfer. A very brief overview is given here, but for details consult the early
chapters of the Kermit User Guide (of which this document is a chapter), or the book Kermit, A File Transfer
Protocol, by Frank da Cruz, Digital Press (1987), order number EY-6705E-DP (phone 1-800-343-8321), which also
includes background tutorials on computers, file systems, and data communication (including modems, cabling, etc).

Page 2 Kermit User Guide: MS-DOS KERMIT 1

For further information about Kermit documentation, updates, lists of current available versions, and ordering
information, write to:

Kermit Distribution
Columbia University Center for Computing Activities
612 West 115th Street
New York, NY 10025 (USA)

1.1. System Requirements

Kermit-MS version 2.32 runs in as little as 100K of memory, but will occupy up to 160K or so if it can be found for
extra screen rollback memory, macro definitions, etc. Versions not using screen rollback memory will not require
the additional space. It will also try to leave 24 Kbytes free for a second copy of COMMAND.COM which is needed
for execution of certain commands.

On the IBM PC family, Kermit-MS 2.32 performs almost complete emulation of the DEC VT-102 and Heath/
Zenith-19 terminals at speeds up to 19,200 baud or greater, lacking only the VT102’s smooth scrolling and (on most
display boards) 132 column features. And as of version 2.30, Kermit-MS also performs Tektronix 4010/4014
graphics terminal emulation on IBM PC family systems equipped with CGA, EGA, or other graphics adapters, with
either color or monochrome monitors.

Much of Kermit’s speed is accomplished by direct writes to screen memory, but this is done in a "TopView-aware"
manner to allow successful operation in windowing environments like MS-Windows, DesqView, and TopView
itself. Speed is also due to direct access of the serial port 8250 UART (Universal Asynchronous Receiver/
Transmitter) chip, with buffered, interrupt-driven receipt of characters and selectable XON/XOFF flow control.
Full speed 9600 baud operation is possible on 4.77Mhz systems without flow control, but flow control is required on
these systems for 19,200 baud or higher rates. The IBM PC version should also run on near-clones like the DG/1
that differ from true PCs only in their choice of UART; non-8250 UARTs are detected automatically, and slower
non-interrupt driven Bios serial port i/o is used, in which case the top speed is in the 1200 baud range.

Kermit-MS 2.32 runs on the entire IBM PC family (the PC, XT, AT, PCjr, Portable PC, PC Convertible, PS/2) and
compatibles (Compaq, VAXmate, Z150, etc), and there are also specially tailored versions for non-IBM-compatibles
like the DEC Rainbow, HP-110, HP-150, HP Portable Plus, Grid Compass II, Victor 9000, and others, plus a
"generic DOS" version that should run (slowly) on any 8086-based MS-DOS machine. This document concentrates
on the IBM version; some of the system-dependent capabilities described here may be lacking in the non-IBM
versions. See section 1.11 for features of different systems.

KERMIT.EXE for the IBM PC family occupies about 102K of disk storage (the figure will vary for other versions).
This can be reduced by about 15K if you run it through EXEPACK. MS-Kermit is not distributed in packed form,
because problems have been reported on certain systems when this is done. So if you decide to pack it, make sure to
keep an unpacked version available to fall back to in case of problems.

1.2. History

Over the years, MS-Kermit has grown from a Kermit file transfer program that embodied a simple terminal emulator
into a complex and powerful communication program that includes the Kermit file transfer protocol. As a result, the
bulk of this manual is devoted to the communication features, rather than Kermit protocol operation. Skip ahead to
the next section if you’re not interested in the history of MS-Kermit.

MS-DOS Kermit (like the Kermit file transfer protocol itself) is a product of the Systems Group of the Columbia
University Center for Computing Activities, and it was one of the four original Kermit programs (with the CP/M,
DEC-20, and IBM mainframe versions). It was initially written for the IBM PC with DOS 1.1 by Daphne Tzoar in
1981-1982, based largely on Bill Catchings’s original CP/M 8080 assembler version. PC-Kermit (as it was called

1.2. History Page 3

then) provided basic Kermit file transfer and VT52 emulation. Joellen Windsor of the University of Arizona added
conditional assembly support for the Heath/Zenith-100 shortly thereafter, and soon after that Dave King of
Carnegie-Mellon University added Heath-19 terminal emulation, and some patches to let the program run under the
new DOS version, 2.0. During this era, the program version numbers went from 1.0 to 1.20.

With the appearance in the marketplace of many new MS-DOS machines that were not compatible with the IBM
PC, it became apparent that conditionally assembled code supporting each of these machines within a single
monolithic source file was not the best way to organize the program. Therefore Daphne, along with Jeff Damens of
Columbia, undertook to reorganize the program in a modular way, isolating system dependencies into separate files.
The result was version 2.26, released in July 1984. It included support for the DEC Rainbow, the HP-150, the Wang
PC, and generic MS-DOS, as well as for the IBM PC family and the H/Z-100. It also included many new features,
like 8th-bit prefixing (code contributed by The Source Telecomputing), alternate block check selection, byte-count
compression, server/client operation, access to local file and DOS operations, command macros, initialization and
command files, screen rollback, key redefinition, and more. For the 2.26 release, the executable Kermit programs
were encoded printably as ‘‘.BOO’’ files, designed by Bill Catchings as part of this effort, for network and
electronic-mail distribution.

Release 2.27 was produced by Daphne and Jeff in December 1984. Unlike 2.26, it ran correctly on the new PC/AT
under DOS 3.0, and included support for the NEC APC from Ron Blanford of Seattle, WA, and Ian Gibbons of the
University of Hawaii, and for the TI Professional from Joe Smith of the Colorado School of Mines, plus some bug
fixes and reorganization. 2.27 is the last version that runs under pre-2.0 versions of DOS.

Version 2.28 (Daphne, Jeff, June 1985) added dynamic memory allocation to reduce disk storage for the .EXE file,
and to allow the program to adjust itself to the PC’s memory size, plus the inevitable bug fixes (many of them
contributed by Edgar Butt of the University of Maryland and Gregg Small of the University of California at
Berkeley). During this period, support for additional MS-DOS systems was added by various people.

In December 1985, a tape showed up at Columbia sent by Prof. Joe R. Doupnik of the Center for Atmospheric and
Space Studies and EE Department at Utah State University. This tape contained version 2.28 modified to fully
support the DOS 2.0 file system, and to which many new features had been added, notably the ability of the
MS-DOS Kermit server to process various REMOTE commands (DIR, CWD, SPACE, etc). And at about the same
time, a tape arrived from James Harvey of Indiana/Purdue University, who had changed Kermit’s CONNECT
command to emulate the popular DEC VT100 terminal. James’s material was sent to Joe, who then laboriously
fitted the VT100 emulation into his own code, keeping the VT52 and H19 emulation alive as options, and upgrading
the VT100 emulation to VT102 by adding features such as line and character insertion and deletion. The result was
version 2.29, released in May 1986.

Soon after the release of 2.29, some disks were sent in by James Sturdevant of the A.C. Nielson Company,
containing a full implementation of the Kermit script facility, as described in the Kermit book. This material was
sent to Joe, who had by now become keeper of MS-DOS Kermit and had already begun work on version 2.30 by
adding support for extended-length packets. Joe had been carrying on voluminous network correspondence
(Thanks, BITNET!) with Columbia and with MS-DOS Kermit users and testers all over the world, giving birth to
many new features, including Tektronix graphics terminal emulation, support for operation over local area networks,
support for 8-bit ASCII terminal connections and international character sets, ANSI printer control, and a
redesigned, more powerful, more portable key redefinition mechanism.

Version 2.30 was formally released on January 1, 1988, after many "alpha" and "beta" tests. Among the many
contributors to this version were Brian Holley and Joe Smith for the Tektronix emulation, Robert Goeke for the
NEC AP3 support, Brian Peterson and Andreas Stumpf for the Victor 9000, Bob Babcock and Joe White for the
Sanyos, Christopher Lent for the Wang PC, Jack Bryans for an Intel iRMX version, Jim Noble for the Grid
Compass, Geoff Mulligan and others for the Zenith 100, and David Knoell for the special Rainbow edition. And
thanks to Gisbert Selke, Jack Bryans, and others for proofreading drafts of this manual, with apologies to anyone we
neglected to mention.

Page 4 Kermit User Guide: MS-DOS KERMIT 1.2

Work on version 2.31 began within weeks of the release of 2.30. The major new features were an improved
command interface, a fully capable script programming language, and inclusion of file attributes packets to send the
time, date and size of files along with the data. Support for Ungermann-Bass Net One LAN was also added, thanks
to contributions from Henrik Levkowetz and Renne Rehmann. These changes led to a fairly thorough revision of
the interior while providing the familiar commands and new features. Meanwhile, Horofumi Fujii and Akihiro
Shirahasi of the National Laboratory for High-Energy Physics (KEK) in Japan adapted 2.31 to the NEC PC-9801,
and for this machine added support for Japanese Kana and Kanji character sets.

Version 2.32 was issued by Joe in December 1988. It included the usual bug fixes, plus several new script
programming features, and improved support for international use, allowing for languages like Hebrew and Arabic
that print right to left, adapted from work by Baruch Cochavy, IIT, Technion, Haifa, Israel. Thanks also to Glenn
Trewitt, Mark Zinzow, and Ken Ridley for valuable suggestions and contributions to this release.

Like all Kermit programs, MS-DOS Kermit may be freely copied and shared, so long as it is not done for profit.

1.3. Using MS-Kermit

MS-DOS Kermit performs two major functions, terminal emulation and file transfer. File transfer can be done using
either the Kermit file transfer protocol, or else (without error checking), ASCII or XON/XOFF capture and
transmission methods. To use Kermit for "raw" uploading or downloading of files, see the descriptions of the
TRANSMIT and LOG SESSION commands.

Before you can transfer files with another system using Kermit protocol, you must first connect to it as a terminal,
login if necessary, and start up a Kermit program there. Kermit’s CONNECT command lets you do this by making
your PC act like a terminal. After setting things up on the other computer, you must return to the PC and tell it what
to do. Returning to the PC is accomplished by typing a special sequence of characters, called the "escape sequence."

The following example shows this process; the other computer is a Unix system, but the method is the same with
most others. The parts you type are underlined (if this document was printed on a printer that can underline), and
when you type a command, you terminate it with a carriage return, which you can’t see in the example. The
mysterious ‘‘^]c’’ is MS-Kermit’s escape sequence, which you enter by holding down the Control (Ctrl) key and
pressing ‘‘]’’ (right square bracket), and then typing the letter C. The example assumes the MS-Kermit program is
stored on disk as KERMIT.EXE.

Program Dialog: Explanation:

A>kermit
IBM PC Kermit-MS V2.32 11 Dec 1988 Program’s greeting.
Type ? or HELP for help

Kermit-MS>set speed 1200 Set the right baud rate.
Kermit-MS>connect Connect as a terminal.
ATDT7654321 Dial the modem if necessary.
CONNECT 1200 The modem tells you you’re connected.

Now you’re talking to the Unix system.
Type a carriage return to get its attention.

Login: max Login to the host.
password: (Passwords normally don’t echo.)
% kermit Run Kermit on the host.
C-Kermit>receive Tell it to receive a file.
^]c Escape back to the PC.
Kermit-MS>send autoexec.bat Send a file.

(The file is transferred . . .)

Kermit-MS> Transfer complete, prompt reappears.

1.3. Using MS-Kermit Page 5

In this example, the user types "kermit", and sees the program’s herald and its prompt, ‘‘Kermit-MS>’’. Then she
sets the appropriate communication speed ("baud rate"), connects as a terminal, issues a dialing command to a
Hayes-like modem (you would skip this step if you had a direct connection), logs in to her ID on the Unix system
which she has dialed, starts "C-Kermit" on the Unix system, tells it to receive a file, escapes back to the PC, and tells
MS-Kermit to send a file. After the file is transferred, the user would normally connect back to the Unix system,
exit from the Kermit program there, and log out:

Kermit-MS>connect Connect again.
C-Kermit>exit
% ^D Logout from Unix by typing Ctrl-D.
^]c Escape back to the PC.
Kermit-MS>exit Return to DOS.

To transfer a file in the other direction, simply exchange the "send" and "receive" commands above. That’s the
easiest and quickest way to use Kermit. If this simple scenario does not work for you, issue the MS-Kermit SHOW
COMMUNICATIONS command and look for any obvious incorrect settings (port, speed, parity), fix them with
SET commands (described in Section 1.6.10), and try again. (IBM mainframe linemode connections have so many
"different" settings, there’s a special command to do them all at once, "do ibm", which you would type as the first
Kermit-MS command above.) If that doesn’t help, read on. Many problems can crop up when you attempt to
connect two unlike systems over a possibly hostile communication medium. And if you intend to be a frequent user
of Kermit, there are many options you can take advantage of to adapt MS-Kermit to different systems, improve its
performance, and automate common tasks.

1.4. The MS-DOS File System

The features of the MS-DOS file system of greatest interest to Kermit users are the form of the file specifications,
and the formats of the files themselves.

1.4.1. File Specifications

MS-DOS file specifications (in version 2.0 or later of DOS) are of the form

DEVICE:\PATHNAME\NAME.TYPE

where the DEVICE is a single character identifier (for instance, A for the first floppy disk, C for the first fixed disk,
D for a RAM disk emulator) followed by a colon (‘‘:’’), PATHNAME is up to 63 characters of identifier(s) (up to 8
characters each) surrounded by backslashes (‘‘\’’), NAME is an identifier of up to 8 characters, and TYPE is an
identifier of up to 3 characters in length. Device and pathname may be omitted. The first backslash in the pathname
may be omitted if the specified path is relative to the current directory. In the path field, ‘‘.’’ means the current
directory, ‘‘..’’ means the parent directory. Some DOS implementations (like Wang) may use slash (‘‘/’’) rather
than backslash as a directory separator.

Pathname is normally omitted, but can be specified in all Kermit-MS commands (as of version 2.29). Device and
directory pathnames, when omitted, default to either the user’s current disk and directory, or to the current directory
search path as specified in the DOS PATH environment variable, depending on the context in which the file name
appears.

When this document says that a file is searched for "in the current path," it means that Kermit-MS looks
on the current disk and directory first, and if the file is not found, then the directories listed in the PATH
environment variable are searched. If the PATH environment variable is empty, Kermit looks only at the
current disk and directory.

NAME.TYPE is sufficient to specify a file on the current disk and directory, and only this information is sent along
by Kermit-MS with an outgoing file.

The device, path, name, and type fields may contain uppercase letters, digits, and the special characters ‘‘-’’ (dash),
‘‘_’’ (underscore), ‘‘$’’ (dollar sign), ‘‘&’’ (ampersand), ‘‘#’’ (number sign), ‘‘@’’ (at sign), ‘‘!’’ (exclamation

Page 6 Kermit User Guide: MS-DOS KERMIT 1.4.1

mark), ‘‘’’’ (single quote), ‘‘()’’ (parentheses), ‘‘{}’’ (curly braces), ‘‘^’’ (caret or circumflex), ‘‘~’’ (tilde), and
‘‘‘’’ (accent grave). Normally, you should confine your filenames to letters and digits for maximum
transportability to non-DOS systems. When you type lowercase letters in filenames, they are converted
automatically to uppercase. There are no imbedded or trailing spaces. Other characters may not be included; there
is no mechanism for "quoting" otherwise illegal characters in filenames. The fields of the file specification are set
off from one another by the punctuation indicated above.

The name field is the primary identifier for the file. The type, also called the extension or suffix, is an indicator
which, by convention, tells what kind of file we have. For instance FOO.BAS is the source of a BASIC program
named FOO; FOO.OBJ might be the relocatable object module produced by compiling FOO.BAS; FOO.EXE could
be an executable program produced by loading FOO.OBJ, and so forth. .EXE and .COM are the normal suffixes
for executable programs.

MS-DOS allows a group of files to be specified in a single file specification by including the special "wildcard"
characters, ‘‘*’’ and ‘‘?’’. A ‘‘*’’ matches any string of characters from the current position to the end of the field,
including no characters at all; a ‘‘?’’ matches any single character. Here are some examples:

*.BAS All files of type BAS (BASIC source files) in the current directory.

FOO.* Files of all types with name FOO.

F*.* All files whose names start with F.

*.? All files whose types are exactly one character long, or have no type at all.

Wildcard notation is used on many computer systems in similar ways, and it is the mechanism most commonly used
to instruct Kermit to send a group of files.

Users of Kermit-MS should bear in mind that other (non-MS-DOS) systems may use different wildcard characters.
For instance VMS and the DEC-20 use ‘‘%’’ instead of ‘‘?’’ as the single character wildcard; when using
Kermit-MS to request a wildcard file group from a Kermit-20 server, the DOS ‘‘?’’ must be replaced by the
DEC-20 ‘‘%’’.

1.4.2. File Formats

MS-DOS systems store files as streams of 8-bit bytes, with no particular distinction among text, program code, and
binary files. ASCII text files consist of lines separated by carriage-return-linefeed sequences (CRLFs), and this
conforms exactly to the way Kermit represents text files during transmission, so Kermit-MS has no need for a SET
FILE TYPE BINARY command. But since a non-MS-DOS receiving system might need to make distinctions as to
file type, you will probably have to issue SET FILE TYPE commands there if you are sending it non-text files. In
transmitting files between Kermit-MS programs, regardless of file contents, the receiving MS-DOS system is
equally capable of processing text, code, and data, and in fact requires no knowledge of how the bytes in the file are
to be used.

MS-DOS (unlike CP/M) knows the exact end of a file because it keeps a byte count in the directory, so one would
expect no particular confusion in this regard. However, certain MS-DOS programs continue to use the CP/M
convention of terminating a text file with a Control-Z character, and won’t operate correctly unless this terminating
byte is present. Therefore, you should be aware of a special SET EOF option for both incoming and outbound files,
described later.

Non-MS-DOS systems may be confused by nonstandard ASCII files sent by Kermit-MS:

• Files containing any of the 8-bit "extended ASCII" characters may need conversion (or translation) to
7-bit ASCII.

• Files produced by word processing programs like Word Perfect or Word Star may contain special
binary formatting codes, and could need conversion to conventional 7-bit ASCII format prior to

1.4.2. File Formats Page 7

transmission, using an "export" procedure.

• Files created by word processors that store formatting data at the end of the file, after the Control-Z and
before physical end, may require special processing via SET EOF to strip the formatting data, lest they
confuse non-MS-DOS recipients.

• Spreadsheet or database files usually need special formatting to be meaningful to non-MS-DOS
recipients (though they can be transmitted between MS-DOS systems with Kermit-MS). Such
programs usually come with an "export" procedure to convert their files to plain ASCII text.

• BASIC programs are normally saved in a binary "tokenized" form. Use BASIC’s ‘‘,a’’ SAVE option
to save them as regular ASCII text, as in

save"foofa",a

In general, when attempting to transfer non-text files between MS-DOS and a different kind of system, consult the
Kermit manual for that system.

1.5. Program Setup and Invocation

The MS-DOS Kermit program can be run from any disk without any special installation procedure. On hard disk
systems, it is convenient to store the program in one of the directories listed in your DOS PATH, and it is often
desirable to customize Kermit’s operation to your communications and computing environment by creating an
initialization file.

Kermit-MS can be run interactively, from a batch file, as an "external" DOS command, or from redirected standard
input. Commands consist of one or more fields, separated by "whitespace" -- one or more spaces or tabs.

Upon initial startup, the program executes any commands found in the file MSKERMIT.INI on the current disk, or
(if not found on the current disk) in the first directory containing a file by that name, from the list in your DOS
PATH environment variable. The Kermit initialization file may contain command macro definitions, communica-
tions settings for one or more ports, or any other Kermit-MS commands, and you may create it using any text editor
capable of saving files in plain ASCII text format. Here is a sample:

comment -- MSKERMIT.INI, MS-DOS Kermit initialization file

comment -- Don’t overwrite my files!
set warning on

comment -- Define macros for the systems I use...
define unix set local-echo off,set par non,set flow xon,set timer off
def ibm set par odd,set loc on,set hands xon,set flo none,set tim on
def modem set port 2, set speed 1200

comment -- Define macros for quickly adapting to varying
def noisy set block-check 3, set receive packet 40, set retry 20
def normal set block-check 1, set rec pack 94, set retry 5
def clean set block-check 2, set rec pack 500, set retry 5

comment -- I always start out by connecting to my UNIX system...
set port 1
set speed 4800
do unix
connect

A different file may be substituted for MSKERMIT.INI by using "-f filename" on the DOS command line, e.g.

kermit -f monday.ini

The meanings of these commands will emerge below. For now, just note how you can use command files (and
"macro definitions") to easily adapt MS-Kermit to widely differing communication environments. A more advanced
initialization file is shown in section 1.9.

Page 8 Kermit User Guide: MS-DOS KERMIT 1.5

Interactive Operation:
To run Kermit-MS interactively, invoke the program from DOS command level by typing its name, normally
"kermit" (this means the program should be stored in your path with the name KERMIT.EXE). When you see the
program’s prompt,

Kermit-MS>

you may type Kermit commands repeatedly until you are ready to exit the program, as in the following example
(which assumes there’s already a Kermit "server" set up on the other end):

A>
A>kermit

IBM PC Kermit-MS V2.32 11 Dec 1988
Type ? or HELP for help

Kermit-MS>set speed 19200
Kermit-MS>send foo.*

The files are sent.

Kermit-MS>get fot.*

The requested files are received.

Kermit-MS>exit
A>

Interactive commands are described in Section 1.6.

Command Line Invocation:
Kermit-MS may be invoked with command line arguments from DOS command level, for instance:

A>kermit send peter.amy
or

A>kermit set port 1, set speed 9600, connect

In this case, help and completion are not available (because the program that provides them won’t start running
until after you type the entire command line), and Kermit-MS will exit back to DOS after completing the specified
command or commands. Therefore, when invoked with command line arguments, Kermit-MS will behave as if it
were an external DOS command, like MODE. Note that several commands may be given on the command line,
separated by commas. This can’t be done interactively or from TAKE command files.

Two special Kermit commands can be given on the DOS command line. First is the keyword STAY which prevents
Kermit from exiting naturally when the last command has completed (unless, of course, EXIT or QUIT was among
the commands). The second command is

-F filename

This means use the indicated filename as the initialization file rather than MSKERMIT.INI. The PATH will be
searched for this file, if necessary. A space or tab must separate -F from the filename, and the F may be in upper or
lower case. Example:

kermit -f tuesday.ini, set port 2, do ibm, stay

You can run Kermit with no initialization file at all by using the command

kermit -f nul

If -F is the only command line option, STAY is implied.

1.5. Program Setup and Invocation Page 9

Redirected Input and Output
Kermit-MS also can be operated by redirecting input to it from a file, as in:

C>kermit < myscript.txt > myscript.log

or from a DOS "pipe", as in

C>sort < sends.txt | kermit

The file MYSCRIPT.TXT contains Kermit commands as if they were typed manually. The DOS symbol "<" means
that Kermit should read from the following file rather from the keyboard.

Kermit knows this is occurring and takes special steps to avoid the real keyboard and to quit when the file has been
completely examined. The filename can also be the name of a device, such as COM1, to converse on the same or
different line as file transfer traffic. Information destined for the screen still goes to the screen unless the phrase ">
filespec" is added to the command line above to send the normal screen output to a file or device (device COM1 also
works). Note that the terminal emulation screen cannot be redirected.

Batch Operation:
Like many other MS-DOS programs, Kermit-MS may be operated under DOS batch with command line arguments.
If you invoke it without command line arguments, it will run interactively, reading commands from the keyboard
and not the batch file. When it exits, batch processing will continue to the end of the batch file.

Kermit-MS returns the "errorlevel" parameter used as program exit status. Present values are in the range 0 to 7
with three areas yielding success or failure reports for the entire Kermit session. The errorlevel values are:

errorlevel Kermit session status
0 entirely successful operation
1 a Send command completed unsuccessfully
2 a Receive or GET command completed unsuccessfully
4 a REMOTE command completed unsuccessfully

3,5,6,7 combinations (addition) of the above conditions

Note that failures are remembered for the whole session and are not canceled by a following successful operation of
the same type. Thus, sending several files individually yields an errorlevel of 0 only if all the files were sent
successfully. The "errorlevel" parameter also applies to script commands where OUTPUT corresponds to SEND
and INPUT to RECEIVE. An example of Batch invocation of Kermit is shown in Figure 1-4.

You may also force Kermit to return any desired errorlevel, using the SET ERRORLEVEL command. DOS batch
parameters may be passed along to Kermit; see section 1.7 for details.

Remote Operation:
The MS-DOS CTTY command allows an MS-DOS system to be used from a terminal connected to its
communication port. Such sessions must be conducted with great care, since many programs assume that they are
running on the real console, and explicitly reference screen memory or the physical keyboard. Kermit can be used
in this manner too, but before you give it any file transfer commands, you must inform it that it is running in "remote
mode" rather than its normal "local mode." Use the SET REMOTE ON command for this purpose, to prevent the
file transfer display from being sent out the port.

RAM Disk Operation:
If you invoke Kermit frequently, and you have sufficient memory on your PC, you may find it convenient to copy
Kermit and its initialization file to a RAM disk when you start your system. This allows Kermit to be started and
used quickly and silently, with no mechanical disk operations.

For instance, if you’re using IBM’s VDISK facility to create the RAM disk, you might put statements like this in
your CONFIG.SYS file:

Page 10 Kermit User Guide: MS-DOS KERMIT 1.5

DEVICE=VDISK.SYS 384 512 128 /e

This assumes you have 384K of extended (/e) memory installed and VDISK.SYS is in the root directory of the
boot disk. It creates a 384K RAM disk with 512B sector size and space for 128 directories in the extended memory,
assigning it the disk letter of your first unused disk. And then in your AUTOEXEC.BAT file (assuming the RAM
disk is disk D:) . . .

COPY KERMIT.EXE D: >NUL
COPY MSKERMIT.INI D: >NUL
COPY COMMAND.COM D: >NUL
SET COMSPEC=D:\COMMAND.COM
PATH D:\; ...

The PATH command allows DOS to find KERMIT.EXE, and Kermit to find MSKERMIT.INI and
COMMAND.COM, on the RAM disk. If you use Kermit transfer files to your RAM disk, remember to copy those files
to a real disk before you turn off the system.

Use of MS-Kermit in Windowing and Multiprocessing Environments:
Kermit-MS can operate within windowing environments like such as TopView, DESqview, and MS-Windows. It
runs in an active window under MS-Windows, accepts cut and paste material, talks with mice, and shrinks to an icon
(a boxed "KER"). An MS-Windows .PIF file can be constructed for Kermit using the PIFEDIT program, supplied
with Windows. Memory requirements should be listed as 102 to 160KB. It should state that Kermit does not
modify the screen, keyboard, memory, COM1, or COM2 (not true but it satisfies Windows). Program switch and
exchange should be marked as Text, and Close Window on Exit should be checked. This configuration will let you
run Kermit with all the Windows features, but slowly. To run at full speed under Windows, tell PIFEDIT that
Kermit modifies the screen. Then you lose the Windows features (cutting, pasting, running the clock at the same
time, etc), but you still get back to the Windows interface when you EXIT Kermit.

MS-Kermit has also been reported to operate successfully under Concurrent DOS. However, since it does not
interact explicitly with the Concurrent DOS time-slice scheduler, Kermit will tend use a lot of CPU cycles.

Local Area Network Operation:
MS-Kermit is capable of using a serial port on another local area network (LAN) node, so long as that node is
running an asynchronous communication server and you have installed a device driver on your own PC that makes
COM1 or other communication port i/o use the network server. This type of connection works because MS-Kermit
2.30 and later releases on IBM PCs check the selected port to see if it’s a real 8250 UART chip, and if it isn’t,
Kermit uses only Bios calls for port i/o, and the network routes these through your network device driver. It may be
desirable to give the command SET PORT BIOSn (n is a digit 1-4) to actively select the Bios port rather than a real
hardware device. This style of operation should be transparent to Kermit, but not all asynchronous communications
servers utilize this technique.

As of version 2.30, the IBM PC version of Kermit can also communicate directly with another PC on a local area
network through the IBM NetBIOS emulator distributed with the LAN. In essence, the LAN substitutes for the
serial port, modem, and other wiring. Kermit running on one user machine can transfer files with another Kermit
also on the network much as if they were connected by modems, and Kermit can talk with some larger machines the
same way. The important network command is

SET PORT NETBIOS nodename

for NetBios, or

SET PORT UB-NET1 nodename

for Ungermann-Bass Net-One NETCI. For details, see the description of the SET PORT and SERVER commands,
and (if you’re interested) Section 1.18.1 for a technical description.

Kermit can even communicate with some other computers, such as Unix systems, which accept logins via this
remote pathway. The initial startup is the same as calling a mainframe and logging in except the command SET

1.5. Program Setup and Invocation Page 11

PORT NET nodename is used instead of SET PORT COM1. A connection is established with the first use of the
communications circuit, such as CONNECT, REMOTE DIR, SEND, or other file transfer command, and terminated
with the HANGUP command.

1.6. Kermit-MS Commands

MS-DOS Kermit has the following commands:

-F specify alternate init file name on DOS command line.
ASK user to type text, in response to a prompt.

ASSIGN the value of one variable to another.
BYE to remote server, exit from MS-Kermit.

CLEAR serial port buffer.
CLOSE log files and stop logging remote session.

COMMENT For including comments in command files.
CONNECT as terminal to remote system (C).

CWD or CD change local working directory.
DEFINE a macro of Kermit-MS commands.
DELETE local files.

DIRECTORY listing of local files.
DISABLE server recognition of selected commands.

DO a command macro.
ECHO a line of text on the screen.

ENABLE server recognition of selected commands.
EXIT from Kermit-MS.

FINISH Shut down a remote Kermit server.
GET remote files from server.

GOTO jump to labeled line in script file.
HANGUP the phone or network connection.

HELP about Kermit-MS.
IF decision-making in Take or Macro scripts.

INPUT specified string from serial port, for scripts.
LOG remote terminal session, transactions, or packets.

LOGOUT remote server, don’t exit from Kermit-MS.
MAIL send file to remote Mailer via Kermit.

OUTPUT string out serial port, for scripts.
PAUSE between commands.

POP exit Take file or Macro.
PUSH to MS-DOS command level.
QUIT from Kermit-MS (same as EXIT).

RECEIVE files from remote Kermit (R).
REINPUT reread script Input buffer.
REMOTE Prefix for remote file management commands.

RUN an MS-DOS program or command.
SEND files to remote Kermit (S).

SERVER mode of remote operation.
SET various parameters.

SHOW various parameters.
SPACE inquiry (about disk space).

STATUS inquiry (about settings).
STAY stay within Kermit after DOS command line invocation.
STOP exit all Take files or Macros.
TAKE commands from a file.

TRANSMIT a file "raw" (no error checking).
TYPE a local file on the screen.

VERSION display Kermit-MS program version number.
WAIT for the specified modem signal to appear.

Page 12 Kermit User Guide: MS-DOS KERMIT 1.6

Not all of these commands are necessarily available on all MS-DOS systems, and some of the commands may work
somewhat differently between DOS versions.

A command keyword, such as SEND, RECEIVE, HELP, etc, may be abbreviated, so long as you have typed enough
letters to distinguish it from other keywords that are valid in that position. For instance, you can type CLE for
CLEAR and CLO for CLOSE. Several common commands also have special non-unique abbreviations, like C for
CONNECT, S for SEND, and R for RECEIVE. Kermit will notify you if you have typed a word with too few
letters.

During interactive operation, you may edit the command you’re currently typing using BACKSPACE to erase the
character most recently typed, Ctrl-W to delete the most recent field, or Ctrl-U to delete the entire command. The
editing characters may be used in any combination until the command is finally entered by typing RETURN
(Carriage Return, Enter) or Ctrl-L.

You may use the help (‘‘?’’) and keyword completion (ESC) features freely while typing Kermit-MS commands.
A question mark typed at almost any point in a command produces a brief description, or "menu", of what is
expected or possible at that point. ESC typed at any point, except in a local filename, will cause the current field to
be filled out if what you have typed so far is sufficient to identify it, and will leave you in position to type the next
field (or to type a ‘‘?’’ to find out what the next field is); otherwise, the program will beep at you and wait for you
to type more characters.

As of version 2.31, Kermit-MS recognizes full 8-bit character inputs, with only NUL, ESC, DEL/BS, Ctrl-W (delete
word), Ctrl-U (delete line), and Ctrl-C being special. This is to enhance support for various languages and
keyboards. The SET KEY and SHOW KEY commands can prompt for keyboard input and understand 8-bit
characters but only at their interactive prompt. The SET KEY, INPUT, and OUTPUT commands accept "backslash
number format" on the main Kermit command line. Thus, national characters which are full 8-bit codes can be
expressed on command lines in backslash number form (\ddd), provided the Kermit command itself can understand
the form. Most commands that want numbers or single characters as operands understand this notation. To enter
characters in backslash number format, type a backslash (‘‘\’’) followed by a number corresponding to the ASCII
code for the character. MS-Kermit accepts many different backslash codes in different contexts. These are
summarized in Table 1-1; letters following the backslach may be either upper or lower case.

\123 (up to 3 decimal digits) - A decimal number
\d123 (up to 3 decimal digits) - A decimal number
\o123 (up to 3 octal digits) - An octal (base 8) number
\x123 (up to 3 hexadecimal digits) - a hexadecimal (base 16) number
\{ } For grouping, e.g. \{12}6 = Ctrl-L 6, not ~
\; Include a semicolon in a TAKE-file command or macro definition.
\% Introduce a Kermit variable, \%1, \%2, ..., \%a, \%b, ... \%z
\K A Kermit connect-mode verb like \Kexit (see Table 1-6)
\B Send a BREAK (OUTPUT command only)
\255 Shorthand for CRLF or LFCR (INPUT command only)
\CD Carrier Detect RS-232 signal (WAIT command only)
\DSR Data Set Ready RS-232 signal (WAIT command only)
\CTS Clear to Send RS-232 signal (WAIT command only)

Table 1-1: MS-DOS Kermit Backslash Codes

Table 1-2 shows all of the 7-bit ASCII codes in decimal. Most Kermit commands understand backslash-ASCII
codes, both imbedded within character strings, and alone, as when a single character or number is to be specified.

Some Kermit-MS commands like GET, SHOW KEY, and SET KEY, may prompt for additional information on

1.6. Kermit-MS Commands Page 13

Dec Name Ctrl Dec Char Dec Char Dec Char

0 NUL ^@ | 32 SP | 64 @ | 96 ‘
1 SOH ^A | 33 ! | 65 A | 97 a
2 STX ^B | 34 " | 66 B | 98 b
3 ETX ^C | 35 # | 67 C | 99 c
4 EOT ^D | 36 $ | 68 D | 100 d
5 ENQ ^E | 37 % | 69 E | 101 e
6 ACK ^F | 38 & | 70 F | 102 f
7 BEL ^G beep | 39 ’ | 71 G | 103 g
8 BS ^H backspace | 40 (| 72 H | 104 h
9 HT ^I tab | 41) | 73 I | 105 i
10 LF ^J linefeed | 42 * | 74 J | 106 j
11 VT ^K | 43 + | 75 K | 107 k
12 FF ^L formfeed | 44 , | 76 L | 108 l
13 CR ^M return | 45 - | 77 M | 109 m
14 SO ^N shift out | 46 . | 78 N | 110 n
15 SI ^O shift in | 47 / | 79 O | 111 o
16 DLE ^P | 48 0 | 80 P | 112 p
17 DC1 ^Q XON | 49 1 | 81 Q | 113 q
18 DC2 ^R | 50 2 | 82 R | 114 r
19 DC3 ^S XOFF | 51 3 | 83 S | 115 s
20 DC4 ^T | 52 4 | 84 T | 116 t
21 NAK ^U | 53 5 | 85 U | 117 u
23 ETB ^W | 54 6 | 86 V | 118 v
22 SYN ^V | 55 7 | 87 W | 119 w
24 CAN ^X | 56 8 | 88 X | 120 x
25 EM ^Y | 57 9 | 89 Y | 121 y
26 SUB ^Z | 58 : | 90 Z | 122 z
27 ESC ^[escape | 59 ; | 91 [| 123 {
28 FS ^\ | 60 < | 92 \ | 124 |
29 GS ^] | 61 = | 93] | 125 }
30 RS ^^ | 62 > | 94 ^ | 126 ~
31 US ^_ | 63 ? | 95 _ | 127 RUBOUT,DELETE

Table 1-2: The US ASCII Character Set (ANSI X3.4-1977)

subsequent lines. If you have reached one of these prompts and then wish to cancel the command, you may type
Control-C to get back to the main Kermit-MS> prompt.

Summary of Kermit-MS command editing characters:

SPACE Separates fields within the command.

TAB Same as Space, and echoes as Space. You may also use Ctrl-I for Tab.

BACKSPACE
Deletes the character most recently typed. May be typed repeatedly to delete all the way back to the
prompt. You may also use DELETE, RUBOUT, Ctrl-H, or equivalent keys.

Ctrl-W Deletes the most recent "word", or field, on the command line. May be typed repeatedly.

Ctrl-U Deletes the entire command line, back to the prompt.

Ctrl-C Cancels the current command and returns to the "Kermit-MS>" prompt. Also, terminates execution
of a TAKE command file.

ESC If enough characters have been supplied in the current keyword to identify it uniquely the remainder
of the field is supplied and the cursor is positioned to the next field of the command. Otherwise, a
beep is sounded. ESC does not provide filename completion.

Page 14 Kermit User Guide: MS-DOS KERMIT 1.6

? Displays a brief message describing what may be typed in the current command field. Also, wildcard
character for matching any single character in all but the first position of a filename.

Wildcard character for matching single characters in filenames. Equivalent to MS-DOS ‘‘?’’, but
used in the first position of a filename only, so that ‘‘?’’ may be used to get help at the beginning of a
filename field.

ENTER Enters the command. On most keyboards, you may also use RETURN or Ctrl-M.

Ctrl-L Clears the screen and enters the command.

Liberal use of ‘‘?’’ allows you to feel your way through the commands and their fields. This feature is sometimes
called "menu on demand" or "context sensitive help" -- unlike systems that force you to negotiate menus at every
turn, menu-on-demand provides help only when it is needed.

Command reading is done through DOS calls and Kermit key redefinition does not apply at Kermit-MS command
level. But ANSI.SYS or other external console drivers can be used for this purpose, for instance to assign ESC to
the PC’s backquote key (ANSI.SYS is the IBM-supplied extended screen and keyboard device driver, described in
the IBM DOS Technical Reference Manual). Other console drivers available include ProKey, SuperKey,
NANSI.SYS (a public-domain replacement for ANSI.SYS), and FANSICONSOLE.

The notation used in command descriptions is as follows:

[square brackets]
An optional field. This field may be omitted.

{curly braces}
A list of alternatives, separated by commas. Choose one of the items from the list.

italics Shows parameters, such as numbers or filenames, are shown in italics (providing the printer is
capable of printing italics). You substitute the actual number or filename.

underlining
In dialog examples, the characters you should type are underlined (on printers that can show it) to
distinguish them from computer typeout.

hh:mm:ss
A time of day, in 24-hour notation (10:00:00 is 10 AM; 23:30:00 is 11:30 PM), which may not be
more than 12 hours later than the current time.

The following sections describe all the MS-DOS Kermit commands. Since some command descriptions may
contain references to other commands that haven’t been explained yet, you might find that this manual makes more
sense on a second reading.

1.6.1. Program Management Commands

"Program management" is a rubric for Kermit-MS commands like TAKE, EXIT, HELP, COMMENT, ECHO, and
VERSION, that don’t fall into any other category.

HELP displays a one screen introduction to frequently used Kermit commands and their editing keys, and suggests
using the question mark command to see the terse list of primary level Kermit commands.

VERSION displays the MS-Kermit program version number, which you should know in case you are reporting bugs
or seeking technical assistance.

Other program management commands require a bit more explanation.

1.6.1. Program Management Commands Page 15

The EXIT Command
Syntax: EXIT or QUIT

EXIT and QUIT are synonyms for each other. They cause MS-Kermit to return control to DOS or whatever
program invoked MS-Kermit. The specific actions taken are:

• Close any open log or other files.
• Close any open network connection.
• Release all memory claimed by the program.
• Return interrupts for the currently selected communication device to their original owner.
• Terminate execution.

The serial port RS-232 signals are left alone upon EXIT, so that modem connections are not broken. Kermit-MS
may be restarted with the connection intact. Use HANGUP to explicitly break a modem connection; and use SHOW
MODEM or SHOW COMMUNICATIONS to view the status of modem signals CD (Carrier Detect), Data Set
(modem) Ready (DSR), and Clear To Send (CTS).

The STAY Command
Syntax: STAY

The STAY command, if included among command line arguments, instructs MS-Kermit not to exit upon
completion but rather to enter interactive mode, unless EXIT or QUIT was among the command arguments. STAY
has no effect when entered interactively or from a TAKE file.

The PUSH Command
Syntax: PUSH

PUSH is similar to EXIT, except it leaves MS-Kermit intact by invoking an MS-DOS command processor "under"
Kermit-MS, either COMMAND.COM or whatever shell you have specified with COMSPEC (or SHELL, depending on
the system) in your CONFIG.SYS file. You can return to Kermit-MS by typing the MS-DOS EXIT command, and
you will find Kermit-MS as you left it, with all settings and the terminal emulation screen intact. The same function
is invoked by the CONNECT escape-level command P. Example:

Kermit-MS>push Push to DOS.
Command v. 3.30 COMMAND.COM program herald.

C>diskcopy a: b: Run a DOS program.

DISKCOPY dialog here . . .

C>dir b: More DOS commands . . .

DOS session continues . . .

C>exit When done, type DOS EXIT command.
Kermit-MS> Back at Kermit.

The TAKE Command
Syntax: TAKE filespec

The TAKE command gives you way a to collect MS-Kermit commands into a single file, so that you can execute
many commands by typing a single (TAKE) command. TAKE instructs MS-Kermit to execute commands from the
file that you specify. The current directory is searched for the file first, and then any directories listed in the PATH
environment variable. The command file may include any valid Kermit-MS commands, including TAKE, but it
cannot include characters to be sent to a remote host after a CONNECT command (use scripts for that, described
below). Execution of a TAKE file may be cancelled by typing Control-C at the keyboard.

An implicit TAKE command is executed upon the initialization file, MSKERMIT.INI (or another file specified in

Page 16 Kermit User Guide: MS-DOS KERMIT 1.6.1

the ‘‘-f’’ command-line argument), whenever you start MS-Kermit. The MSKERMIT.INI file contains any
commands you want to be executed each time you run Kermit. A sample is shown above, and a more ambitious
example is shown in section 1.9.

Commands within TAKE files, unlike interactive commands, may include trailing comments, preceded by
semicolons:

set port 2 ; Select the modem port.
set speed 1200 ; Set the baud rate for the modem.
connect ; Conduct a terminal session.
hangup ; Hang up the phone after escaping back.

Note the HANGUP command after CONNECT. The HANGUP command is not executed until after you escape
back from your CONNECT session. If this file were called MODEM.CMD, the following TAKE command would
execute it:

Kermit-MS>take modem.cmd

This directs MS-Kermit to find the MODEM.CMD file, open it, execute the commands in it, close it, and return to the
MS-Kermit> prompt when done. This process can take a while on floppy-disk based systems.

Since TAKE file processing discards all characters from a line beginning with the first semicolon, it is normally not
possible to include semicolons as part of the commands themselves, e.g.

get dska:foo.bar;6

To get around this restriction, you may precede such semicolons with a backslash:

get dska:foo.bar\;6

Commands from the TAKE file will normally not be displayed on your screen during execution. If you want to see
them as they are executing, you can SET TAKE-ECHO ON (for instance, at the beginning or end of your
MSKERMIT.INI file). With the echoing ON, comments are also displayed for reference, but the semicolon is not
shown.

TAKE files may be nested to a reasonable level. A command file that was invoked by another command file
normally returns to its invoking command file, rather than to the MS-Kermit> prompt, when the end of the
command file is reached.

TAKE files have two commands to quit processing before the end of the file is reached. The POP command exits
the current TAKE file (or macro) and returns control to the previously executing TAKE or macro, where one is
invoked within another. The STOP command exits all TAKE files and macros and returns directly to the Kermit
prompt.

In TAKE files (and macro definitions, which are discussed later), long commands may be continued on subsequent
lines by terminating each continued line with a hyphen (minus sign). If a line needs to terminate with a real minus
sign it may be expressed numerically as \45 or can be extented with extra spaces. The overall command length is
normally 127 bytes (a beep sounds near this limit).

An explicit question mark (‘‘?’’) in a TAKE file will cause a help message to be displayed and the rest of the line
will be read as another command. If you need to include a question mark in a command, use the ASCII backslash
notation "\63".

1.6.1. Program Management Commands Page 17

The -F Command
Syntax: -F filespec

The ‘‘-f’’ command is effective only on the DOS command line. It instructs MS-Kermit to use the specified file as
its initialization file, rather than MSKERMIT.INI. Unlike other command-line arguments, ‘‘-f’’ does not, of itself,
cause MS-Kermit to exit upon completion. Example:

C>kermit -f sunday.ini
Kermit-MS>

The -F command line option allows different MS-Kermit initialization files to coexist. You can create batch
commands to invoke Kermit in different ways, for instance MONDAY.BAT might contain ‘‘kermit -f
monday.ini’’, TUESDAY.BAT ‘‘kermit -f tuesday.ini’’, etc.

The ECHO Command
Syntax: ECHO [string]

The ECHO command writes the string to the screen, without adding a carriage return or line feed. ECHO may be
used to report progress during execution of a TAKE command file, or to issue prompts during the execution of a
script.

ECHO Part one completed...\13

The number at the end is a "backslash codes" for ASCII control characters, in this case carriage return (\13). Since
the ECHO command interprets backslash codes, ANSI.SYS and similar console drivers can be programmed
through this command by embedding ANSI escape sequences (see section 1.17.3) in the echo string. The ECHO
command always outputs a linefeed before the string.

The COMMENT Command
Syntax: COMMENT text

The COMMENT command lets you add comments to a TAKE command file. The word COMMENT (or any
unique prefix thereof) must appear as the first word on the line. The COMMENT command may also be entered
interactively. It has no effect at all. Example:

COMMENT - MS-Kermit command file to connect port 2 to an IBM mainframe
set port 2
set speed 4800 ; Transmission rate is 4800
do ibm ; Set parameters for IBM linemode
connect ; Be a terminal

Question marks can be included in comments without invoking the help function.

1.6.2. Local File Management Commands

These commands are executed on your local PC, and generally invoke DOS services. This allows you to perform
common DOS functions without leaving Kermit. All file specifications may include device and/or directory fields.
The local file management commands are:

CWD path
Changes the current working directory to the given path. All references to local file names without
explicit paths will refer to that path. A drive letter may be included to also change disk drives. This
command affects Kermit and any inferior programs that you RUN or PUSH to, but your previous disk and
directory are restored when you exit from Kermit. For consistency with DOS, you may also type CD.

DELETE filespec
Deletes the specified file or files. As in DOS, the names of the deleted files are not listed, only the
message "file(s) deleted" or "file(s) not found", and if you give the command "delete *.*", Kermit-MS
will prompt "Are you sure?" since DOS is doing the work.

Page 18 Kermit User Guide: MS-DOS KERMIT 1.6.2

DIRECTORY [filespec]
Lists the names, sizes, and creation dates of files that match the given file specification. If no filespec is
given, the command is equivalent to DIR *.*. Normal DOS switches are effective.

SPACE Tells how much space is available on the current disk.

RUN command
Passes the command line to COMMAND.COM for execution. Any legal DOS operation is permitted:
running a program (perhaps with command line arguments or i/o redirection), executing a DOS command,
or executing a batch file. Kermit is suspended while the command is executed and automatically resumes
afterward. The command will be executed directly by COMMAND.COM so follow the rules of DOS.
Example:

Kermit-MS>run more < xmas.txt

TYPE filespec
Displays the specified local file on the screen. Automatic pause is not available at the end of a page (but
see above example for how to accomplish this). On most systems, Ctrl-S can be typed to stop scrolling
and Ctrl-Q to continue scrolling.

In most cases when you issue a local command, Kermit attempts to run the equivalent DOS command. If you get a
message like "?Unable to execute program", it means that Kermit could not find COMMAND.COM, or that
there was not enough memory left to load it. To ensure that Kermit can find COMMAND.COM, you should include a
PATH statement in your AUTOEXEC.BAT file, which includes the device and directory where COMMAND.COM
resides.

You can add your own local commands by defining macros for them. For example:

define edit run epsilon \%1
define more run more < \%1
define rename run ren \%1 \%2

Then you can use these commands at Kermit-MS prompt level: "edit foo.bar", "more oofa.txt",
"rename old.txt new.txt". However, you cannot redefine built-in commands, for example:

define send receive \%1

See Section 1.7 for further information about macros.

1.6.2. Local File Management Commands Page 19

1.6.3. COMMANDS FOR TERMINAL CONNECTION

The CONNECT command connects your PC as a terminal to the remote system so that you may conduct a session
there, and the HANGUP command may be used to disconnect your modem (if you have one) from the remote
system. There is presently no built-in DIAL command. Modems may be dialed "manually" during CONNECT, or
you can construct your own DIAL command by using scripts, which are described in detail in subsequent sections.

For completeness, the descriptions below contain copious reference to the SET commands, which let you modify all
sorts of terminal and communication parameters (the SET commands are described in a later section). MS-Kermit is
initially set up with the following parameters, so that you only need to issue SET commands for those that need to
be changed:

PORT 1 (in most cases, e.g. COM1 on the IBM PC family)
TERMINAL VT102(*) emulation (IBM PC, DEC Rainbow)
SPEED Whatever the serial card is currently set to.
PARITY None
FLOW-CONTROL XON/XOFF
HANDSHAKE None
LOCAL-ECHO Off
DISPLAY 7-bit characters
INPUT TRANSLATION Off
ESCAPE Control-Rightbracket

(*) The VT102 terminal is compatible with the VT100, but includes a few additional functions.

The CONNECT Command
Syntax: CONNECT -or- C

The CONNECT command establishes an interactive terminal connection to the remote system using the currently
selected communications port (SET PORT COM1 or COM2, COM1 is the default) with all settings currently in
effect for that port, emulating the currently selected type of terminal.

During CONNECT, the characters you type are sent out the communication port, and the characters that arrive at the
port are displayed on the screen or interpreted by the selected terminal emulator. If you SET LOCAL-ECHO ON,
MS-Kermit itself will display the characters you type on the screen.

Before you issue the CONNECT command, be sure to set the correct communication speed (SET SPEED) and any
other necessary communication parameters (e.g. SET PARITY, SET LOCAL-ECHO). If you have SET DEBUG
ON, then (on most DOS systems, particularly the IBM PC), received control characters will be displayed in special
notation and no particular terminal will be emulated.

By default, 7-bit ASCII characters are displayed on the screen. If you SET DISPLAY 8, then 8-bit characters will
be used (useful for "national" character sets). Character translation will be done according to any SET
TRANSLATION INPUT and SET KEY commands you have issued. In addition, characters that are sent to the
screen will also be recorded in a disk file or on a printer if you have issued a LOG SESSION command.

The CONNECT command turns your PC into a terminal to the other computer. To get back to the PC, type the
escape character followed by the letter C (for "Close connection"). On most MS-DOS systems the escape character
is Ctrl-] (Control-Rightbracket). That means, hold down the Ctrl key, press ‘‘]’’, and then type the letter C.

Kermit-MS>connect Connect to remote system.

Conduct terminal session here . . .

^]c Escape back to PC.
Kermit-MS> Prompt reappears.

This is called "escaping back". You can use the SET ESCAPE command to change the escape character to

Page 20 Kermit User Guide: MS-DOS KERMIT 1.6.3

something besides ‘‘^]’’, or you can assign the escaping-back operation to a single key or key combination with
SET KEY (on the IBM PC the default for this is Alt-X).

You can include the CONNECT command in a TAKE command file, but not "bare" text to be sent to the remote
system during CONNECT (use scripts for that, see Section 1.8). When a TAKE file includes a CONNECT
command, no further commands will be executed from the file until after you escape back. A curious side effect of
allowing Kermit to accept input redirected from a file or device is that Connect mode will read characters from that
file or device; not really that useful but it works if you happen to need it.

When you CONNECT, the program attempts to raise the DTR and RTS RS-232 signals (see Table 1-3), and it takes
no specific action to lower them unless you explicitly issue the HANGUP command; thus you can EXIT from
Kermit-MS and restart it without dropping a dialup connection. While CONNECTed, you can communicate directly
with an autodialer or "smart modem" to control the communications line, hang it up, and the like, for instance, by
typing AT commands to a Hayes-like modem.

Kermit-MS>set speed 2400 (See Section 1.6.10)
Kermit-MS>connect
AT Now you’re talking to the modem.
OK Your modem responds
ATDT8765432 Type the modem’s dialing command.
RINGING
CONNECT 2400
Welcome to ... Now you’re talking to the host computer.
Please login:

MS-Kermit makes no attempt to monitor the modem’s Carrier Detect (CD) or Data Set Ready (DSR) signals (see
Table 1-3), and will take no notice if they drop. Thus it is not possible to automatically terminate a session if the
connection is broken. However, you may query or test the status of these modem signals yourself using Kermit’s
SHOW MODEM, SHOW COMMUNICATIONS, and WAIT commands.

Signal DB25 DB9 Description
FG 1 - Frame (protective) ground
TD 2 3 Transmitted data (from PC to modem)
RD 3 2 Received data (by PC from modem)
RTS 4 7 Request to Send (by PC)
CTS 5 8 Clear to Send (by modem)
DSR 6 6 Dataset Ready (Modem is turned on)
SG 7 5 Signal Ground
CD 8 1 Carrier Detect (Modem is communicating with remote modem)
DTR 20 4 Data Terminal Ready (PC is online)
RI 22 9 Ring Indicate (Modem tells PC phone is ringing)

Table 1-3: RS-232-C Modem Signals

When using Kermit to connect two PCs "back to back," SET LOCAL-ECHO ON so that when you CONNECT to
the other PC to send messages to its operator, you can see what you are typing. You should also SET TERMINAL
NEWLINE ON, so that that a linefeed will be automatically supplied for each carriage return you type.

1.6.3. COMMANDS FOR TERMINAL CONNECTION Page 21

The HANGUP Command
On serial port connections, the HANGUP command attempts to momentarily lower the modem signals DTR and
RTS (Table 1-3). It may be used to hang up the phone when dialed up through a modem, or to get the attention of
port contention units or terminal concentrators that operate in this manner. On direct connections, it will probably
have no effect. On local area network connections, the network session is fully terminated. HANGUP affects only
the currently selected port.

TERMINAL EMULATION
The IBM PC version of Kermit-MS emulates the DEC VT102 terminal by default, and may also be instructed to
emulate the DEC VT52, the Heath/Zenith-19, the Tektronix 4010 graphics terminal, or no terminal at all, selectable
with the SET TERMINAL command (or you may "toggle" among the different emulations by typing the Alt-Minus
key). Emulation of each of these terminals is nearly complete. VT102 emulation lacks only smooth scroll and 132
column mode (132 column mode is supported for a number of popular EGA and VGA boards). Double-height,
double-width characters are supported, but simulated using ordinary characters.

The IBM PC’s 40-column (large character) screen mode may be used during CONNECT (but you may also have to
inform the remote host that your screen width is 40). This can provide improved readability to visually impaired
persons. To use 40-column mode, enter the DOS command "MODE 40" (or CO40 or BW40). Other screen sizes
are also sensed and used automatically, provided you have set them from DOS, before starting Kermit.

On color monitors, the foreground and background colors may be set using SET TERMINAL COLOR, and
inverse/normal video display may also be selected, along with many other terminal parameters. A complete list of
the commands, default key configurations, and escape sequences accepted by the IBM PC Kermit terminal emulator
is given in section 1.17.1. Non-IBM-compatible PCs have different terminal emulation options. See section 1.11.

Escape-Level Commands
The escape character, normally Control-], is used to regain the attention of Kermit-MS during CONNECT (you can
change the escape character using SET ESCAPE). When you type the escape character, Kermit-MS waits for you to
follow it with a single character command. For instance, the single character command ‘‘?’’ produces a list of
available single character commands. This command is executed immediately; it may not be edited, and the
program does not wait for a carriage return to confirm it. Table 1-4 shows CONNECT escape-level commands
available in Kermit-MS. Typing any other character (except the space bar, which is the "null command") after the

? Help -- Lists the available single-character commands.
0 (the digit zero) Transmit a NUL (ASCII 0).
B Transmit a BREAK signal.
L Transmit a Long BREAK signal (on some systems).
C Close the connection and return to Kermit-MS prompt level.
H Hangup the phone by lowering DTR and CTS momentarily.
F File the current screen in the screen dump file.
M Toggle the mode line, i.e. turn it off if it is on or vice versa.
P Push to DOS; get back to CONNECT by typing EXIT.
Q Temporarily quit logging the remote session.
R Resume logging the remote session.
S Show the status of the connection.
^] (or whatever you have set the escape character to be)

Typing the escape character twice sends one copy of it to the connected host.

Table 1-4: Kermit-MS Single-Character CONNECT Escape Commands

escape character will cause Kermit-MS to beep, but will do no harm. These actions are also Kermit action verbs and
can be assigned to single keys. See SET KEY for details.

Page 22 Kermit User Guide: MS-DOS KERMIT 1.6.3

The Mode Line
When you first issue the CONNECT command, a message (on some systems, an inverse video "mode line") will
display the most important facts about the connection you’ve just established, so that you can quickly diagnose any
problems. Here’s what the IBM PC mode line looks like:

Esc-chr:^] help:^]? port:1 speed:9600 parity:odd echo:rem VT102 PRN

This shows that the escape character is Ctrl-Rightbracket, that you would type Ctrl-rightbracket followed by
question mark (‘‘^]?’’) to get help during CONNECT, that you are connected on port 1 at 9600 baud with odd
parity and remote echo, and that a VT102 terminal is being emulated. The four dots represent the VT102s LEDs
(they turn into the digits 1,2,3,4 when "lit") and PRN will show up if the printer is activated (e.g. by
Ctrl-PrintScreen).

The mode line may be turned on and off using SET MODE, or the CONNECT escape character followed by the
letter M.

Screen Rollback
On the IBM PC and some other systems (see Table 1-7), Kermit-MS provides several pages of screen memory
which let you recall earlier terminal screens. These may be scrolled up and down using keys as shown in Table 1-8.
For instance, the IBM PC uses PgUp (previous screen), PgDn (next screen), Ctrl-PgUp and Ctrl-PgDn (one line at a
time), Home (top of screen memory), and End (bottom of screen memory). Lines that scroll off the top of the screen
are saved. When an application clears the screen using a recognized screen-clear sequence (ESC [2 J), the whole
screen is saved. The screen scrolling functions may be assigned to different keys with the SET KEY command.

If you have rolled the screen back and a new character must be displayed, it will normally appear at the current
cursor position on the old screen. This is useful when you are trying to copy something from a previous screen. If
you wish new characters to appear in their proper place on the "newest" screen, you can SET TERMINAL ROLL
ON.

The number of lines in the roll back buffer depends on the machine, 10 full screens for IBM PCs and DEC
Rainbows, and on the amount of memory available in the machine. Each screen needs 4KB on IBM PCs. Denser
displays receive fewer roll back lines.

Screen Dump
The screen dump feature writes the contents of the current screen to a file (KERMIT.SCN unless another file was
selected by the SET DUMP command) when the CONNECT escape-level command F is typed. The screen dump
file is appended to on each successive screen dump, with each screen separated by a formfeed (Ctrl-L). This feature
may be used in conjunction with screen rollback -- a handy way to recapture screenfuls of laboriously typed-in text
after a remote host has crashed without saving your work. The corresponding action verb is "dump". Screen dump
does not function when in Tektronix graphics mode; instead one of many graphics screen capture programs may be
used independently commonly via the DOS Shift PrtSc key combination or by LOGging the incoming byte stream.

A screen dump differs from a session log in two ways. First, each desired screen must be manually filed, and
second, the screen dump file has been stripped of any escape sequences, whereas the session log records them (see
LOG SESSION).

Printer Control
During terminal emulation, a locally attached printer may be controlled in the normal manner, on most systems.
Pushing the "Print Screen" key (shifted on some systems) will cause the current contents of the screen to be printed
by DOS; holding down Ctrl while depressing Print Screen will alternately start and stop the spooling of incoming
characters to the printer. On the IBM PC, the mode line will show PRN when the printer is activated in this manner.
^P or ^N are sent to the host during terminal emulation and do not toggle printing as they do when you’re talking
directly to DOS. CTRL-Print-Screen can be simulated with the Kermit-MS LOG PRN and CLOSE commands.
VT102 (ANSI) style host-controlled transparent printing is also supported on the IBM PC. See section 1.18.6 for

1.6.3. COMMANDS FOR TERMINAL CONNECTION Page 23

technical information about MS-Kermit’s printer control.

Unix users may use the following shell script to print files on a locally attached printer:

#!/bin/sh
pcprint
usage: pcprint file(s)
or <any UNIX process that writes to standard output> | pcprint
#
echo -n ’<ESC>[5i’
if [$# -eq 0]; then
cat

else
cat $*

fi
echo -n ’<ESC>[4i’

Note that "<ESC>" above should be replaced by a real Escape, ASCII character 27.

Graphics
MS-Kermit on the IBM PC, compatibles, and several other systems, is capable of emulating a Tektronix 4010
graphics terminal, for use with host-based software that can generate Tektronix control codes. When you enter
Tektronix emulation, your cursor will disappear. Don’t be alarmed, this is how Tektronix terminals behave.

The Tektronix emulator implements a mixture of Tek 4010 and 4014 features to draw characters, lines, and dots in
graphics mode. These Tektronix terminals have a graphics display 780 dots high by 1024 dots wide. They use
storage tube technology whereby a dot stays illuminated until the full screen is erased. They also lack cursor keys.
Kermit’s Tek emulator maps the 1024 by 780 dot display to the PC’s current screen dimensions, say 640 across by
200 or 350 dots high, and retains limited use of the cursor keys. It automatically senses the active display adapter
(EGA, CGA, Hercules, Mono, and AT&T/Olivetti style 640x400) and retains screen coloring (EGA) and the current
graphics image (EGA and Hercules) if the adapter has sufficient memory. Automatic sensing can be manually
overriden to select a particular display mode, such as VGA (640x480), by SET TERMINAL GRAPHICS <display
type>. Pure monochrome systems, of course, lack a graphics capability; in this case Kermit approximates the
graphic image by writing dots as plus signs.

Tektronix graphics mode is entered two different ways, automatically and voluntarily:

1. Automatically (which you can prevent via the Kermit command DISABLE TEK). While emulating a
VT102, VT52, or Heath-19, reception of the byte pair ESCAPE Control-L causes the PC to change to
graphics mode, clear the screen, and obey new input as Tektronix commands. A second automatic
entry is reception of the escape sequence ‘‘ESC [? 3 8 h’’ which does the same as above except
the screen is not cleared. Automatic mode is exited by either reception of Control-X or
‘‘ESC [? 3 8 l’’ (lower case L), or by toggling the terminal type (ALT minus, Kermit
verb\KTermtype) to VT102, or something other than TEK. (These ‘‘ESC [? 3 8 h/l’’
sequences derive from the DEC VT340 terminal.)

2. Voluntary mode is when terminal type TEK4010 is selected by the Kermit command SET
TERMINAL TEK4010 or by toggling to it using Alt-Minus. It is exited by SET TERMINAL
another-kind or by toggling to another kind. ENABLE or DISABLE TEK and the exit-Tek-mode
escape sequences are not applicable to voluntary mode.

Here are several common questions about Tek mode, and their answers:

1. "How do I escape from graphics mode back to being a regular terminal?" Within CONNECT mode,
you can type the \KTermtype key, which is assigned by default to Alt-Minus. Repeated pressing of
this key "toggles" among Kermit’s terminal types, VT102, VT52, Heath-19, and Tektronix. You can
also escape back to Kermit-MS command level and issue an explicit SET TERMINAL command to
change the terminal type.

Page 24 Kermit User Guide: MS-DOS KERMIT 1.6.3

2. "How can I return to the graphics screen without erasing it?" The graphics screen is preserved if your
graphics adapter has sufficient memory (see Table 1-5). In this case, both your text and graphics
screens will be preserved when you toggle back and forth between a character terminal (e.g. VT102)
and Tektronix.

3. "How do I erase the graphics screen?" You can type the \KReset key, which is normally assigned
to Alt-=. The screen also clears if the host sends a Control-L or ESC Control-L.

4. "How do I print or save the graphics screen?" Kermit does not currently provide a way to do this, but
you can load drivers like GRAPHICS.COM alongside Kermit for this purpose.

While acting as a Tek terminal Kermit uses the keyboard translation appropriate to the VT102 terminal. However,
received escape sequences are interpreted by the Tek emulator and VT102 escape codes are inoperative. The Tek
emulator absorbs the ESCAPE and following character and treats any additional unknown items as ordinary text.

The emulator can display text characters from a built-in 8-by-8 dot font for characters Space through DELete (no
control codes nor special characters). Tabs are converted to single spaces. Only the low 7 bits of the character are
used.

While in Tek mode the emulator behaves as a simple TTY device for ordinary text and as a line or dot drawing
Tektronix device for commands listed in Table 1-10. The screen resolution is governed by the kind of active display
adapter and monitor in the PC (Table 1-5). Kermit senses this automatically when graphics mode is entered.
Graphics are saved on page one of screen memory. Coloring is determined by the current terminal status, either the
default screen or that overridden by the command SET TERMINAL COLOR.

Display Adapter Display Mode Screen Resolution and Coloring
VGA Hi res color 18 640x480, graphics saved (407 lines),

16 colors.
VGA Monochrome 17 640x480, graphics saved (407 lines)
EGA w/256KB Hi res color 16 dec 640x350, graphics saved, 16 colors.

Med res color 14 640x200, graphics saved, 8 colors.
Monochrome 15 640x350, graphics saved, b/w.

EGA w/64KB Hi res color 16 640x350, graphics not saved,
4 colors of red, white, blue, black.

Med res color 14 640x200, graphics saved, 8 colors.
Monochrome 15 640x350, graphics not saved.

CGA Color 6 640x200, graphics not saved, b/w.
Hercules Monochrome none 720x348, graphics saved if memory.
Monochrome Monochrome 7 80 by 25 text, graphics not saved.
AT&T/Olivetti any 72 640x400, grahics not saved, b/w.
DEC VAXMATE any 208 640x400, graphics not saved, b/w.
TOSHIBA T3100 any 116 640x400, graphics not saved, b/w.

Table 1-5: Adapters Supported by IBM PC MS-Kermit for Tektronix Emulation

The technical details of Tektronix emulation are presented in section 1.17.7.

1.6.3. COMMANDS FOR TERMINAL CONNECTION Page 25

1.6.4. COMMANDS FOR FILE TRANSFER

MS-Kermit’s SEND, GET, and RECEIVE invoke the Kermit file transfer protocol for error-checked transmission of
files between MS-Kermit and another Kermit program on the other end of the connection. There are also commands
for "raw" transfer of files (no error checking) with systems that don’t have Kermit programs: LOG SESSION (for
capturing text files on your PC) and TRANSMIT (for uploading text files to the remote system). The LOG
TRANSACTION command opens a file to record the status, time, date, names, sizes of each file transfer.

During file transfer, MS-Kermit normally displays its progress on the screen as shown in Figure 1-1. The items in
the right-hand column are updated more or less at random. The percent done is always filled in when sending files,
and when receiving if the other Kermit sends the file’s size in a special file-attribute packet. The number of retries
indicates how many times Kermit had to correct transmission errors. Several other file transfer display format
options are also available; see SET DISPLAY.

Kermit-MS: V2.32 11 Dec 1988

File name: FOT.
KBytes transferred: 7
Percent transferred: 52%

Sending: In progress

Number of packets: 74
Packet length: 93

Number of retries: 2
Last error: None

Last warning: None

Figure 1-1: MS-Kermit File Transfer Display Screen

Although MS-Kermit makes no distinction between text and binary files, most other Kermit programs do.
Therefore, before you attempt to transfer binary files with another type of system (say, a VAX, or an IBM
mainframe), be sure to give the appropriate command -- usually SET FILE TYPE BINARY -- to the Kermit on the
remote end. Kermit-MS itself neither has nor needs the command SET FILE TYPE, because the MS-DOS format
for text files is exactly the same as Kermit’s text-file transfer format, which means that MS-Kermit never needs to
convert file data, no matter whether it be text or binary.

File transfers involving floppy disks will be slow and noisy. Hard disks are much faster (and quieter), and RAM
disks faster still (and totally silent). But if you store new files on a RAM disk, be sure to move them to a real disk
before turning off your PC.

Before attempting to transfer files to the PC, make sure you have enough room on the selected device. Kermit does
not provide a way for you to change disks during a file transfer. However, the Kermit protocol will help you out a
little bit by attempting to prevent transfer of files that are too big to fit in the available space. As of version 2.31,
MS-Kermit supports "file attributes" exchange, and if the other Kermit supports this option too, then the receiving
program will check free disk space before letting the transfer proceed. MS-Kermit allows a margin of 6 percent
inflation upon reception, because file construction differs markedly between systems. A multiple-file transfer can
even skip automatically past files that are too big, allowing the little ones to pass though.

Other attributes exchanged by MS-Kermit include the file’s creation date and time, and the system of origin. When
two Kermit programs both have attribute capability, then files will be stored with the same timestamp on the
receiving system as they had on the sending system.

Since exchange of attributes is a new feature to MS-Kermit, and a relatively scarce one elsewhere, it is possible that

Page 26 Kermit User Guide: MS-DOS KERMIT 1.6.4

two Kermit programs might misunderstand each other because of differing interpretations by the programmers, and
this could prevent otherwise normal file transfers from taking place. An escape clause is provided by the command
SET ATTRIBUTES OFF, which makes MS-Kermit forget that it has attribute capability.

You may record the progress of a file transfer in a log file by issuing the command LOG TRANSACTIONS.

The SEND Command
Syntax: SEND filespec1 [filespec2]

The SEND command causes a file or file group to be sent from the local MS-DOS system to the Kermit on the
remote system. The remote Kermit may be running in server or interactive mode; in the latter case, you should
already have given it a RECEIVE command and escaped back to your PC. S is a special non-unique abbreviation
for SEND.

filespec1 may contain the wildcard characters ‘‘*’’ to match zero or more characters within a field, and/or ‘‘#’’
(first position) or ‘‘?’’ (elsewhere) to match any single character (a question mark in first position gives you a help
message). If filespec1 contains wildcard characters then all matching files will be sent, in the same order that
MS-DOS would show them in a directory listing. If filespec1 specifies a single file, you may direct Kermit-MS to
send that file with a different name, given in filespec2, as in:

Kermit-MS>send foo.bar framus.widget

filespec2 begins with the first nonblank character after filespec1 and ends with the carriage return; thus it may
contain blanks or other unusual characters that may be appropriate on the target machine. The alphabetic case of
text in filespec2 is preserved in transmission, so if case matters on the target system, be sure to type filespec2
appropriately.

If the SEND command is specified by itself on the command line, then you will be prompted separately for the name
of the file to send, and the name to send it under:

Kermit-MS>send
Local Source File: c:\stuff\xcom1.txt
Remote Destination File: com1.txt

If a file can’t be opened for read access, the message "Unable to find file" will be shown or else the standard
MS-DOS recovery procedures will take place:

Not ready error reading drive A
Abort, Retry, Ignore?

Kermit remains active even if you select "Abort" (DOS’s word, not ours).

Files will be sent with their MS-DOS filename and filetype (for instance FOO.TXT, no device or pathname).
Special characters in the file name are not converted. If there is no filetype, then only the name will be sent, without
the terminating dot. Each file is sent as is, with no conversions done on the data, except for possibly stopping at a
terminating Control-Z character (see the SET EOF command).

Once you give Kermit-MS the SEND command, the name of each file will be displayed on your screen as the
transfer begins. Packet, retry, and other counts will be displayed along with informational messages during the
transfer, in the style specified by SET DISPLAY. If the file is successfully transferred, you will see ‘‘Complete’’,
otherwise there will be an error message. When the specified operation is done, the program will sound a beep.

Several single-character commands may be given while a file transfer is in progress:

^X (Control-X) Stop sending the current file and go on to the next one, if any.

^Z Stop sending this file, and don’t send any further files.

^C Return to Kermit-MS command level immediately without sending any kind of notification to the remote

1.6.4. COMMANDS FOR FILE TRANSFER Page 27

system. (^Z or even ^E is preferable.)

^E Like ^C, but send an Error packet to the remote Kermit in an attempt to bring it back to server or interactive
command level.

CR Simulate a timeout: resend the current packet, or NAK the expected one.

Control-X, Control-Z, and Control-E send the proper protocol messages to the remote Kermit to bring it gracefully
to the desired state. Control-C leaves the remote Kermit in whatever state it happens to be in, possibly
retransmitting its last packet over and over, up to its retry limit. You should only have to use Control-C in dire
emergencies (the remote Kermit is stuck, the remote system crashed, etc), or at those times when you realize that
you have given a file transfer command to Kermit-MS without first having told the remote Kermit about it.

MS-Kermit does not have a built-in mechanism for sending an entire directory structure, but this may still be done
using command files. A program called XSEND, distributed along with MS-Kermit, will construct such a command
file automatically.

The RECEIVE Command
Syntax: RECEIVE [filespec]

The RECEIVE command tells Kermit-MS to receive a file or file group from the other system. The file is stored
under the name it was transmitted with, except that any illegal characters are translated to X’s. Kermit-MS
passively waits for the file to arrive; this command is not to be used when talking to a Kermit server (use GET for
that). You should already have issued a SEND command to the remote Kermit and escaped back to Kermit-MS
before issuing the RECEIVE command. The RECEIVE command is intended for situations where the file name and
sending operation originates at the other side; GET originates the request from our side and asks the server to
perform the operation. R is a special non-unique abbreviation for RECEIVE.

If the optional filespec is provided, incoming files will be stored under that name. If the filespec is really just a path
then files are stored where the path indicates. If it is an actual filename the first incoming file is renamed and any
additional files either overwrite the first (if FILE WARNING is OFF) or are renamed slightly from the filespec
(digits are added to the end of the main filename part before the dot and extension) if FILE WARNING is ON (the
default). The filespec may include any combination of the following fields:

Device designator
Store the file on the designated device, in the current directory for that device. If no device designator is
given, store it on the current default device.

Directory path
Store the file in the designated directory on the current disk. If no path given, store the file in the current
directory.

File name
Store the file under the name given. If no name is given, store it under the name it was sent under,
converted, if necessary, to suit DOS conventions, and modified, if SET WARNING ON, to avoid
overwriting any file of the same name in the same directory.

If an incoming file does not arrive in its entirety, Kermit-MS will normally discard it and it will not appear in your
directory. You may change this behavior by using the command SET INCOMPLETE KEEP, which will cause as
much of the file as arrived to be saved on the disk.

The same single-character commands are available as during SEND:

^X Request that the remote Kermit stop sending the current file, and proceed to the next one immediately. Since
this is an optional feature of the Kermit protocol, the remote Kermit might not honor the request.

^Z Request that the remote Kermit terminate the entire transfer; this is also an optional feature that may or may
not be supported by the remote Kermit.

^C, ^E, and CR operate in the same way as they do during SEND. In this case, ^E should always do what ^Z is

Page 28 Kermit User Guide: MS-DOS KERMIT 1.6.4

supposed to do.

If WARNING is OFF and you type ^X or ^Z to interrupt the transfer, you’ll either get a partial new file, or else both
the old and the new file of that name will be lost, depending on SET INCOMPLETE. In any case, when
WARNING is off, old files with the same name as incoming files will not survive.

Caution: If an incoming file’s name (the part before the dot) corresponds to an MS-DOS device name, such as NUL,
COM1, CON, AUX, or PRN, output will go to that device, rather than to a file with that name. This is a feature of
MS-DOS.

1.6.5. Hints for Transferring Large Files

During a prolonged file transfer session, things can go wrong that are beyond Kermit’s control. The longer the
session, the greater the probability it will be fatally interrupted. But you can take a few precautions:

• Make sure there is sufficient disk space at the receiving end. If possible, first run a disk utility (such as
CHKDSK) to clean out any bad disk blocks.

• If you are using a telephone connection, make sure your session won’t be interrupted by call waiting,
people picking up other extensions, etc.

• Don’t attempt to transfer a single file of many megabytes over a telephone connection. The longer the
call, the greater the chance of disconnection (carrier loss). Although it’s a bother, it may save time in
the long run to break the file up into smaller pieces, transfer the pieces, and then recombine on the other
end.

• SET INCOMPLETE KEEP on the receiving end, so that if the transfer fails, then the partial file will be
retained. Then chop the part that wasn’t transferred into a separate file, reconnect, and send it. Then
join the pieces together.

Consider moving truly massive amounts of data on magnetic media. "Never understimate the bandwidth of a station
wagon full of magnetic tapes!" (or diskettes).

1.6.6. Commands for Raw Uploading and Downloading

MS-Kermit can be used to send files to, or capture files from, remote systems that do not have Kermit programs
available. No error checking or correction is done, so the results can very likely contain corrupted characters, spurts
of noise, gaps, or extraneous system messages or prompts. The command for uploading is TRANSMIT, and for
downloading LOG SESSION.

To minimize loss of data during these operations, be sure to SET the FLOW-CONTROL and HANDSHAKE
parameters to match the characteristics of the system on the other end.

The TRANSMIT Command
Syntax: TRANSMIT filespec [prompt-character]

The TRANSMIT command provides a basic raw upload (export) facility to send straight ASCII text files to the host
without packets, error checking, or retransmissions, but using all the currently selected communication parameters
for flow control, parity, etc. Information is read from the disk file a line at a time, sent out the serial port, and the
command waits for a single character prompt (normally linefeed) from the host before sending the next file line. A
disk file line ends with carriage-return-linefeed (CRLF), but only the carriage return is sent, just as you only type
carriage return at the end of a line, not CR and LF. Most remote systems will echo the CR and then also supply a
LF, which indicates that they have processed the line and are ready for another one. Setting the prompt to binary
zero, \0, makes the TRANSMIT command proceed without waiting for a prompt. Pressing the local Return key
simulates arrival of a prompt character.

1.6.6. Commands for Raw Uploading and Downloading Page 29

Typically, before using this command to upload a file, you would start a text editor (preferably a line-oriented, rather
than full-screen, editor) on the remote host and put it into text insertion mode. When the file has been completely
transmitted, you would manually enter the required sequence for getting the editor out of text insertion mode, and
then make any necessary corrections by hand. Here’s an example for VAX/VMS:

Kermit-MS>set flow xon/xoff Set flow control to match VAX/VMS.
Kermit-MS>connect Connect to VAX.
$ edt foo.txt Start the EDT editor.
*i Put it into "insert" mode.
^]c Escape back to Kermit-MS.
Kermit-MS>transmit foo.txt Upload the file a line at a time.
... The lines are displayed on your screen.

Kermit-MS>connect When done, connect back to the VAX.
^Z Type Ctrl-Z to exit EDT insert mode.
*exit Exit from EDT to save the file.
$

If transmission appears to be stuck, you can wake it up by typing a carriage return on the keyboard. You can cancel
the TRANSMIT command by typing a Control-C. Control-Z’s or other control characters in the file may have
adverse effects on the host. For this reason, you should use TRANSMIT only for files that contain 7-bit printing
ASCII characters, spaces, tabs, carriage returns, linefeeds, and possibly formfeeds.

The LOG SESSION Command
Syntax: LOG SESSION [filespec]

The LOG SESSION command lets you copy the characters that appear on your screen during CONNECT into the
specified file on the PC. You can use this command to download files by displaying (usually with a command like
TYPE) the file on the remote system while logging is in effect. Example:

Kermit-MS>set flow xon/xoff Set flow control to match VAX/VMS.
Kermit-MS>connect Connect to the VAX.
$ type foo.bar Give this command, but don’t type CR yet.
^]c Escape back.
Kermit-MS>log session foo.bar Start logging.
Kermit-MS>connect Connect back.

Now type the carriage return.
This is the file FOO.BAR. The file is displayed on your screen
Blah blah ... and captured into PC file FOO.BAR.
$ The prompt is captured too.
^]c When done, escape back
Kermit-MS>close session and close the log file.

The PC file FOO.BAR now contains a (possibly mutilated) copy of the remote computer’s FOO.BAR file. It
probably has the remote system’s prompt at the end, which you can edit out. The session log can also be used to
record typescripts, editing sessions, Tektronix graphics output, or any other output from, or dialog with, the remote
computer.

During terminal emulation, the LOG command records all the characters that arrive from the remote host in the
specified file, including escape sequences, with any input character translations applied according to SET
TRANSLATION INPUT. If you have SET LOCAL-ECHO ON, the characters you type will also be recorded.
Logging may be suspended and resumed within a terminal session with the CONNECT escape-level commands Q
and R. The log file will be composed of 7-bit ASCII bytes if (a) PARITY is other than NONE, or (b) DISPLAY is
SET to 7. If DISPLAY is 8 and PARITY is NONE, or if DEBUG is ON, then the log will contain 8-bit bytes.

You may LOG SESSION PRN to cause the logging information to be printed directly on your printer. Any escape
sequences that are sent to the screen are also sent to the printer.

If you want to record information without imbedded escape sequences, use the screen dump feature, invoked by the

Page 30 Kermit User Guide: MS-DOS KERMIT 1.6.6

CONNECT escape-level command F, which is described under the CONNECT command.

A session log cannot be played back directly on the PC from the log file. To relive the session, you must transfer it
to the remote system and display it in "binary mode" (e.g. cat in Unix) while CONNECTed.

1.6.7. Kermit Server Commands

Kermit-MS can act as a Kermit server, and can also interact with other Kermit servers. Normally, the remote
Kermit is put into server mode. Then the local Kermit becomes a "client", and may issue repeated commands to the
server without having to connect and escape back repeatedly. Servers can not only transfer files, but can also
provide a variety of file management functions. The SERVER command puts MS-Kermit into server mode, and the
DISABLE and ENABLE commands modify the behavior of the server.

Kermit servers respond only to information sent as Kermit protocol packets and not to ordinary CONNECT-mode
commands. When MS-Kermit is the client, it uses the SEND command (described above) to send files to a server,
the GET command (not RECEIVE) to get files from a server, the REMOTE commands to invoke the file
management functions of the server, and the BYE, FINISH, or LOGOUT commands to shut down the server. The
MS-Kermit server can also be returned to interactive mode by typing Ctrl-C or Ctrl-Break on the PC’s console
keyboard; if the SERVER command was issued from a command file, execution of the command file will resume
with the next command after SERVER.

The SERVER Command
Syntax: SERVER [timeout]

Kermit-MS is capable of acting as a full-fledged Kermit server for users coming in through one of the
communication ports or a local area network. To put Kermit-MS into server mode, first issue any desired SET
commands to select and configure the desired port, then DISABLE any undesired functions, and then type the
SERVER command. Kermit-MS will await all further instructions from the client Kermit on the other end of the
connection, which may be hardwired, or connected through a network or autoanswer modem.

In the following example, a Kermit server is set up for dialing in:

Kermit-MS>set port 1
Kermit-MS>set speed 1200
Kermit-MS>hangup
Kermit-MS>connect
ATS0=1
OK
^]c
Kermit-MS>set server timeout 0
Kermit-MS>set warning on
Kermit-MS>disable all
Kermit-MS>server

Before putting Kermit in server mode in this case it was necessary to connect to the modem (in this example, a
Hayes) and put it into autoanswer mode by typing the ATS0=1 command. Since Kermit packets typically start with
a Control-A character check the modem’s manual to ensure that character is not a modem command signal; some
brands regard Control-A as a hangup request!

Note the command SET SERVER TIMEOUT 0. This disables the MS-Kermit server’s normal behavior of timing
out periodically and sending a NAK packet while waiting for a connection. This might be necessary with certain
modems or PBXs that can be taken out of answer mode if they receive any characters from the PC before a call is
received.

An optional timeout value can be specified to exit server mode automatically at a certain time. The timeout can be
expressed as a number, meaning seconds from now, or as the hh:mm:ss form, in 24-hour time of day. Both forms

1.6.7. Kermit Server Commands Page 31

recognize times greater than 12 hours from now as being in the past. For instance, if you want to run a Kermit
server for an hour, and then have it exit so that another program can run, use a command file like:

set port 1 ; Use COM1
set speed 2400 ; at 2400 bps.
disable all ; Only allow file transfers in current directory.
server 3600 ; Be a server for 3600 seconds = 1 hour.
exit ; Exit when done.

MS-Kermit 2.32 server mode supports the following requests:

SEND REMOTE CWD (CD) REMOTE MESSAGE
GET REMOTE DELETE REMOTE SEND
FINISH REMOTE DIRECTORY REMOTE SPACE
BYE REMOTE HELP REMOTE TYPE
LOGOUT REMOTE HOST REMOTE WHO

REMOTE LOGIN

REMOTE CWD (CD) can be used to change both directories and devices. The REMOTE MESSAGE command
accepts a one line message on the command line which will be displayed on the operator’s console. An MS-Kermit
Server can DISABLE recognition of selected REMOTE commands to help reduce accidents.

CAUTION: The method used for most of the REMOTE commands is to invoke a task with the user’s
command line, redirect standard output to a temporary file, $KERMIT$.TMP, send that file back to the
remote end, and then delete the file. Sufficient space must be available to store this file. To service DOS
commands or user tasks COMMAND.COM must be located on the DOS PATH.

FURTHER CAUTION: Any of these DOS tasks or programs may encounter an error, and in that case,
DOS will generally put the familiar "Abort, Retry, Ignore?" message on the server’s screen, and will wait
for an answer from the keyboard. This will hang the server until a human comes to the keyboard and
gives a response. The same thing will happen when any program is invoked that interacts with the real
console. DISABLE ALL seems to avoid most unpleasant situations of this kind.

For local network operation with NetBios, the SET PORT NET command (with no node name) must be issued
before the SERVER command. MS-Kermit then becomes a network-wide server, and other client Kermits can start
a network session with it by using the name of the Kermit Server, which is shown on the server’s screen when SET
PORT NET is given. The Kermit Server accepts connections from other Kermits, but only one at a time. There may
be many Kermit Servers active on the network simultaneously because each has a unique node name. Operations
are exactly the same as with serial port usage and the session (equivalent to a dialed phone connection) is maintained
between the pair until too many timeouts occur, or the client Kermit issues a HANGUP command, exits to DOS, or
SETs PORT NET to another node. In the latter cases, the server remains available for use by other client Kermits.
If a client Kermit issues the BYE or FINISH command, the network server is shut down (unless it was started with
FIN disabled).

The DISABLE and ENABLE Commands
For security purposes, it may be desirable to leave your PC in Kermit server mode so that it can be dialed in to, but
with certain functions unavailable to those who dial in. The DISABLE and ENABLE commands provide this
control.

The DISABLE and ENABLE commands affect the following functions, with the effect of DISABLEs noted:

CWD (CD) Changing of directories, disabled entirely.
DEL Deletion of files confined to current directory.
DIR Production of directory listings confined to current directory.
FIN Shutting down the server (applies also to BYE) disabled entirely.
GET Getting files from the server confined to current directory.
HOST Execution of all REMOTE HOST (DOS) commands disabled entirely.
SEND Forces files sent to server into current directory.
SPACE Asking the server for a disk space report, disabled.

Page 32 Kermit User Guide: MS-DOS KERMIT 1.6.7

TYPE REMOTE TYPE files confined to current directory.
ALL All of the above.
TEK Automatic invocation of Tektronix graphics mode by host commands. This function is not related to

server mode, and is not included in the ALL term.

For reasons which should be obvious, the Kermit server does not provide a REMOTE ENABLE command!

The GET Command
Syntax: GET remote-filespec

The GET command requests a Kermit server to send the file or file group specified by remote-filespec. This
command can be used only when Kermit-MS has a Kermit server active on the other end of the connection. This
usually means that you have CONNECTed to the other system, logged in, run Kermit there, issued the SERVER
command, and escaped back (e.g. ‘‘^]C’’) to the local Kermit-MS. In the case of LAN operation, a Kermit server
must be running somewhere on the network. If the remote Kermit does not have a SERVER command, then you
should use SEND and RECEIVE as described above.

You may use the GET command in a special way to specify a different name for storing the incoming file. Just type
GET alone on a line, and you will be prompted separately for the remote filespec and the local filespec:

Kermit-MS>get
Remote Source File: com1 txt
Local Destination File: a:xcom1.txt

The local file name may contain a device field, and/or a directory specification. Device and directory specifications
in the local destination file name work the same way as in the RECEIVE command. The multiline GET command
is provided so that the distinction between the two files is always clear, which would not otherwise be the case if the
foreign filename had spaces in it.

The remote filespec is any string that can be a legal file specification for the remote system; it is not parsed or
validated locally. It can contain whatever wildcard or file-group notation is valid on the remote system, including
spaces. If the string needs to begin with a question mark (?) then use a sharp sign (#) instead to avoid Kermit’s help
message; it will be transmitted as a question mark.

Once the file transfer begins, the GET command behaves exactly like the RECEIVE command.

Warning: If the remote filespec is to contain a semicolon, and the GET command is being issued from a TAKE
command file, you must prefix the semicolon with a backslash. Otherwise, all characters beginning with the
semicolon will be ignored:

get me.home\;2

1.6.8. Commands for Controlling Remote Kermit Servers

The BYE, FINISH, and LOGOUT commands allow you to shut down a remote Kermit server:

BYE When communicating with a remote Kermit server, use the BYE command to shut down the server, log
out its job, and exit locally from Kermit-MS to DOS. On local area networks, BYE also terminates the
network session.

FINISH Like BYE, FINISH shuts down the remote server. However, FINISH does not log out the server’s job.
You are left at Kermit-MS prompt level so that you can connect back to the job on the remote system. On
local area nets, FINISH shuts down the MS-Kermit server, but in a way that allows it to be restarted as if
no interruption had occurred.

LOGOUT The LOGOUT command is identical to the BYE command, except you will remain at Kermit-MS prompt
level, rather than exit to DOS, so that you can establish or use another connection without having to restart
MS-Kermit.

1.6.8. Commands for Controlling Remote Kermit Servers Page 33

The REMOTE Commands
The REMOTE keyword is a prefix for a number of commands. It indicates that the command is to be performed by
a remote Kermit server. Not all Kermit servers are capable of executing all of these commands, and some Kermit
servers may be able to perform functions for which Kermit-MS does not yet have the corresponding commands. In
case you send a command the server cannot execute, it will send back a message stating that the command is
unknown to it. If the remote server can execute the command, it will send the results, if any, to your screen.

Here are the REMOTE commands that Kermit-MS may issue:

REMOTE CWD [directory]
(Also REMOTE CD) Ask the server to Change your Working Directory on the remote host, that is, the
default source and destination area for file transfer and management. You will be prompted for a
password, which will not echo as you type it. If you do not supply a password (i.e. you type only a
carriage return), the server will attempt to access the specified directory without a password. If you do not
supply a directory name, your default or login directory on the remote system will be assumed and you
will not be prompted for a password.

REMOTE DELETE filespec
Ask the server to delete the specified file or files on the remote system. In response, the server may
display a list of the files that were or were not successfully deleted.

REMOTE DIRECTORY [filespec]
Ask the server to display a directory listing of the specified files. If no files are specified, then the list
should include all files in the current working directory.

REMOTE HELP
Ask the server to list the services it provides.

REMOTE HOST [command]
Ask the server to send the command to the remote system’s command processor for execution.

REMOTE KERMIT command
Send the command to the remote Kermit for interpretation as a Kermit command in the remote Kermit
server’s own command syntax.

REMOTE LOGIN user
Password and account are always solicted via prompts. A carriage return response corresponds to an
empty entry. REMOTE LOGIN applies only to a remote Kermit server and not to a remote operating
system; an MS Kermit server does not understand the command.

REMOTE MESSAGE text
Send the one line text message to be displayed on the Server’s screen.

REMOTE SPACE [directory]
Ask the server to provide a brief summary of disk usage in the specified area on the remote host or, if none
specified, the default or current area.

REMOTE TYPE filespec
Ask the server to display the contents of the specified remote file or files on your screen.

REMOTE WHO [who-spec]
Ask the server to list actively logged on users; optional who-spec qualifies the list and uses the syntax of
the server system.

The Mail Command
Syntax: MAIL filespec address

The MAIL command is a very close relative of Kermit’s SEND command. Mail sends a file, or file group, to a
Kermit server with instructions (in an Attribute packet) to submit the file(s) to the host’s Mailer utility rather than
store them on disk. To round out a mail request a field following the filename is required, and into it we place the
address to which the files are to be mailed. Mail addresses vary substantially, but several common forms are
"username", "username@host", and "host::username". The MAIL command will work only if the Kermit server
understands it, otherwise the mail request will be rejected before any files are sent. Kermit-MS can send mail but it

Page 34 Kermit User Guide: MS-DOS KERMIT 1.6.8

cannot receive it, because MS-DOS does not have a mail facility. When sending, there is no way to transmit any
fields other than the recipient’s address and the message body; fields like subject and cc are not supported.

1.6.9. The LOG and CLOSE Commands

Syntax: LOG {PACKET, SESSION, TRANSACTION} [filespec]
CLOSE {PACKET, SESSION, TRANSACTION}

The LOG command tells MS-Kermit to record the terminal session, file transfer transactions, or the file transfer
protocol packets themselves in a log file. If the log file already exists then new material is appended to it. Open log
files may be closed (and the associated logging disabled) using the CLOSE command. Open log files are also
closed when you EXIT from Kermit.

LOG SESSION is used to record your terminal emulation typescript. It was described above, in the section on file
transfer.

The LOG TRANSACTION Command
Syntax: LOG TRANSACTION [filespec]

The Transaction log is a file recording a pair of text lines describing each file transfer (SEND, GET, RECEIVE, or
some REMOTE commands). The lines indicate the local filename (and remote name if different), the time and date
of the start of the transfer, the number of bytes transferred, and the status of the transfer. New entries are always
appended to old to prevent loss of records. The default filename is TRANSACT.LOG. The command SHOW
LOGGING displays the current names and which logs are active. The command CLOSE TRANSACTION will
voluntarily terminate this class of log; otherwise, it will be closed automatically when Kermit exits.

The LOG PACKETS Command
Syntax: LOG PACKETS [filespec]

The packet log is for diagnostic purposes and records each Kermit protocol packet sent and received in printable
format. Control characters are written as caret-letter and characters with the high bit set are shown as their 7-bit part
preceeded by a tilde. The default filename is PACKET.LOG. If you experience difficulty with file transfers the
packet log is valuable in discovering who said what to whom, even though a copy of the Kermit book is needed to
unravel the meaning of each character in a packet.

1.6.9. The LOG and CLOSE Commands Page 35

1.6.10. The SET Command

Syntax: SET parameter [parameter] value

The SET command establishes or modifies parameters for file transfer or terminal connection. You can examine
their values with the SHOW or STATUS commands. The following SET commands are available in Kermit-MS:

ALARM Set alarm clock time, for IF ALARM testing
ATTRIBUTES Controls whether MS-Kermit uses Attribute packets

BAUD Communications port line speed (synonym for SPEED)
BELL Whether to beep at the end of a transaction

BLOCK-CHECK-TYPE Level of error checking for file transfer
COUNT Variable for TAKE file and macro IF COUNT testing
DEBUG Display packet contents during file transfer

DEFAULT-DISK Default disk drive for file i/o
DELAY Wait number seconds before Sending a file

DESTINATION Default destination device for incoming files
DISPLAY For selecting the type of file transfer display

DUMP Screen dump file (or device) name
END-OF-LINE Packet termination character

EOF Method for determining or marking end of file
ERRORLEVEL Value returned to DOS Batch files

ESCAPE Escape character for CONNECT
FLOW-CONTROL Enable or disable XON/XOFF

HANDSHAKE Half-duplex line turnaround option
INCOMPLETE What to do with an incompletely received file

INPUT Behavior of INPUT command for scripts
KEY Specify key redefinitions

LOCAL-ECHO Specify which computer does the echoing during CONNECT
MODE-LINE Whether to display a mode line during terminal emulation

PARITY Character parity to use
PORT Select a communications port

PROMPT Change the "Kermit-MS>" prompt to something else
RECEIVE Request remote Kermit to use specified parameters
REMOTE For running Kermit-MS interactively from back port

RETRY Packet retransmission threshold
SEND Use the specified parameters during file transfer

SERVER Parameters for server mode (command wait timeout)
SPEED Communications port line speed (synonym for BAUD)

TAKE-ECHO Control echoing of commands from TAKE files
TERMINAL Emulation and parameters

TIMER Enable/disable timeouts during file transfer
TRANSLATION Enable/disable/specify conversion of arriving characters

WARNING Specify how to handle filename collisions

The SET commands are now described in detail, in alphabetical order.

SET ALARM
Syntax: SET ALARM {seconds, hh:mm:ss}

The alarm is a timer, like an alarm clock, available for testing by IF ALARM statements. The alarm time is given as
seconds from the present or as a 24-hour specific time of day. Both need to be within 12 hours of the present to
avoid being mistaken for times in the past. SHOW SCRIPT displays the current alarm setting.

Page 36 Kermit User Guide: MS-DOS KERMIT 1.6.10

SET ATTRIBUTES
Syntax: SET ATTRIBUTES {ON, OFF}

Disables or enables use of Kermit file Attribute protocol packets, which contain the size, time, and date of files
transferred using the Kermit protocol. This command is a safety feature so that a small misunderstanding with
another Kermit cannot block transfers. SHOW FILE tells whether attributes are on or off; they are normally ON.

SET BAUD
Syntax: SET BAUD number

Synonym for SET SPEED (q.v.).

SET BELL
Syntax: SET BELL {ON, OFF}

Specifies whether the bell (beeper) should sound upon completion of a file transfer operation. Normally ON.

SET BLOCK-CHECK-TYPE
Syntax: SET BLOCK-CHECK-TYPE {1, 2, 3}

Selects the error detection method: a 1-character 6-bit checksum (the normal case), a 2-character 12-bit checksum,
or a 3-character 16-bit cyclic redundancy check (CRC). If the other Kermit program is not capable of type 2 or 3
checking methods, automatic fallback to type 1 will occur. The more secure type 2 and 3 block checks take
essentially no more execution time than the simple 1 character checksum. SET BLOCK 3 is a stronger check than
SET BLOCK 2. SET BLOCK 2 or 3 is recommended for use with long packets (see below), noisy communication
lines, binary (8-bit data) files, and text files containing critical data (budgets, grades, etc).

SET COUNT
Syntax: SET COUNT number

Set the value of the script COUNT variable to be between 0 and 65535. COUNT is used with IF COUNT to
construct counted loops in script TAKE files and macros. Each active TAKE file or macro uses a private version of
COUNT. The default value is zero, and the SHOW SCRIPT command displays the current value (meaningful only
when given within a TAKE file or macro).

SET DEBUG
Syntax: SET DEBUG {PACKET, SESSION, ON, OFF}

With DEBUG PACKET, Kermit will display the actual packets on your screen during file transfer. With the normal
file transfer display, regular-length packets sent and received are displayed in fixed-size slots. The display of
extended-length packets, however (see SET RECEIVE PACKET-LENGTH), tends to overlap. If this bothers you,
then also SET DISPLAY SERIAL, or LOG the packets rather than displaying them.

With DEBUG SESSION, during terminal emulation (on the IBM PC, Rainbow, and a few others), control characters
are displayed in uparrow (‘‘^’’) notation and characters with the 8th bit set are preceded by the tilde (‘‘~’’) sign, and
your session log (if any) will record 8-bit bytes, rather than 7-bit ASCII, regardless of SET DISPLAY or SET
PARITY. Character translation (SET TRANSLATION INPUT) is not done during session debugging. The effect
of SET DEBUG SESSION during terminal connection can be disconcerting, but it gives you a convenient line
monitor equivalent to a specialized device that costs several thousand dollars, and it can prove very handy for
tracking down data communication problems.

SET DEBUG ON turns on both SESSION and PACKET debugging, and SET DEBUG OFF turns them both off.

1.6.10. The SET Command Page 37

SET DEFAULT-DISK
Syntax: SET DEFAULT-DISK x:[directory]

Specify the default disk drive to use for file transfer, directory listings, and so forth. Equivalent to typing the DOS
command for changing disks (A:, B:, etc). Affects Kermit and all inferior processes, but when you exit from
Kermit, you will still have the same default disk as when you entered. As a convenience, a directory may be
specified with or without the drive to change one or the other or both. This command is a synonym for CWD (CD).

SET DELAY
Syntax: SET DELAY number

Wait the specified number of seconds before starting a file transfer. Intended for use when the other side needs
appreciable time to become ready, such as rearranging cables, changing programs, etc., or when MS-DOS Kermit is
the remote Kermit (e.g. after CTTY COM1, SET REMOTE ON). The number is 0 to 63 seconds, normally 0.

SET DESTINATION
Syntax: SET DESTINATION {DISK, PRINTER, SCREEN}

SET DESTINATION PRINTER will cause incoming files to be sent directly to the printer; SCREEN will send
output normally destined for the disk to the screen. The normal destination is DISK. SET DESTINATION affects
only files transferred with SEND, GET, or RECEIVE; it cannot be used to reroute the output from REMOTE server
commands.

SET DISPLAY
Syntax: SET DISPLAY {QUIET, REGULAR, SERIAL, 7-BIT, 8-BIT}

During file transfer, MS-DOS Kermit’s regular display is a formatted screen whose fields are randomly updated
with file names, packet numbers, error counts, percent done, error messages, and so forth, as shown in Figure 1-1.

If you wish to run Kermit-MS interactively through the back port, for instance after the operator has done CTTY
COM1, you must give the command SET REMOTE ON (which, currently at least, is equivalent to SET DISPLAY
QUIET); this suppresses the file transfer display screen, so that the display won’t interfere with the file transfer
itself. You can also use this command to suppress the display in local mode, in case you are using a system that
allows you to do other work while file transfer proceeds in the background.

If you have your PC connected to a speaking device (a common practice for visually impaired people), or you are
logging the display screen to a printer (using DOS ^P or kermit > prn), the random nature of the regular
display will make the results of little use. SET DISPLAY SERIAL is provided for this purpose; it causes the
program to report progress "serially" on the screen. In serial mode, error messages are preceeded with the word
"Error" and repeat messages with the word "Retry". Packets are numbered as dots with every tenth being a plus
sign. The packet display is automatically broken across lines at every 70th packet. The serial display makes much
more sense when spoken than does the regular display.

The serial display does not show the percent and kilobytes transferred. It is the default display style for generic
MS-DOS Kermit; REGULAR is the default for all others.

The last two parameters, 7-BIT and 8-BIT, control the size of characters sent to the screen during terminal
emulation. 7-BIT is the default and includes all ASCII characters. 8-BIT is useful with national and line drawing
characters.

Page 38 Kermit User Guide: MS-DOS KERMIT 1.6.10

SET DUMP
Syntax: SET DUMP filespec

On those systems that support this feature, change the file or device name of the screen dump file. The normal file
name is KERMIT.SCN. See the section on terminal emulation for details about screen dumps. If the specified file
already exists then new material is appended to old. If you want to start a new screen dump file, delete the old one
first.

SET END-OF-LINE
Syntax: SET END-OF-LINE number

If the remote system needs packets to be terminated by anything other than carriage return, specify the decimal
value, 0-31, of the desired ASCII character. Equivalent to SET SEND END-OF-LINE (SET END-OF-LINE is kept
only for historical reasons, and the parameter really should be called END-OF-PACKET anyway.)

SET EOF
Syntax: SET EOF {CTRL-Z, NOCTRL-Z}

Controls how the end of file is handled. CTRL-Z specifies a Control-Z character should be appended to the end of
an incoming file. Certain MS-DOS text editors and other applications require files to be in this format. For
outbound files, treat the first Control-Z as the end of the local file, and do not send it or any subsequent characters.
NOCTRL-Z is the default; incoming files are stored, and MS-DOS files are sent, exactly as is, in their entirety. Use
SHOW FILE to see the current SET EOF status.

SET ERRORLEVEL
Syntax: SET ERRORLEVEL number

Forces the DOS "errorlevel" variable to a given value. This is used in scripts when other controls or tests determine
that the cumulative errorlevel reported to DOS Batch when Kermit exits needs to be modified. The number can be 0
to 255 decimal.

SET ESCAPE
Syntax: SET ESCAPE character

Specify the control character you want to use to "escape" from remote connections back to Kermit-MS. On most
systems the default is ‘‘^]’’ (Control-Rightbracket), which was chosen because it is a character you would
otherwise rarely type.

The character is entered literally after SET ESCAPE or in backslash number form (\29), and should be chosen
from the ASCII control range. It is not possible to use non-ASCII characters (like function keys) for this purpose
(but see SET KEY for a way around this restriction).

SET FLOW-CONTROL
Syntax: SET FLOW-CONTROL {XON/XOFF, NONE}

Specify the full duplex flow control to be done on the currently selected port. The options are XON/XOFF and
NONE. The specified type of flow control will be done during both terminal emulation and file transfer. By
default, XON/XOFF flow control is selected. XON/XOFF should not be used on half-duplex (local echo)
connections, or when the other system does not support it. If XON/XOFF is used, HANDSHAKE should be set to
NONE.

1.6.10. The SET Command Page 39

SET HANDSHAKE
Syntax: SET HANDSHAKE {CODE number, BELL, CR, LF, NONE, XOFF, XON}

Specify any half-duplex line turnaround handshake character to be used during file transfer on the currently selected
port. The CODE number form allows any ASCII character to be specified by its decimal ASCII code. Handshake is
NONE by default; if set to other than NONE, then FLOW-CONTROL should be set to NONE. In operation the
handshake character is sought at the end of each received packet, following the normal END-OF-LINE character,
but is not sent for outgoing packets.

SET INCOMPLETE
Syntax: SET INCOMPLETE {DISCARD, KEEP}

Specifies what to do with files that arrive incompletely: discard them or keep them. They are normally discarded.

SET INPUT
Syntax: SET INPUT {CASE, DEFAULT-TIMEOUT, ECHO, TIMEOUT-ACTION}

This command is described in Section 1.8, SCRIPTS.

SET KEY
Syntax: SET KEY key-specifier [key-definition]
Also: SET KEY {ON, OFF, CLEAR}

WARNING: The format and functions of this command have changed substantially since version 2.29B
and earlier. The changes were made in order to allow key redefinition to work on a wider variety of
systems and keyboards without customization of the program source code for each configuration. See
section 1.12 for further details.

Typical uses of SET KEY:

• You’re used to having the ESC key in the upper left corner of the keyboard, but your new PC keyboard
has an accent grave (‘‘‘’’) there. You can use SET KEY to make the accent key transmit an ESC, and
you can assign accent grave to some other key.

• You send a lot of electronic mail, and always sign it the same way. You can put your "signature" on a
single key to save yourself a lot of repetitive typing.

• You must set up your PC’s function keys or numeric keypad to work properly with a host application.

• You have trouble with Kermit’s 2-character escape sequences (like Ctrl-] C), and you want to assign
these functions to single keys, like F10.

The SET KEY command does these things and more, and SHOW KEY gives us assistance. A key can be defined
to:

• send a single character other than what it would normally send,
• send a string of multiple characters,
• invoke a CONNECT-mode Kermit action verb,
• send itself again.

SET KEY specifies that when the designated key is struck during terminal emulation, the specified character or
string is sent or the specified Kermit action verb is performed. Key definitions operate only during CONNECT, not
at Kermit-MS> or DOS command level.

The key-specifier is the identification of the key expressed in system-dependent terms. This can be a letter, such as
Q for the key which produces an uppercase Q, or the numeric ASCII value of the letter in backslash notation (e.g.

Page 40 Kermit User Guide: MS-DOS KERMIT 1.6.10

‘‘\81’’), or else the numerical "scan code" observed by the system when the key is pressed (e.g. "\3856" for
Ctrl-Alt-Shift-Q on an IBM PC). Material printed on keycaps is not necessarily a guide to what the key-specifier
should be. When the word CLEAR is used in place of a key-specifier, all key definitions are cleared and then any
built-in definitions are restored.

A string definition is one or more characters, including 8-bit values expressed in backslash form, such as

SET KEY \315 directory\13 IBM F1 key sends ‘‘directory<cr>’’
SET KEY S X S key sends upper case X (a mean trick)
SET KEY T \27[m T key sends three bytes: ESC [m
SET KEY \2336 {del }xxx Alt-D sends "del "
SET KEY \324 \Kexit F10 escapes back to Kermit-MS> prompt.

The string begins with the first non-spacing character following the key identification and continues until the end of
line, exclusive of any trailing spaces. If a semicolon comment is used and the definition is given in a TAKE file, the
line ends at the last non-spacing character before the semicolon. Curly braces, { . . . }, can be use to delimit the
string in case you want the definition to include trailing spaces. All text after the closing bracket is ignored.

This manual does not contain a list of all the scan codes for all the keys on all the keyboards on all the PCs
supported by MS-Kermit -- that would be a manual in itself. Rather, in order to obtain the key-specifier for the SET
KEY command, you must type a SHOW KEY command and then press the desired key or key combination. This
will report a scan code that you can use as the key specifier in a SET KEY command. To do this for many keys is a
laborious process, so you should collect all your SET KEY commands into a file, which you can TAKE, or put them
in your MSKERMIT.INI file.

If you enter SET KEY by itself, with no key specifier, the command will prompt you to press the selected key and
again for the definition string. Certain characters, like ESC and CR, may not be entered literally into the string, but
can be included by inserting escape codes of the form \nnn, a backslash followed by a 1- to 4-digit number
corresponding to the ASCII value of the desired character. Where an ASCII digit follows directly after a backslash
number, confusion can be avoided by placing curly braces {} around the backslashed number; thus, \{27}5
represents the two ASCII characters ESC and 5.

Here is an example of the use of SET KEY to assign ESC (ASCII 27) to the accent grave key. First the user gets the
key-specifier for the key:

Kermit-MS>show key
Push key to be shown (? shows all): ‘
ASCII char: ‘ \96 decimal is defined as
Self, no translation.

Free space: 129 key and 100 string definitions, 837 string characters.

The free space report says that 129 more keys may be redefined, and up to 100 of them may have multi-character
strings assigned to them (as opposed to single characters), and that there are 837 bytes left for these strings, in total.
Confident that there is enough space left for a new key definition, the user proceeds:

Kermit-MS>set key
Push key to be defined: ‘
Enter new definition: \27

Once a key definition is constructed and tested, it may be entered on a single line in a command file (such as
MSKERMIT.INI):

set key \96 \27

To prevent accidents, SET KEY shows the current definition before asking for a new one; enter a Control-C to keep
the current definition, or a carriage return to undefine the key, or a query mark (?) to see available choices.

The keyboard can be restored to its startup state, that is all redefinitions removed and all built-in defitions restored,
by using the keyword CLEAR in place of the key identification:

1.6.10. The SET Command Page 41

SET KEY CLEAR

Undefined keys which do not send ASCII characters are trapped by the keyboard translator and are rejected; a beep
results from using an undefined non-ASCII key.

SET KEY OFF directs MS-Kermit to read keycodes from DOS, rather than BIOS, so that console drivers like
ANSI.SYS that operate at the DOS level may be used during Kermit CONNECT sessions. This would also apply
to any special keyboard replacements that come with DOS-level drivers. SET KEY ON turns key definition back
on, and returns Kermit to processing keystrokes at the BIOS level.

Kermit Action Verbs
An action verb is the shorthand expression for a named Kermit procedure, such as "generate the proper sequence for
a left arrow," "show status," "send a BREAK," and others; verbs are complex actions and each verb has a name. In
a key definition the verb name is preceeded by backslash K (\K) to avoid being confused with a string. Verbs and
strings cannot be used together on a key.

SET KEY \331 \Klfarr
SET KEY \2349 \Kexit

makes the IBM keyboard left arrow key execute the verb named lfarr which sends the proper escape sequence for
a VT102 left arrow key (which changes depending on the internal state of the VT102). The leading \K identifies the
definition as a Kermit verb, so no string can start as \K or as \{K in upper or lower case (use \92K). The second
example has Alt-X invoking the Leave-Connect-Mode verb "exit" (same as Kermit escape character ‘‘^]’’ followed
by C).

Each system has its own list of verbs and predefined keys. Table 1-6 shows those available for the IBM PC family
(there are also some additional verbs for reassigning Heath or VT100 function keys, see section 1.17.2). The SET
KEY command shows the list of available verbs when a query mark (?) is given as a definition. SHOW KEY
displays all currently defined keys or individually selected ones; SHOW KEY can be executed only interactively.

Some systems have preset key definitions when Kermit first begins (those for the IBM PC are shown in section
1.17.2). You can find out what they are on your system by typing SHOW KEY, and then question mark on the next
line. You may supplement or change the predefined keys with SET KEY commands typed interactively or in
MSKERMIT.INI or other command files.

The MS-Kermit CONNECT command may be used in conjunction with certain console drivers that do their own
key redefinitions. Since MS-Kermit intercepts keystrokes at the BIOS level, drivers like ANSI.SYS which work at
the DOS level will have no effect during CONNECT, even though they work at MS-Kermit command level. Other
drivers, like SuperKey and ProKey, work at the BIOS level, and their key assignments will remain effective during
Kermit terminal sessions, and additional Kermit SET KEY assignments may be made "on top" of them.

SET LOCAL-ECHO
Syntax: SET LOCAL-ECHO {ON, OFF}

Specify how characters are echoed during terminal emulation on the currently selected port. ON specifies that
characters are to be echoed by Kermit-MS (because neither the remote computer nor the communications circuitry
has been requested to echo), and is appropriate for half-duplex connections. LOCAL-ECHO is OFF by default, for
full-duplex, remote echo operation.

Page 42 Kermit User Guide: MS-DOS KERMIT 1.6.10

Verb Meaning
\Kupscn Roll up (back) to previous screen
\Kdnscn Roll down (forward) to next screen
\Khomscn Roll up to top of screen memory
\Kendscn Roll down to end of screen memory (current position)
\Kupone Roll screen up one line
\Kdnone Roll screen down one line
\Kprtscn Print the current screen
\Kdump Append the current screen to dump file
\Kholdscrn Toggle hold screen mode
\Klogoff Turn off session logging
\Klogon Turn on session logging
\Ktermtype Toggle terminal type
\Kreset Reset terminal emulator to initial state
\Kmodeline Toggle modeline off/on
\Kbreak Send a BREAK signal
\Klbreak Send a "long BREAK" signal
\Khangup Drop DTR so modem will hang up phone
\Knull Send a null (ASCII 0)
\Kdos "Push" to DOS
\Khelp Display CONNECT help message
\Kstatus Display STATUS message
\Kterminals Invoke user-defined macro TERMINALS, if any
\Kterminalr Invoke user-defined macro TERMINALR, if any
\Kexit Escape back from CONNECT mode
\Kgold,\Kpf1 VT102 keypad function key PF1
\Kpf2..\Kpf4 VT102 keypad function keys
\Kkp0..\Kkp9 VT102 keypad numeric keys
\Kkpdot,\Kkpminus,\Kkpcoma,\Kkpenter Other VT102 keypad keys
\Kuparr,\Kdnarr,\Klfarr,\Krtarr VT102 cursor (arrow) keys

Table 1-6: Kermit-MS Verbs for the IBM PC Family

SET MODE-LINE
Syntax: SET MODE-LINE {ON, OFF}

On systems, like the IBM PC family, which are capable of displaying a status, or "mode" line on the 25th (or
bottom) line during terminal connection, disable or enable this function. This command has no effect on systems
that do not display a mode line during connect.

The mode line shows several important facts about the connection, like which port is being used, the transmission
speed and parity, the current escape character, etc. When the mode line is enabled, it may be turned on and off using
the CONNECT escape-level command M or the Kermit verb "modeline".

The mode line occupies the 25th line of those systems that have such a thing, and is not affected by scrolling (on
some systems that have large screens, the mode line should appear on whatever the bottom line is, e.g. the 43rd).
When emulating a VT102 or Heath-19, Kermit will allow the host to address the 25th line directly using cursor
positioning commands. If this happens, Kermit will remove its mode line and relinquish control of the 25th line to
the host (as if you had typed SET MODE OFF). When the Tektronix, or no terminal at all, is being emulated, the
25th line (if any) is available for scrolling. If the mode line is disabled by an application or by the command SET
MODE OFF then the only way to revive Kermit’s mode line display is to give the command SET MODE ON.

1.6.10. The SET Command Page 43

SET PARITY
Syntax: SET PARITY {EVEN, ODD, MARK, SPACE, NONE}

Specify the character parity to be used on the currently selected port. You will need to SET PARITY to ODD,
EVEN, MARK, or possibly SPACE when communicating with a system, or over a network, or through modems,
concentrators, multiplexers, or front ends that require or impose character parity on the communication line. For
instance, most IBM mainframe computers use EVEN or MARK parity; Telenet normally uses MARK parity. If you
neglect to SET PARITY when the communications equipment requires it, the symptom may be that terminal
emulation works (well or maybe only partially), but file transfer or script INPUT commands do not work at all.

NONE means that no parity processing is done, and the 8th bit of each character can be used for data when
transmitting binary files. This is the normal case. If parity is other than none, then there will be 7 data bits (use of
parity with 8 data bits is not supported).

If you have set parity to ODD, EVEN, MARK, or SPACE, then Kermit-MS will request that binary files be
transferred using 8th-bit-prefixing. If the other Kermit knows how to do 8th-bit-prefixing (this is an optional feature
of the Kermit protocol, and some implementations of Kermit don’t have it), then 8-bit binary files can be transmitted
successfully. If NONE is specified, 8th-bit-prefixing will not be requested. Note that there is no advantage to using
parity. It reduces Kermit’s file transfer efficiency without providing additional error detection. The SET PARITY
command is provided only to allow Kermit to adapt to conditions where parity is required, or 8-bit transmission is
otherwise thwarted.

If parity is in use, then the display during terminal emulation, as well as any session log, will be 7-bit ASCII, unless
you have SET DEBUG ON (q.v.).

There may be situations in which you require 7-bit ASCII with no parity during terminal emulation, but still want to
force 8th bit prefixing during file transfer. To accomplish this, SET PARITY SPACE.

The INPUT and TRANSMIT commands use 7 or 8 bits if parity is NONE, according to the SET DISPLAY
command, and this may upset recognition of received characters when the host unexpectedly sends them with its
own parity.

WARNING: The SET PARITY command has no effect on a port used for printing. This is because printing is done
by DOS, not Kermit. Since Kermit clears hardware parity on COM1 at startup, it is not recommended that COM1
be used for a serial printer, unless the printer works with no parity.

SET PORT
Syntax: SET PORT {number, COMn, BIOSn, NET [nodename], UB-NET1 [nodename]}

On machines with more than one communications port, select the port to use for file transfer and CONNECT. This
command lets you use a different asynchronous adapter, or switch between two or more simultaneous remote
sessions. Subsequent SET SPEED, PARITY, HANDSHAKE, FLOW, and LOCAL-ECHO commands will apply to
this port only -- each port remembers its own parameters, so that you may set them for each port and then switch
between ports conveniently with the SET PORT command.

SET PORT 1 selects COM1, SET PORT 2 selects COM2. All versions default to port 1, except for the IBM PCjr,
which uses port 2 if its internal modem is installed. Additionally, COM3 and COM4 are supported for IBM
PC/AT’s and PS/2’s, as explained in Section 1.18.3.

SET PORT BIOSn, on machines which support it, instructs Kermit to do serial port input and output by Bios calls
rather than going directly to the hardware (n is a digit between 1 and 4). The most important use is allowing
selected network packages to intercept such Bios calls and relay the characters across the network.

Page 44 Kermit User Guide: MS-DOS KERMIT 1.6.10

In "generic" MS-DOS Kermit, the following alternate forms allow you to experiment with device names or numbers
until you find the communication port:

SET PORT {DEVICE, FILE-HANDLE}

Just type a carriage return after either of these commands, and you will be prompted for a device name or a numeric
port-handle. Keep trying till you find one that works. File-handle 3, the system auxillary device, is conventional on
many machines, as are device names COM1, COM2, and AUX.

MS-Kermit for the IBM PC family is able to operate over local area networks through the NetBIOS interface. The
command

SET PORT NET [nodename]

redirects communications the LAN board installed in the local computer and the associated NetBIOS emulator
software, if active, rather than the serial port or the COM device driver. It installs a unique Kermit node name in the
local LAN, so that other nodes can refer to it when files are transferred or terminal emulation is done. This name is
displayed when you give the SET PORT NET command. The server should use SET PORT NET, and the client
should use SET PORT NAME nodename, specifying the server’s name, e.g. mskermit.K. Note that alphabetic
case is significant in node names!

Both the regular serial port and a network connection can be kept alive simultaneously; clearly, only one can be used
at a time under MS-DOS. MS-DOS 3.x is not required for Kermit network usage, but most LANS do need DOS 3.1
or later for conventional file server work. Kermit needs only the NetBIOS emulator network software.

SET PORT UB-NET1 is implemented on the IBM PC version of Kermit to allow connection to Ungermann-Bass
Net One LAN NETCI interface and behaves similarly to the NetBIOS method.

SET PROMPT
Syntax: SET PROMPT [string]

This command allows you to change the MS-DOS Kermit program’s prompt. The string may be enclosed in curly
braces. Control characters like ESC can be included as backslashed numbers like ‘‘\27’’. ANSI.SYS and similar
console drivers can be programmed through this command to get a boldface, inverse, and/or blinking prompt. The
prompt string must be less than 128 characters. If the string is omitted (missing) Kermit’s original prompt of
‘‘Kermit-MS>’’ is restored.

SET RECEIVE
Syntax: SET RECEIVE parameter value

This command lets you modify the ways in which MS-Kermit asks the other Kermit to behave. That is, it controls
the file transfer protocol options for packets sent to MS-Kermit by the other Kermit. The parameters and values you
specify in the SET RECEIVE command are sent to the other Kermit during initial negotiations. Numbers may be
specified as ordinary decimal numbers (74), or in backslash notation (\x03F).

END-OF-LINE number
The ASCII value of terminating character to look for on incoming packets. Normally carriage return. Use
this command if the other Kermit is terminating its packets with some other control character.

PACKET-LENGTH number
Ask the remote Kermit to use the specified maximum length for packets that it sends to Kermit-MS. The
normal length is 94 bytes. Use this command to shorten packets if the communication line is noisy or
terminal buffers somewhere along the path are too small. Shorter packets decrease the probability that a
particular packet will be corrupted, and will reduce the retransmission overhead when corruption occurs,
but will increase the file transfer throughput.

1.6.10. The SET Command Page 45

If a length greater than 94 is specified, a protocol option called "long packets" will be used, provided the
other Kermit also supports it. Kermit-MS can receive extended-length packets up to 1000 bytes long.
Long Packets can improve efficiency by reducing the per-packet overhead for a file, but they will not be
used unless you issue this command. Before using this option, ensure that the equipment on the
communications pathway can absorb a long packet, and that the connection is clean (retransmission of
long packets is expensive!). You should also SET BLOCK-CHECK 2 or 3 for more reliable error
checking.

PADCHAR number
Ask the remote Kermit to use the given control character (expressed as a decimal number 0-31, or 127) for
interpacket padding. Kermit-MS should never require any padding.

PADDING number
Ask the remote Kermit to insert the given number of padding characters before each packet it sends.
MS-Kermit never needs padding, but this mechanism might be required to keep some intervening
communication equipment happy.

START-OF-PACKET number
If the remote Kermit will be marking the beginning of packets with a control character other than
Control-A, use this command to tell Kermit-MS about it (the number should be the decimal ASCII value
of a control character). This will be necessary only if the hosts or communication equipment involved
cannot pass a Control-A through as data, or if some piece of communication equipment is echoing packets
back at you.

TIMEOUT number
Ask the remote Kermit to time out and retransmit after the given number of seconds if a packet expected
from Kermit-MS has not arrived. Use this command to change the other Kermit’s normal timeout
interval.

SET REMOTE
Syntax: SET REMOTE {ON, OFF}

SET REMOTE ON removes the file transfer display (as if you had given the command SET DISPLAY QUIET). It
should be used when you are running Kermit-MS in remote mode when coming in from another PC through the
Kermit-MS’s "back port", to which the console has been reassigned using the DOS CTTY command, e.g.

CTTY COM1

It is necessary to issue the SET REMOTE ON command because (a) Kermit-MS has no way of knowing that its
console has been redirected, and (b) when the console is the same as the port, the file transfer display will interfere
with the file transfer itself. SET REMOTE OFF returns the file transfer display to its preferred style (REGULAR or
SERIAL). When you SET REMOTE ON, you might also want to SET DELAY 5 or thereabouts, to allow yourself
time to escape back to the local system before MS-Kermit starts sending packets.

On the IBM PC, CTTY CON returns control to the normal keyboard and screen (other systems may use other device
names, e.g. SCRN). See section 1.18.4 for further details about remote operation.

If you are using a port other than COM1 on the remote MS-Kermit, you must give it an appropriate SET PORT
command.

WARNING: During CTTY console redirection, many programs still output to the real screen and require input from
the real keyboard and will hang the system until keyboard requests are satisfied.

Page 46 Kermit User Guide: MS-DOS KERMIT 1.6.10

SET RETRY
Syntax: SET RETRY number

Sets the number of times a packet is retransmitted before the protocol gives up. The number of retries can be
between 1 and 63, and is 5 by default. This is an especially useful parameter when the communications line is noisy
or the remote host is very busy. The initial packet of a file exchange is given three times as many retries to allow
both systems to become ready.

SET SEND
Syntax: SET SEND parameter value

The SET SEND command is used primarily to override negotiated protocol options, or to establish them before they
are negotiated.

END-OF-LINE number
ASCII value of packet terminator to put on outbound packets. Normally carriage return. Use this
command if the other Kermit needs its packets terminated with a nonstandard control character.

PACKET-LENGTH number
Use this as the maximum length for outbound packets, regardless of what the other Kermit asks for.
Normally, you would use this command only to send shorter packets than the other Kermit requests,
because you know something the other Kermit doesn’t know, e.g. there’s a device on the communication
path with small buffers.

PADCHAR number
Use the specified control character for interpacket padding. Some hosts may require some padding
characters (normally NUL or DEL) before a packet, and certain front ends or other communication
equipment may need certain control characters to put them in the right modes. The number is the ASCII
decimal value of the padding character, (0 - 31, or 127).

PADDING number
How many copies of the pad character to send before each packet, normally zero.

PAUSE number
How many milliseconds to pause before sending each packet, 0-127, normally zero. This may help
half-duplex or slow systems prepare for reception of our packet. Padding characters are sent only after the
time limit expires.

QUOTE number
Use the indicated printable character for prefixing (quoting) control characters and other prefix characters.
The only reason to change this would be for sending a very long file that contains very many ‘‘#’’
characters (the normal control prefix) as data.

START-OF-PACKET number
Mark the beginning of outbound packets with some control character other than Control-A. This will be
necessary if the remote host or the communication channel cannot accept a Control-A as data, or if it
echoes back your packets. The remote host must have been given the corresponding SET RECEIVE
START-OF-PACKET command.

TIMEOUT number
Change Kermit-MS’s normal timeout interval; this command is effective only if TIMER is set to be ON; it
is normally ON, with a default interval of 13 seconds.

SET SERVER
Syntax: SET SERVER TIMEOUT seconds

Specify how often the MS-DOS Kermit server should send NAK packets while waiting for commands. These NAK
packets are used to recover from deadlocks that might occur when the other Kermit sends an initial packet which is
lost, but does not have the capability to time out and retransmit it. These NAKs can be supressed entirely by
specifying a value of zero. This may be necessary to avoid interfering with certain modems or PBXs that go into

1.6.10. The SET Command Page 47

originate mode when they receive input from the PC, when in fact you want the device to be in answer mode.

SET SPEED
Syntax: SET SPEED rate

Set the transmission speed (in bits per second, commonly called baud) of the currently selected terminal
communications port to 300, 1200, 1800, 2400, 4800, 9600, or other common speed, and on the IBM PC family,
higher speeds including 19200, 38400, 57600, and 115200. Both connected systems, as well as any intervening
communication equipment, must be able to support the specified transmission speed, and both systems should be set
to the same speed.

Some implementations do not support the SET SPEED command. But Kermit-MS leaves the current
communication port settings alone unless you issue explicit SET commands to change them, so you may use MODE
or other DOS programs to establish the desired settings before running Kermit.

On certain systems, when you first run Kermit after powering the system up, you may get a message "Unrecognized
baud rate". This means that Kermit tried to read the baud rate from the port and none was set. Simply use SET
SPEED (if available) or the DOS MODE command to set the desired baud rate.

SET BAUD is a synonym for SET SPEED.

SET TAKE-ECHO
Syntax: SET TAKE-ECHO {ON, OFF}

Specifies whether screen display should occur during implicit or explicit TAKE operations on MSKERMIT.INI or
other Kermit-MS command files, and during evaluation of macro definitions by the DO command. Handy for
finding errors in TAKE files or macro definitions.

SET TERMINAL
Syntax: SET TERMINAL {type, parameter [value]}

This command controls most aspects of terminal emulation. Most of the parameters are only settable (or
meaningful) on the IBM PC family and compatibles. (Programmers who are proficient on other MS-DOS systems
are invited to fill in these functions for those systems and send the results back to Columbia.) On other systems,
built-in setup modes or DOS commands can be used to accomplish the same functions.

The first group of parameters tells which kind of terminal to emulate. When Kermit-MS uses its built-in software
for emulation, incoming characters are examined for screen control commands (escape sequences) specific to that
terminal, and if encountered, the commands are executed on the PC screen.

NONE Act as a dumb terminal. All incoming characters will be sent to the screen "bare", as-is, through DOS. If
you have loaded a device driver into DOS for the CON device, such as ANSI.SYS, then that driver will be
able to interpret the codes itself. Many non-IBM systems have their own screen control code interpreter
built into DOS or firmware, or available as a loadable device driver.

VT52 The DEC VT-52 terminal.

HEATH The Heath/Zenith-19 terminal (H19), which supports all the VT52 commands, plus line and character
insert/delete editing functions, an ANSI mode, and a 25th line.

VT102 The DEC VT102 (ANSI) terminal, which is the same as the VT100 but also supports line/character
insert/delete editing functions and ANSI printer controls.

TEK4010
A Tektronix 4010 graphics terminal. Currently only available on IBM, TI, and Victor PCs. On the IBM
family, Kermit automatically senses and adapts to the CGA, EGA, Monochrome, Hercules, or ATT style
board.

Page 48 Kermit User Guide: MS-DOS KERMIT 1.6.10

On the IBM family, you may "toggle" among the supported terminal emulations by typing Alt-Minus.

The specific escape sequences supported by Kermit for each of these terminal types are listed in section 1.17.1.
Note that when a Kermit program includes Tektronix emulation, this can be invoked automatically while in
character mode (VT102, VT52, or Heath emulation) when the emulator receives certain escape sequences. This can
be turned off using the DISABLE TEK command.

The remaining SET TERMINAL commands specify setup options for the selected terminal:

CHARACTER-SET {UK, US, ALTERNATE-ROM}
UK displays ‘‘#’’ (ASCII 35, number sign) as a pound sterling sign, US displays ‘‘#’’ as ‘‘#’’.
ALTERNATE-ROM maps accent grave and the lowercase letters to be national characters in the IBM
video adapter. That is, character codes of 60h to 7Ah (accent grave, lower case a-z) are mapped to codes
80h to 9Ah. The SET TERMINAL CHARACTER-SET command applies only during VT100/102
emulation.

CLEAR-SCREEN
Clears the screen, so that a subsequent CONNECT command shows a blank screen. The action taken is
identical to Kermit’s \Kreset verb.

COLOR number [, number [, number]]
Several numbers, applied in left to right sequence, separated by commas or spaces:

0 Reset the colors to normal intensity white characters on a black background and use the "no-snow"
mode on the IBM Color Graphics Adapter (CGA).

1 High intensity foreground
10 Request fast screen updating for use on the IBM Mono, EGA, or VGA (usually sensed and set

internally by Kermit), and some non-IBM CGAs.
3x Foreground color
4x Background color

where x is a single digit from 0 to 7, which is the sum of the desired colors:

1 Red
2 Green
4 Blue

Example: "SET TERMINAL COLOR 0 1 37 44" on an IBM CGA would produce bold white characters
on a blue field with no snow. The snow removal business has to do with whether the program should
synchronize with vertical retrace when updating screen memory. This is necessary with certain color
adaptors (like the CGA) and unnecessary for others (like the EGA).

CURSOR-STYLE {BLOCK, UNDERLINE}
Sets the cursor rendition to your preference. Note that on some early IBM PCs and compatibles, the
cursor may not be restored correctly after escaping back from CONNECT because of a bug in the early
IBM BIOS.

DIRECTION {LEFT-TO-RIGHT, RIGHT-TO-LEFT}
Controls the direction of screen display during CONNECT. You may use Right-to-Left for Hebrew or
Arabic, provided you have the appropriate character sets loaded.

KEYCLICK {ON, OFF}
Turns electronic keyclick ON or OFF. If your keyboard has a mechanical clicker (as IBM boards do), you
may not notice the effect of this command.

GRAPHICS {AUTO-SENSING, CGA, EGA, VGA, HERCULES, ATT}
Manually selects the kind of display adapter for Tektronix graphics. AUTO-SENSING is the default,
VGA means 640x480x16 colors, and ATT encompasses the ATT 6300 series, Olivetti M24/M28, DEC
VAXmate II, and the Toshiba T3100 in 640x400 b/w (see Table 1-5).

MARGIN-BELL {ON, OFF}
Controls whether the bell should be sounded when the cursor passes column 72 near the right screen
margin; wider displays set the bell 8 columns from the right edge.

1.6.10. The SET Command Page 49

NEWLINE-MODE {ON, OFF}
ON sends a carriage-return-linefeed combination (CRLF) when you type carriage return (CR) during
terminal emulation. OFF (default) just sends a CR when you type CR. Useful in conjunction with SET
LOCAL-ECHO ON when CONNECTing two PC’s back-to-back.

ROLL {ON, OFF}
ON unrolls the screen to the bottom before adding new material if the screen had been rolled back, e.g. by
Ctrl-PgUp. ROLL OFF (the default) displays new material on the current screen, possibly overwriting old
material.

SCREEN-BACKGROUND {NORMAL, REVERSE}
NORMAL means dark background, light characters. REVERSE means light background, dark characters.

TAB {AT n, CLEAR AT n, CLEAR ALL}
Sets tab stops or clears one or all tab stops; n is the numeric position of the tab to be set or cleared. By
default, tabs are every 8 spaces, at positions 9, 17, 25, etc. Only meaningful when emulating a terminal
that has settable tabs (the VT52 doesn’t really but the emulator can set them anyway). More than one
tabstop may be specified by separating column numbers with commas, spaces, or tabs. You may also use
the notation "m:n" to specify regularly spaced tabs across the screen, where m is the initial tab position,
and n is the spacing between tabs. 132 columns are supported.

WRAP {ON, OFF}
ON automatically breaks screen lines (by inserting a CRLF) when they reach the right margin. OFF
disables wrapping -- if a line is too long, the excess characters go off the screen. WRAP is OFF by
default, since most hosts format lines to fit on your screen.

SET TIMER
Syntax: SET TIMER {ON, OFF}

This command enables or disables the timer that is used during file transfer to break deadlocks that occur when
expected packets do not arrive. By default, the timer is ON. If the other Kermit is providing timeouts, you can
safely turn the timer OFF to avoid unnecessary retransmissions that occur when two timers go off simultaneously.

SET TRANSLATION
Syntax: SET TRANSLATION INPUT {ON, OFF, char1 char2}

This command provides multi-language support (and perhaps other special effects) during CONNECT, and during
execution of the INPUT, OUTPUT, PAUSE, and TRANSMIT script commands, but not during file transfer or at
MS-Kermit command level. A character that arrives at the communication port (char1) will be translated to another
character (char2) before display on the screen. As many as 256 characters may have translations specified
concurrently. But to see characters with ASCII values higher than 127, you must also SET DISPLAY 8 and SET
PARITY NONE.

SET TRANSLATION INPUT ON enables translation (the keyword INPUT is required to allow future translation
mechanisms). OFF disables the translation and is the default. So even if you have set up a translation table, you
must SET TRANSLATION INPUT ON before it will take effect. SHOW TRANSLATION tells whether translation
is OFF or ON, and displays any current table entries.

Translation table entries are made by specifying byte pairs in ASCII or numeric backslash form:

SET TRANS INPUT \3 \13

converts incoming ASCII ETX characters (decimal 3) to ASCII CR (decimal 13). 8-bit values are allowed, and
refer to characters in the "upper half" of the PC’s character set, either the ROM characters supplied with the PC or
else substitutions provided by a special device driver.

A more practical example shows how the user of a German PC could use the SET TRANSLATION and SET KEY
commands to make the PC’s umlaut-a key (key code 132) send a left curly brace (‘‘{’’, ASCII 123), and to display
incoming curly braces as umlaut-a’s:

Page 50 Kermit User Guide: MS-DOS KERMIT 1.6.10

SET KEY \d132 \d123
SET TRANS INP { \d132

(This example applies to the IBM PC German keyboard, and assumes the German keyboard driver, KEYBGR, has
been loaded. This is usually done in AUTOEXEC.BAT.)

SET WARNING
Syntax: SET WARNING {ON, OFF}

Specify what to do when an incoming file is about to be stored under the same name as an existing file in the target
device and directory. If ON, Kermit will warn you when an incoming file has the same name as an existing file, and
automatically rename the incoming file (as indicated in the warning message) so as not to destroy (overwrite) any
existing one. If OFF, the pre-existing file is destroyed, even if the incoming file does not arrive completely.
WARNING is ON by default as a safety measure, and the current setting may be observed in the SHOW FILE
display.

The new name is formed by adding numbers to the part of the name before the dot. For instance, ABC.TXT
becomes ABC00001.TXT, ABC00001.TXT becomes ABC00002.TXT, etc. If the name already has eight
characters, then digits replace the rightmost characters.

1.6.11. The STATUS and SHOW Commands

The values of MS-Kermit options that can be SET, DEFINEd, ENABLEd, or DISABLEd can be displayed using the
STATUS or SHOW commands.

The STATUS Command
Syntax: STATUS

The STATUS command displays the values of the current SET options on a single screen. There are no operands
for the STATUS command. Use the SHOW command to see logically-grouped settings, e.g. SHOW
COMMUNICATIONS, SHOW TERMINAL.

The SHOW Command
Syntax: SHOW option

The SHOW command is used for displaying communication parameters, protocol settings, macro definitions, key
redefinitions, file transfer statistics, translations, and other common groupings.

SHOW COMMUNICATIONS
displays the settings of the current serial port (port, speed, parity, echo, etc) and the status of modem
signals Carrier Detect, Data Set (modem) Ready, and Clear To Send.

SHOW FILE
displays the file transfer control settings, such as the current path, file discard, attributes packets on/off,
warning, end-of-file convention, etc.

SHOW KEY
allows you to determine a key’s identification code and what it will send in CONNECT mode, most useful
for obtaining the identification of a key when SET KEY commands will be placed in a TAKE file. This
command can be done only interactively (use a ? to see all defined keys). Refer to the SET KEY
description for details.

SHOW LOGGING
Displays the names of the session, packet, and transaction logs, and tells whether logging is in effect.

1.6.11. The STATUS and SHOW Commands Page 51

SHOW MACROS [macroname]
displays the definitions of all currently defined macros, as well as the amount of space left for new macro
definitions. A macro name, or abbreviation, can be included to restrict the list, e.g. SHOW MACRO IBM
will display the definition of the IBM macro, and SHOW MACRO X will list the definitions of all macros
whose names begin with X.

SHOW MODEM
displays the status of the modem signals DSR (dataset ready, modem tells the PC that it is turned on and in
data mode), CTS (clear to send, modem grants the PC permission to send data), and CD (carrier detect,
local modem tells the PC that it is connected to the remote modem). The results may be misleading if
your asynchronous adapter, or the connector or cable that is attached to it, is strapped to supply these
modem signals itself.

SHOW PROTOCOL
displays the values of the Kermit protocol-related parameters, including all the SET SEND and SET
RECEIVE parameters, plus whether the timer, attribute packets, and logging are enabled.

SHOW SCRIPTS
displays the script-related variables.

SHOW SERVER
displays which server functions are enabled and disabled.

SHOW STATISTICS
displays counts of characters sent and received during file transfers, for both the most recent transfer and
the entire session, and an estimate of the average baud rate while sending and listening.

SHOW TERMINAL
displays the terminal settings, which terminal is being emulated, the tab stops, etc.

SHOW TRANSLATION
displays the entries in the 256 byte input translation table. Values are expressed numerically to avoid
confusion with different display adapters, and the command shows only entries for which input and output
codes differ.

1.7. Macros

Like TAKE files, macros provide a way of collecting many commands into a single command. The difference
between a macro and a TAKE file is that Kermit keeps all its macro definitions in memory, and can execute them as
many times as you like, without having to look them up on disk, whereas every time you issue a TAKE command,
Kermit has to access a disk. But . . . you can have as many TAKE command files as you like, and they can be as
long as you want, whereas MS-Kermit’s memory for storing macro definitions is limited. You can put macro
definitions and DO commands for them in TAKE files, or for that matter, you can put TAKE commands in macro
definitions. There is a limit of 25 simultaneously active TAKE files plus active macros; a TAKE file or macro
remains active if the last item invokes another TAKE or macro command. Active here means Kermit is reading
commands from them, not just storing them for later.

The DEFINE Command
Syntax: DEFINE macro-name [command [, command [, ...]]]

Kermit-MS command macros are constructed with the DEFINE command. Any Kermit-MS commands may be
included. Example:

define telenet set parity mark, set speed 1200, connect

A macro can be undefined by typing an empty DEFINE command for it, like

define telenet

A macro definition may be up to 255 character long. This example shows a long definition in which lines are
continued with hyphenation:

Page 52 Kermit User Guide: MS-DOS KERMIT 1.7

define setup set port 1, set speed 19200, set parity even,-
set flow none, set handshake xon, set local-echo on,-
set timer on, set terminal color 1 31 45,-
set warning on, set incomplete keep, connect

Longer definitions can be accomplished by "chaining." Example:

define setup set port 1, set speed 19200, set par even, do setup2
define setup2 set flo no, set handsh xon, set local on, do setup3
define setup3 set timer on, set terminal color 1 31 45, do setup4
define setup4 set warning on, set incomplete keep, connect

DO SETUP or just SETUP will invoke all of these commands. Commas are used to separate commands in macro
definitions; carriage returns (\13) cannot be used. When control or other special characters are needed in a macro
they may be expressed in backslash number form, \nnn.

The SHOW MACROS command displays the values of currently defined macros, and tells how much space is left
for further definitions.

The definition of the macro is entered literally; variables are not evaluated (see ASSIGN, below).

The DO Command
Syntax: [DO] macro-name [parameters...]

A Kermit-MS macro is invoked using the DO command. For instance, Kermit-MS comes with a predefined macro
to allow convenient setup for IBM mainframe line-mode communications; to invoke it, you would type DO IBM.
The IBM macro is defined as "set timer on, set local-echo on, set parity mark, handshake xon, set flow none". You
can use the DEFINE command to redefine this macro or remove the definition altogether.

There is no automatic way to undo the effect of a macro. If you need to accomplish this effect, you should define
another macro for that purpose. For instance, to undo the effect of "do ibm" so that you could connect to, say, a
DEC VAX, you could:

def vax set parity none, set handshake none, set flow xon/xoff,-
set timer off, set local-echo off

Then you can "do ibm" whenever you want to use the IBM system, and "do vax" whenever you want to use the
VAX.

If you wish to view the macro expansion whenever you issue a DO command, you can SET TAKE-ECHO ON.

As a convenience the word DO may be omitted. However, when question-mark help is sought at the Kermit
prompt, only the main keyword help table will be shown. If you want to see the available macros, type "do ?" or
SHOW MACROS. Use of DO is recommended for overall clarity unless a favorite macro is executed frequently.

Variables
Macros can use substitution variables similar to those of DOS Batch. The name of a substitution variable is of the
form "\%character", where the single character is a digit or a letter or other 8-bit character whose ASCII value is 48
decimal or larger; upper and lower case letters are considered to be the same character. A substitution variable is
defined as a string of text by the DEFINE command (the variables are in fact macros) and Kermit replaces
occurrences of the variable name with that text, hence the word "substitution". For example,

Kermit-MS>define \%a this is substituted material
Kermit-MS>echo I wonder if \%a or not.

yields the display:

I wonder if this is substituted material or not.

1.7. Macros Page 53

Another example:

Kermit-MS>define \%c set port 1,set speed 9600,set parity even,connect

Then

Kermit-MS>\%c

is equivalent to

Kermit-MS>set port com1
Kermit-MS>set speed 9600
Kermit-MS>set parity even
Kermit-MS>connect

The special subset of substitution variables, \%1 .. \%9, is similar to the DOS Batch variable set %1 .. %9.
The DO command can accept arguments after the macro name and the individual words in the arguments become
the definitions of \%1, etc, for up to nine words, in order. For example, given the following definition:

def dial ATDT\%1\13,input 30 CONNECT,connect,in Login:,out \%2\13

the following command can be used to dial any phone number:

Kermit-MS>do dial 555-1212 myname

The word DO may be omitted, as in:

Kermit-MS>dial 555-1212 myname

This command automatically assigns the value "555-1212" to variable the \%1 and "myname" to \%2, and uses
these values while dialing the phone and logging into the host system. If fewer than nine words are seen the
remaining variables are not changed. For example, if the line above was busy, you could dial a different number and
omit the username because it will be remembered from last time.

If it is desired to assign multiple words to a single variable, they can be grouped in braces, for example

Kermit-MS>dial {212 555 1212} myname

Substitution variables can reference other substitution variables in their definitions. Care is needed to prevent
circular definitions, but even those are detected by Kermit. Subtle circular executions could cause Kermit to go into
an endless loop; if you think this is happening, type a Control-C to interrupt the process. To clarify matters, the
definition string of a variable is substituted for the variable’s name when the name is observed in a left to right scan
of a command. For example,

Kermit-MS>define \%a echo This is \%b example: \%b.
Kermit-MS>define \%b a mac\%c expansion
Kermit-MS>define \%c ro string
Kermit-MS>\%a

displays:

This is a macro string expansion example: a macro string expansion.

If this example is entered manually then when the final \%a is typed the command line is immediately replaced with
the fully expanded command and more input is solicited (such as a carriage return). Try it. Check the variable
definitions with the SHOW MACRO command.

A variable can be undefined (deleted) by defining it as an empty string:

Kermit-MS>define \%c

DOS batch file arguments may be transformed into Kermit variables. Suppose file TEST.BAT holds the line:

Kermit define \%%1 %1, define \%%a %2, stay

Invoking the Batch file by:

Page 54 Kermit User Guide: MS-DOS KERMIT 1.7

C>test one two

results in creating Kermit variables \%1 with definition of "one" and \%a with definition "two". The doubled
percent symbols in the Batch file are needed to compensate for one of them being consumed by the DOS Batch
processor. %1 is the first Batch argument word, %2 is the second word. The syntax \%%1 is converted by Batch to
be \%1 when seen by Kermit, without further substitution by Batch.

The ASSIGN Command
Syntax: ASSIGN

The DEFINE command does not evaluate the definition. For instance, the command

define \%a \%1

simply defines the variable \%a to be ‘‘\%1’’, not the current value of \%1 -- if \%1 changes, then so does \%a.
To copy the value of one variable to another, use the ASSIGN command:

assign \%a \%1

This copies the value of \%1 to \%a, so that if \%1 changes, \%a will retain the previous value. Example:

Kermit-MS>define \%a foo
Kermit-MS>define \%b \%a
Kermit-MS>echo \%a \%b
foo foo
Kermit-MS>assign \%c \%a
Kermit-MS>define \%a new
Kermit-MS>echo \%a \%b
new new
Kermit-MS>echo \%a \%c
new foo

1.8. SCRIPTS

A script is a file or a macro containing Kermit commands to be executed. What distinguishes a script from ordinary
TAKE files or macros is the presence of INPUT, REINPUT, OUTPUT, PAUSE, ECHO, ASK, CLEAR, IF, GOTO,
and WAIT commands to automatically detect and respond to information flowing though the serial port, actions
which otherwise would be performed by the user during CONNECT. The login sequence of a host computer is a
classical example.

It is a common, but incorrect, assumption that text to be sent to the remote computer can be included in a TAKE file
after the CONNECT command:

set speed 9600 ; MS-Kermit command
connect ; MS-Kermit command
run kermit ; Text to be sent to other system
send foo.bar ; Text to be sent to other system
^]c ; Escape sequence to get back to MS-Kermit
receive ; MS-Kermit command

The reason this doesn’t work is that during CONNECT, MS-Kermit always reads from the real keyboard, and not
from the take file. Even if this technique did work, it would still run into synchronization problems. But these can
be avoided when there is a way to coordinate the commands that we send with the remote system’s responses.
Kermit’s script commands provide this ability. They may be freely intermixed in a TAKE file or macro with any
other Kermit commands to achieve any desired effect. The OUTPUT command sends the specified characters as if
the user had typed them; the INPUT command reads the responses and compares them with specified character
strings, just as the user would do.

The script commands include INPUT, REINPUT, OUTPUT, PAUSE, WAIT, ECHO, IF, ASK, and GOTO. These
commands may be interrupted by typing Ctrl-C at the keyboard. The INPUT, REINPUT, PAUSE, and WAIT

1.8. SCRIPTS Page 55

commands accept a following number as a timeout value. The number is interpreted as seconds from the present or,
if given in hh:mm:ss form, as a specific time of day. In either case, the timeout interval must be within 12 hours
of the present to avoid it being considered as in the past (expired).

HINT: It is recommended that a console driver such as ANSI.SYS be loaded during executing of a script. This is
because Kermit’s terminal emulator is active only during the CONNECT command, and any PC/host interactions
that occur during script execution may appear fractured on the screen. This is particularly true of full-screen login
applications, like through an IBM 3270 protocol converter.

The CLEAR Command
Syntax: CLEAR

The CLEAR command empties the buffers of the serial port to forget any earlier material. This gets the INPUT
command off to a clean start. (This command was called CLRINP in 2.29B and earlier, and CLEAR was used to
erase macro and key definition memory).

The ECHO Command
Syntax: ECHO text

The ECHO command is useful for reporting progress of a script, or prompting the user for interactive input. The
text is displayed on the screen, and may include backslash notation for control or 8-bit characters. An implied
linefeed is included at the beginning of the text.

SET INPUT
Syntax: SET INPUT {CASE, DEFAULT-TIMEOUT, ECHO, TIMEOUT-ACTION}

The SET INPUT command controls the behavior of the script INPUT command:

SET INPUT CASE {IGNORE, OBSERVE}
Says whether or not to distinguish upper and lower case letters when doing a matchup in the INPUT command.
OBSERVE causes upper and lower case letters to be distinguished. The default is to IGNORE case
distinctions.

SET INPUT DEFAULT-TIMEOUT seconds
Changes the default waiting time from one second to this new value. The value is used when an INPUT
command has no timeout specified.

SET INPUT ECHO {ON, OFF}
Show on the screen characters read from the serial port during the script operation, or not. Default is ON, show
them.

SET INPUT TIMEOUT-ACTION {PROCEED, QUIT}
Determines whether or not the current macro or TAKE command file is to be continued or exited if a timeout
occurs. PROCEED is the default and means that timeouts are ignored. QUIT causes the current script file to
be exited and control passed to either the next higher level script file (if there is one) or to Kermit’s main
prompt.

The SHOW SCRIPTS command displays the SET INPUT values.

The INPUT command
Syntax: INPUT [timeout] {search-string, @filespec}

INPUT is the most powerful of the script commands. It reads characters from the serial port continuously until one
of two things occurs: the received characters match the search string or the time limit expires. Matching strings is
the normal use, as in:

Kermit-MS>input 5 Login please:

Page 56 Kermit User Guide: MS-DOS KERMIT 1.8

to recognize the phrase "Login please:", or else time out after waiting for 5 seconds. A special binary character
\255 or \o377 or \xFF stands for the combination carriage return and a line feed, in either order, to simplify
pattern matching. The command reports a testable status of SUCCESS or FAILURE and sets the DOS
ERRORLEVEL parameter to 2 if it fails to match within the timeout interval. Characters are stored in a 128 byte
buffer for later examination by REINPUT, discussed below.

Beware of characters arriving with parity set because the pattern matching considers all 8 bits of a byte unless the
local parity is other than NONE and SET DISPLAY is 7-BITS. Arriving characters are modified by first removing
the parity bit, if parity is other than NONE, then they are passed through the SET TRANSLATION INPUT
converter, the high bit is again suppressed if SET DISPLAY is 7-BITs, the result is logged and stored for pattern
matching.

The REINPUT command
Syntax: REINPUT [timeout] {search-string, @filespec}

The REINPUT command is like INPUT except that characters are read from the 128 byte serial port history buffer
rather than always seeking fresh input from the port. The purpose is to permit the current text to be examined
several times, looking for different match strings. A common case is reading the results of a connection message
from a modem which might be "CONNECT 1200" or "CONNECT 2400", depending on the other modem. If the
history buffer has less than 128 bytes then fresh input may be requested while seeking a match, until the buffer is
full. REINPUT match searches begin at the start of the buffer whereas INPUT searches never go back over
examined characters. REINPUT sets the testable status of SUCCESS or FAILURE and DOS ERRORLEVEL, just
as for INPUT.

When a script fails because an INPUT or REINPUT command did not encounter the desired string within the
timeout interval the message "?Timeout" is displayed.

The OUTPUT command
Syntax: OUTPUT {string, @filespec}

The OUTPUT command writes the indicated character string to the serial port as ordinary text. The string may
contain control or other special binary characters by representing them in backslash form. Carriage Return (CR),
for example, is \13 decimal, \o15 octal, or \x0D hexadecimal. The string may use 8-bit characters if the
communications parity is type NONE. A special notation is also provided, \b or \B, which causes a BREAK signal
to be transmitted.

The string to be transmitted starts with the first non-spacing character after the OUTPUT command and ends at
either the end of line or, if executed within a TAKE file, at a semicolon (if you need to output a semicolon from
within a TAKE file, use backslash notation, e.g. ‘‘\59’’). Indirectly obtained strings, the @filespec form, read the
first line of the file up to but not including the explicit carriage return.

As a convenience, text arriving at the serial port during the OUTPUT command is shown on the screen if SET
INPUT-ECHO is ON, and stored in a 128-byte internal buffer for rereading by subsequent (RE)INPUT commands.

The INPUT, REINPUT, and OUTPUT commands have a special syntax to replace the normal string with text
obtained from a file or device:

OUTPUT @filespec
INPUT @filespec

Both forms read one line of text from the file or device and use it as the desired string. A common use is to wait for
a password prompt and then read the password from the console keyboard. A string starts with the first non-spacing
character and ends at either the end of line or, if executed within a TAKE file, at a semicolon. Indirectly obtained
strings, the @filespec form, read the first line of the file up to but not including the explicit carriage return. Note if a
trailing carriage return is needed it must be expressed numerically, such as \13 decimal. Example:

1.8. SCRIPTS Page 57

input 7 Password:
echo Please type your password:
output @con
output \13
echo \13\10Thank you!

In this example, a TAKE file requests the user to type in the password interactively, so that it does not have to be
stored on disk as part of the TAKE file.

The PAUSE command
Syntax: PAUSE [{number, hh:mm:ss}]

PAUSE turns on the DTR signal, and then waits one or more seconds, or until the specified time of day. Pauses are
frequently necessary to avoid overdriving the host and to let a modem proceed through a dialing sequence without
interruptions from Kermit. The default waiting time is set by SET INPUT DEFAULT-TIMEOUT and is normally
one second. The optional integer number selects the number of seconds to pause for this command, and the
hh:mm:ss selects a specific time of day. An explicit value of zero produces a pause of just a few milliseconds which
can be useful in some situations.

Text arriving during the PAUSE interval is shown on the screen, if SET INPUT-ECHO is ON, and stored in a
128-byte internal buffer for rereading by a following INPUT command.

PAUSE is interrupted if there is any activity on the keyboard. Thus PAUSE can be useful for operations like:

echo "Type any key when ready..."
pause 9999

PAUSE is useful in scripts that are to be executed at some future time. For instance, if you want your PC to dial up
another computer and transfer some files at 9:30pm, when the phone rates are lower, you can put the command

PAUSE 21:30:00

in your script file. Note that you cannot specify a time more than 12 hours in the future. If you need to pause until a
specific time that is more than 12 hours away, you can use multiple PAUSE statements:

PAUSE 21:30:00 ; Pause until 9:30pm tonight
PAUSE 9:30:00 ; Pause until 9:30am tomorrow morning

Because PAUSE turns on the DTR signal, it can be useful in scripts where DTR must be asserted for a second or
two to wake up the device your PC is connected to, before you can send any characters to it:

pause 1 ; Assert DTR and pause for 1 second
output \13 ; Send a carriage return

The WAIT Command
Syntax: WAIT [{number, hh:mm:ss}] [\CD] [\CTS] [\DSR]

WAIT performs a timed PAUSE, as above, but also examines the modem control signals Carrier Detect (\CD),
Clear To Send (\CTS), and/or Data Set (modem) Ready (\DSR). If all of the signals specified in the WAIT
statement are ON, or become ON before the timeout interval, the wait operation ceases with an indication of
SUCCESS. If the time interval expires without all of the specified signals on, the status is FAILURE. Example:

Kermit-MS> wait 12:45:00 \cd \dsr

This waits until both CD and DSR asserted or until 45 minutes past noon, whichever happens first, returning
SUCCESS or FAILURE respectively.

If no modem signals are specified, then WAIT is the same as PAUSE.

Page 58 Kermit User Guide: MS-DOS KERMIT 1.8

Labels and the GOTO Command
Labels and the GOTO command work together in the same fashion as in DOS Batch files. A label is a line which
starts with a colon (:) in the leftmost column followed immediately by a word of text (no intervening spaces);
material on the line after the label is ignored. The GOTO command is followed by a label, the leading colon is
optional in the GOTO command. The label may be located either before or after the GOTO command and is found
by searching the TAKE file or macro from the beginning. Thus, duplicated labels will always use the first
occurrence. The target label must be in the current TAKE file or macro; one may not GOTO a label in another
TAKE file or macro. Example:

:LOOP
echo again and\32
goto loop

will print "again and again and again and..." forever (until you type Ctrl-C). As a macro:

define test :loop,echo again and\32,goto loop
do test

Note that if a label follows a comma in a macro definition, there must be no intervening spaces:

define test ..., :top, ..., goto top ; bad, space before colon.
define best ...,:top, ..., goto top ; good, no space.

In this example, the best macro will work, the test macro won’t.

The IF Command
Syntax: IF test-condition MS-Kermit Command

The IF command gives MS-Kermit scripts the ability to make a decision based upon the criterion specified as the
test-condition. If the test condition is true, then the command is executed. Otherwise, it is skipped. The test
conditions are:

NOT Modifier for other conditions below.

ALARM True if the current time of day is at or later than the alarm clock time. The alarm clock time is set by
the command SET ALARM time. IF ALARM distinguishes early from late with a 12 hour field of
view.

COUNT True if the current COUNT variable is greater than zero. COUNT is a special Kermit variable for
each active TAKE file or macro. It is set by the command SET COUNT and it is both tested and
modified by the IF COUNT command. The intent is to construct simple script loops where the IF
COUNT command first decreases COUNT by one (but never below zero) and then if COUNT is
greater than zero the following Kermit command is executed. Because COUNT exists only for
TAKE files and macros it cannot be used interactively. Each TAKE file or macro has its own distinct
copy of COUNT, and nested TAKE files or macros do not interact through their COUNTs. Initially
COUNT is zero.

DEFINED symbol
True if the named macro or variable is defined. You can use this feature to remember things for
future reference.

EQUAL word1 word2 command
True if the two words are lexically equal. Alphabetic case is ignored unless SET INPUT CASE
OBSERVE. If they match, the following command is executed. The modifier NOT may be inserted
to invert the sense of the test. Substitution variables may be used in place of word1 and word2, but
the command will only work if these variables contain single words, not phrases. If word1 or word2
begin with @, then the rest of the word is interpreted as a file specification, and the first word in the
file is used.

ERRORLEVEL number
True if the DOS errorlevel number matches or exceeds the given (decimal) number.

EXIST filespec
True if the specified file exists.

1.8. SCRIPTS Page 59

FAILURE
True if the previous status-returning Kermit command reported failure.

SUCCESS
True if the previous status-returning Kermit command reported success. When using IF SUCCESS
and IF FAILURE, it is important to SET INPUT TIMEOUT PROCEED, otherwise the script will
quit immediately upon a failing INPUT or REINPUT, before getting to the IF statement.

IF commands are closely modeled on those of DOS Batch files, for familiarity. They consist of a test condition,
perhaps modified by the leading word NOT, and then any legal Kermit command. GOTO is an especially useful
command here to branch in the TAKE file or macro.

The "object" of an IF command is a Kermit command, which can be:

• A regular, predefined Kermit command, like SEND FOO.BAR or SET SPEED 1200.

• A GOTO, allowing subsequent statements to be skipped.

• Another IF command, as in IF DEFINED \%3 IF EXIST FOO.BAR SEND FOO.BAR. The
SEND command is executed only if both IF conditions are true.

• A macro. This allows a semblence of structured programming, with an implied "begin" and "end"
around the commands that compose the macro. For instance:

define giveup echo I give up!, hangup, stop
input 10 Login:
if failure giveup
output myusername

The Kermit commands which yield SUCCESS or FAILURE conditions are: GET, SEND, RECEIVE, the REMOTE
commands, INPUT, REINPUT, BYE, FINISH, LOGOUT, and WAIT.

The POP and STOP Commands
Use these commands for terminating execution of a TAKE file or macro. POP terminates the current level and
returns to the previous level. For example, if you gave the command "take shower", and the SHOWER file
contained a command "take bath", and the BATH file contained a command "take hike", and a POP command was
encountered in the HIKE file, then the next command executed would be the one following the "take hike"
command in the BATH file. If a STOP command was encountered in any of these files, MS-Kermit would return
immediately to interactive command level. POP and STOP work in similar fashion with nested macro invocations:
POP returns to the invoking macro, STOP returns to command level.

Script Examples
A counting loop. This TAKE file excerpt says hello three times, then says goodbye:

set count 3 ; Prime the loop counter for three passes
:TOP ; A label for GOTO
echo Hello\13 ; Something to see, with carriage return
if count goto top ; Loop if COUNT is greater than zero
echo Goodbye!\13

Figure 1-2 shows a simple script file that logs in to a computer, prompting the user for her password using the @con
construction, and then connects as a terminal. Notice the semicolons used to indicate comments in TAKE files. If
these same commands were typed by hand at the Kermit prompt the semicolon material would be considered part of
a string! Typing a Control-C will interrupt and terminate any of the commands.

Figure 1-3 illustrates some detailed control of the Hayes 2400 modem. Some understanding of the Hayes dialing
language is helpful for deciphering this script (consult your Hayes modem manual). If the script is stored in a file
called HAYES.SCR, then a DIAL macro can be defined like this:

Page 60 Kermit User Guide: MS-DOS KERMIT 1.8

define ermsg echo %\1\13, stop ; Define an error handling macro.
clear ; Clear the input buffer.
set speed 9600 ; Set the transmission speed.
output \13 ; Carriage return to awaken host.
input 15 Login: ; Wait up to 15 secs for prompt.
if failure ermsg No_login_prompt! ; Give up if none.
output Sari\13 ; Send username and CR.
set input echo off ; Privacy, please.
input 5 Password: ; Quietly wait for this.
if failure ermsg No_password_prompt! ; Give up if it doesn’t come.
echo Type your password now... ; Make our own prompt.
output @CON ; Send console keystrokes.
output \13 ; Add a real carriage return.
input 30 $; Wait for system prompt.
if failure ermsg No_system_prompt! ; Give up if none.
connect ; Start terminal emulation.

Figure 1-2: MS-Kermit Script for Logging In

define dial take hayes.scr

The trick here is that any invocation of the "dial" or "do dial" command with an operand will set the variable \%1,
which is used in the TAKE file, for instance:

dial 765-4321

will set \%1 to "765-4321", the number to be dialed. You can also type

dial {212 765 4321}

if you want to include spaces in the phone number. This script requires version 2.32 of Kermit or later.

A combination of DOS Batch and Kermit Script files is shown in Figures 1-4 and 1-5 (see your DOS manual for an
explanation of the batch file syntax). The purpose is to allow a user to say ‘‘SEND filename’’ at the DOS prompt.
The DOS batch shell, SEND.BAT, and the login script, KX, are combined to login to a VAX through a data switch,
run VMS Kermit in server mode, transfer the file, submit it to VMS Mail, delete the disk file, shut down the server
and logout from the VAX, and report the overall transfer status. The user is asked to provide a password
interactively.

1.9. Initialization Files Revisited

At Columbia University, we have IBM 370-series mainframes running VM/CMS, and VAX and SUN systems
running Unix. All of these systems are accessible through an IBM/Rolm (now Siemens/Rolm) voice/data CBX.
The IBM systems have two different kinds of front ends, a COMTEN 3695 (similar to IBM 3705) for linemode half-
duplex connections, and various Series/1-style protocol converters (including the 7171 and 4994) for full-screen,
full-duplex 3270 emulation, all of which use various combinations of parity and other settings. The VAX is
connected directly to the CBX, whereas the SUNs are connected to the CBX through Cisco Ethernet terminal
servers. Figure 1-6 shows the MSKERMIT.INI file used at Columbia for automatic login to these systems. It
illustrates the creative use of macros and scripts. Numerous site- and system-dependent key definitions have been
omitted.

A bit of explanation might clarify some of this. The IBM/Rolm CBX prompt is "CALL, DISPLAY OR MODIFY?"
and we respond with a CALL command for the desired system or front end, like CALL SIMB (IBM mainframe in
full screen mode through a 7171 protocol converter), CALL CUVMB (IBM mainframe in linemode through the
COMTEN), CALL CUNIXC (a VAX), or CALL CUNIXA (a SUN, through an Ethernet terminal server). When the
initial call through the CBX is completed, the message "CALL COMPLETE" appears, and then begins the

1.9. Initialization Files Revisited Page 61

def errstop echo \%1\13, def \%1, hang, stop ; Error handler.
if not defined \%1 errstop {Please supply a phone number!}
assign \%n \%1 ; Copy the phone number.
clear ; Clear the input buffer.
set speed 2400 ; Dial at high speed.
wait 2 \cts ; Is modem turned on?
if fail errstop {Please turn on your modem.} ; No.
echo Initializing modem...\13\10 ; Yes.
output ATZ\13 ; Reset the modem.
pause 2 ; Give it a little time.
output AT F1 Q0 V1 X4 S0=0\13 ; Put modem in known state.
input 8 OK ; Look for response.
if fail errstop {Can’t initialize modem.}
pause 1 ; Pause for a second first.
set count 5 ; Set the redial limit.
define \%d \13Dialing ; Initial dial message.
:REDIAL
echo \%d \%n...\13\10 ; Tell them we’re dialing.
output ATDT\%n\13 ; Dial the phone number.
clear ; Clear away the command echo.
input 60 CONNECT ; Wait for CONNECT message.
if success goto speed ; Got it, go check speed.
define \%m No dialtone or no answer. ; Make this the error message.
reinput BUSY ; Didn’t connect. Was it busy?
if failure errstop {\%m\10\13Try again later.} ; No
Echo \13Busy... ; It’s busy, let them know.
hangup ; Drop DTR momentarily.
pause 60 ; Wait one minute.
define \%d \13Redialing ; Change message to "Redialing".
if count goto redial ; Then go redial.
define \%m \13Line busy. ; After 5 tries set this message.
:SPEED ; Connected!
pause 1 ; Wait for text after CONNECT.
define \%s 2400 ; Assume speed is 2400.
reinput 1 2400 ; Rescan current text for "2400"
if success goto done ; It is.
define \%s 1200 ; It isn’t, so assume 1200.
reinput 1 1200 ; Is it?
if failure define \%s 300 ; It isn’t, so it must be 300.
:DONE ; We know the speed.
set speed \%s ; So set it.
echo Connecting at \%s bps...\13 ; Tell the user.
pause 2 ; Give her a chance to read it.
set terminal clear ; Clear screen.
define \%1 ; Clear argument.
connect ; And start terminal emulation.

Figure 1-3: MS-Kermit Script for More Control of a Hayes 2400 bps Modem

interaction with the desired host, front end, or terminal server, each of which has its own set of prompts and
responses.

To connect to a given system, one types "do simb", "do cunixc" to invoke a "connecting" macro. Each of these, in
turn, invokes the CBX macro to navigate through the CBX to the desired system. If the CALL COMPLETE
message is encountered, then further macros (3695, 7171, etc) are used to get past any associated front end (e.g. to
tell the COMTEN which IBM mainframe is wanted, or to tell the protocol converter what terminal to emulate), and
then to login on the desired system, prompting on the screen for user ID and password. Finally, a macro like "vml"
(VM linemode), "xed" (XEDIT, i.e. VM full screen), or "dec" (VAX or SUN) is executed to set the communication
parameters for the system just logged in to. The key definitions that are shown in the "vml", "xed", and "dec"
macros assign the host’s character deletion code (backspace or rubout) to the AT’s backarrow key.

Page 62 Kermit User Guide: MS-DOS KERMIT 1.10

File SEND.BAT, DOS batch program:

echo off
Rem Kermit, one-line file mailer, by Joe Doupnik.
Rem Logon to VAX, run Kermit, Send user’s file,
Rem post via MAIL, logout from VAX.
if ".%2" == "." goto usage
if exist %1 goto proceed
echo No file to send!
:usage
echo Usage is SEND filename username
goto done
:proceed
echo Logging onto the Vax ...
kermit set disp q,take kx,send %1,pau,rem host mail %1 %2,pau 2,bye,
if errorlevel 3 goto badrem
if errorlevel 2 goto badrcv
if errorlevel 1 goto badsnd
echo File(s) "%1" has been mailed to %2.
goto done
:badrem
echo Mail did not cooperate!
:badrcv
echo Receive failed!
goto done
:badsnd
echo Send failed!
goto done
:done
echo on

Figure 1-4: MS-DOS Batch File Invoking Kermit to Send VAX Mail

1.10. International Character Sets

MS-Kermit may be used on the IBM family and compatibles for interacting with host computers in different
languages. MS Kermit CONNECT mode has separate translation mechanisms for screen and keyboard. Keyboard
translations are managed through the SET KEY facility which maintains a table of defined keys and their output
values (single characters, strings, or Kermit keyboard verbs). The keyboard is normally read via the system Bios, but
it may also be read via DOS (with a loss of some key combinations) by saying SET KEY OFF (i.e., turn off Bios
reading). The keyboard can be modified rapidly by a group of SET KEY commands placed in a macro. The host has
no direct control of the keyboard translations; the host thinks Kermit is a real Digital VT102/VT52 or Tektronix
4010 terminal and those devices do not have redefinable keys.

Screen translation is accomplished in two places, the SET TRANSLATION INPUT table and the built-in character
sets. SET TRANSLATION INPUT is a table of received versus reported character codes, and it is enabled by SET
TRANSLATION INPUT ON. The table is initially an identity which allows individual entries to be modified as
desired by the command

SET TRANSLATION INPUT <received-code> <displayed-code>

Only characters destined for the screen as text or cursor control (control codes) are translated; escape sequences and
transparent printing characters bypass the SET TRANSLATION table. The table is bypassed for printing to permit
binary graphics streams to be sent to the printer. A character about to be shown on the screen can be modified by
selection of a character set, such as US-ASCII, UK-ASCII, ALTERNATE-ROM, or line drawing.

1.10. International Character Sets Page 63

File KX, Kermit script:

Comment Login script for VAXA via Micom data PBX Switch.
set input timeout quit
set input echo off
set display quiet
output \13
comment - "slowly." and "CLASS" are part of the switch’s prompt.
input 10 slowly.
input 10 CLASS
pause
comment - Slowly tell switch "vaxa", wait for beep.
output v
output a
output x
output a
output \13
pause
input 5 \7
comment - Done with Switch, wake up the VAX and log in.
pause
output \13
pause
input 5 Username:
set input timeout proceed
output MYNAME\13
input 2 Password:
comment - Prompt ourselves, then get password from console.
echo Enter password:
output @con
comment - Send a carriage return at the end of the password.
output \13
comment - Expect ESC Z from the VAX’s Set Term/Inquire...
comment - Respond ESC [<query symbol> 6 c (say we are VT102).
comment - Note syntax for including question mark!
input 15 \27Z
output \27[\{63}6c
comment Look for VMS dollar sign prompt
input 15 $
comment Start VMS Kermit and place it in server mode
output kermit server\13
comment - allow server’s message to finish, "machine." appears twice.
input 10 machine.
input 10 machine.
pause

Figure 1-5: MS-Kermit Script for Logging into VAX and Sending Mail

The SET TRANSLATION INPUT mechanism operates at the Kermit command level and is available to macros,
TAKE files, and hand typed control. Host control is available only indirectly via the special macros TERMINALR
and TERMINALS, discussed below, which may contain the SET TRANSLATION INPUT and other commands.

Character sets can be selected either by the Kermit command SET TERMINAL CHARACTER-SET (expressed by
hand, in macros, or in Take files), or by host control of the terminal emulator via the escape sequences ESC (char
or ESC) char and the Control-O and Control-N codes. Thus, rapid changes of displayed characters is available to
the host and to the user through all three dynamic pathways: macros, Take files, hand typing or received codes.

Version 2.32 of MS-Kermit also includes a new ability to operate right-to-left during CONNECT mode, in order to

Page 64 Kermit User Guide: MS-DOS KERMIT 1.10

; MS-Kermit 2.31, 2.32 Initialization File for the IBM PC, XT, AT, PS2, etc.
; Christine Gianone, Vace Kundakci, Columbia University, December 1988
echo Columbia University IBM PC Kermit Initialization file...

; User IDs on various systems. Substitute your own IDs.
def \%c XYZCU ; User ID for IBM mainframe
def \%u xyz ; UNIX ID for UNIX

; General settings
set warning on ; Change this to "off" to allow overwriting of files.
set speed 9600 ; Use 9600 bits per second by default
set term vt102 ; Emulate a DEC VT-102 terminal
set term wrap on ; Have Kermit wrap lines at column 80

; Behavior of INPUT command in script programs
set input timeout quit ; Exit from script if input pattern not found
set input echo on ; Echo characters that arrive during INPUT
set input case observe ; Match according to alphabetic case

; Macros for connecting to different systems thru the IBM/Rolm CBX
def cuvmb do cbx,o c cuvm\13, i 10 PLETE, do 3695, o vmb\13, do 4381
def simb do cbx,o c simb\13, i 10 PLETE, pau, do 7171, do 3270
def cunix do cbx,o c cunix\13, i 10 PLETE, pau, do cuts, do unix
def cunixa def \%s cunixa,do cunix
def cunixb def \%s cunixb,do cunix
def cunixc do cbx,o c cunixc\13,i 10 PLETE, pau, out \13, do unix

; Macros for navigating thru front end and login prompts
def cbx do def,o \13,i 10 MODIFY? ; IBM/Rolm CBX
def 3695 i 5 ING CHARACTERS:\32\32 ; COMTEN
def 7171 pau,cle,o \13,i 5 TERMINAL TYPE:\32,o vt-100\13 ; 7171 front end
def 4381 do vml,i 5 BREAK KEY,o \b,i 5 .\17,o LOG \%c\13,c ; VM/CMS linemode
def 3270 pau,cle,o \13,o L \%c\13,do vmf,c ; VM/CMS fullsc.

; CU Terminal Servers (cutsa, cutsb, etc)
def cuts set inp tim p,out \13,pau,set co 8,:loop,out \13,i 3 >,-
if suc goto ok,if cou goto loop,ech Failed,stop,:ok,out \%s\13,set inp tim q

; UNIX login with speed matching
def unix set inp timeout proc,set count 8,-
:loop,i 5 login:\32,if suc goto ok,out \13,if count goto loop,-
echo Failed,stop,:ok,out \%u\13,do dec,set inp tim q,connect

; Macros for interacting with different systems:
def vml do tty,set par m,set k \270 \8, set k \3 \Kbreak ; VM linemode
def vmf do def,set par e,set k \270 \8, set k \3 \3,do simk ; VM fullscreen
def dec do def,set par n,set k \270 \127,set k \3 \3 ; DEC, SUN, etc
def def set tim of,set loc of,set hand non,set flow xon,do nosimk ; Default
def tty set tim on,set loc on,set hand xon,set flow non,do nosimk ; IBM TTY

Figure 1-6: An Advanced MS-Kermit Initialization File

interact with Hebrew or Arabic language applications on the host computer. The pertinent commands are SET
TERMINAL DIRECTION {LEFT-TO-RIGHT | RIGHT-TO-LEFT}, and SET TERMINAL CHARACTER-SET
ALTERNATE-ROM. The latter command makes these high bit characters available by active user selection, or by
reception of the escape sequences below to associate them with one of the two VT102 character set pointers called
G0 (normal) and G1 (alternate). Arrival of Control-O selects the G0 set (default) and Control-N the G1 set.

1.10. International Character Sets Page 65

In addition, two special macro names TERMINALR and TERMINALS have been set aside, which can be invoked
within the VT102 emulator by reception from the host of the special escape sequences:

ESC [? 34 h (invokes macro TERMINALS)
ESC [? 34 l (lower case L, invokes macro TERMINALR)

and/or by using new keyboard "verbs" (not preassigned to keys):

\Kterminals (invokes macro TERMINALS)
\Kterminalr (invokes macro TERMINALR)

When these macros are invoked within the terminal emulator and if they are defined then CONNECT mode is exited
and the macro is executed. There is no automatic return to Connect mode at the completion of the macro. If the
macro is not defined then CONNECT is not exited and nothing happens. Initially neither macro is defined. If a
return to Connect mode is desired then include CONNECT in the macro. Any legal action is permitted in these
macros, including invoking other macros and Take files.

The purpose of these two names and macros is to allow a host or the local user to interactively select two local
operations while within the terminal emulator, such as changing language specific setups or other desirable things,
which are much more involved than an existing keyboard verb. There is no restriction on what the macros may do
since Kermit is then operating not in Connect mode but at the Kermit command prompt level, as it is for other
macros.

The escape sequences above are a Kermit specific extensions of Digital Equipment Corporation’s private escape
sequences to set and reset modes; hence the letters S and R in the macro names.

One suggestion for employing SET TERM DIRECTION, SET TERM CHARACTER, and the macros
TERMINALR and TERMINALS to facilitate mixed Hebrew and English communications is the simple Take file
below:

; Define macros hebrew and english to do all the work

def hebrew set term dir right, set term char alt, hkey, comkey
def english set term dir left, set term char us, set key clear, comkey

; Define host-reachable macros for on the fly changes while
; staying in the emulator

def terminalr english, connect
def terminals hebrew, connect

; Define IBM-PC F1 key as switch to English, F2 as switch to Hebrew.
; Done here to be remembered despite SET KEY CLEAR in macro English.
; F1 and F2 thus are user-level commands during emulation.

def comkey set k \315 \Kterminalr,set k \316 \Kterminals

; Define SET KEYs for Hebrew keyboard layout via macro hkey

def hkey set k \x27 \x2c,set k \x2c \x9a,set k . \x95,set k / \x2e,-
set k \x3b \x93,set k \x60 \x3b,set k a \x99,set k b \x90, hkey1
def hkey1 set k c \x81,set k d \x82,set k e \x97,set k f \x8b,-
set k g \x92,set k h \x89,set k i \x8f,set k k \x87,hkey2
def hkey2 set k l \x8c,set k m \x8a,set k m \x96,set k n \x8e,-
set k o \x8d,set k p \x94,set k q /,set k r \x98,set k s \x83,hkey3
def hkey3 set k t \x80,set k u \x85,set k v \x84,set k x \x91,-
set k y \x88,set k z \x86

After executing this file, one may switch Connect mode language support between Hebrew (right to left, national
display characters, similarly translate outgoing keyboard characters) and English by stating a single keyword at the
Kermit prompt, "Hebrew" or "English", or while within Connect mode by pushing the F1 or F2 keys (in this
example), or by reception of ESC [? 34 h or l from the host. All the work is done from memory material and
is essentially instantaneous. Clearly, other languages can also utilize these tools.

Page 66 Kermit User Guide: MS-DOS KERMIT 1.10

IBM PCs or compatibles will normally have national characters installed in the upper portion of the character set
ROM, in positions 80H-9AH. EGA systems generally come with a program to load the appropriate national
character set into this portion of memory, such as HEBEGA for Hebrew. Version 3.30 (and later) of DOS supports
the notion of "Code Page" for PS/2 systems, or other systems with EGA or LCD adapters, described in Appendices
B and C of the DOS 3.30 reference manual.

1.11. MS-Kermit Features for Different Systems

As noted early on, MS-Kermit was designed primarily for the IBM PC family, and later adapted to various
non-IBM-compatible MS-DOS (and even non-MS-DOS) systems. Some of these adaptations provide all the
features of the IBM PC version, others provide only a subset, and still others may include features not available on
the IBM family. These features are all of the system-dependent variety; the Kermit file transfer protocol should be
implemented identically on all versions of MS-Kermit. The most obvious differences are in the terminal emulation
options and the keyboards. Table 1-7 shows the terminal emulation options for the systems presently supported by
Kermit-MS, and Table 1-8, shows which keys are used for screen rollback on the various systems supported by
MS-Kermit.

System EscChar Capabilities Terminal Service
ACT Apricot ^] K VT52 ???
DEC Rainbow ^] R P K D VT102 firmware
DECmate/DOS ^] K VT100
Generic DOS ^] K Depends on system
Grid Compass ^] K ???
HP-110 ^] K Dumb terminal
HP-150 ^] R K HP-2623 firmware
IBM PC family ^] R M P K D H19,VT52,VT102,Tek emulation
Intel 3xx ^] K Uses real terminal
NEC 9801 ^] M P K D VT102, Tektronix emulation
NEC APC3 ^] R M P K D H19,VT52,VT102 emulation
NEC APC ^] R P K VT100, ADM3A firmware
Olivetti M24 ^] R M P K D Same as IBM PC
Sanyo MBC55x ^] R M P K D H19,VT52,VT102 emulation
Wang PC ^A K Wang firmware
TI Pro ^] M P K VT100/Tektronix
Victor 9000 Alt-] M P K D H19,VT52,VT102 and/or Tek4010
Zenith Z100 ^] K Heath-19 emulation

R=Rollback, M=Modeline, P=Printer control, K=Key redefinition, D=screen Dump

Table 1-7: Kermit-MS Terminal Emulation Options

Another difference is the default communication port, the number of communication ports supported, and the names
given to them. For instance, the IBM PC family supports COM1 and COM2, and uses COM1 by default.
MS-Kermit may be persuaded to support higher-numbered IBM ports using the method outlined in section 1.18.3.
For remote operation, IBM’s name for the console is CON, so if you CTTY COM1, you do CTTY CON to put the
PC back to normal.

1.11. MS-Kermit Features for Different Systems Page 67

System Screen Down Line Down Screen Up Line Up
IBM PC PgUp Ctrl-PgUp PgDn Ctrl-PgDn
Rainbow PrevScreen Ctrl-PrevScreen NextScreen Ctrl-NextScreen
HP-150 Prev Shift-UpArrow Next Shift-DownArrow
NEC APC Uparrow Ctrl-UpArrow DownArrow Ctrl-DownArrow
NEC APC3 PgUp Ctrl-PgUp PgDn Ctrl-PgDn
Sanyo 55x PgUp Ctrl-RtArrow PgDn Ctrl-PgDn

The IBM PC also allows use of the Home key to get to the top of its display memory and End key to get to the
bottom, and the keypad minus (-) key to toggle the mode line on and off. The Rainbow uses Shift-Next-Screen to
get to the bottom of its display memory, but provides no key for moving directly to the top.

Table 1-8: Kermit-MS Screen Scroll Keys

The DEC Rainbow
The DEC Rainbow version of MS-Kermit uses the built-in VT102 terminal firmware and setup modes, and can
operate at speeds up to 9600 baud. It has no 25th screen line, and therefore no Kermit mode line during CONNECT.
It supports only the Rainbow’s single communication port, and not the printer port, so SET PORT for the Rainbow
is not implemented (but of course the printer may be used for printing.) The Rainbow may be put in remote mode
by CTTY AUX, and returned to normal with CTTY SCRN. The Rainbow supports several SET TERMINAL
commands: VT102, VT52, and ROLL.

The keypad and cursor keys all work properly in VT102 and VT52 modes and in application as well as native states
(they never had in previous versions). Newline mode is activated for received characters (LF ==> CR/LF). Screen
roll back is almost 11 screenfuls. Table 1-9 shows the verb names and default key assignments for the Rainbow.
On the main typewriter keyboard the shifted comma and period are converted to special keys available for Set Key
assignment without impacting the normal unshifted ASCII actions; Shift Lock has no effect on these keys.

The DECmate II
MS-Kermit for the DECmate II with the XPU option is somewhat similar to Rainbow Kermit. It uses built-in
terminal VT100 firmware and setup modes and baud rates up to 9600 on the single communication port. The printer
port is not available for communications in this version. There is no mode line, but other connect-mode escapes are
supported, including sending BREAK. Disks A through I are supported, and the floppy disk format is compatible
with the Rainbow. DEC utilities are available for file conversion between DOS and WPS-8 files.

The NEC APC3
The NEC APC3 version of MS-Kermit assumes that the ANSI.SYS driver has been installed and that a color
monitor is being used; the color graphics option is not used by Kermit. Although the display should be entirely
sensible with a monochrome system, it has not been tested. Differences from the IBM PC version include:

SET BAUD: The useful baud rates supported range from 300 to 9600.

SET PORT: The available ports are 1, 2, 3, or their equivalents AUX, AUX2, AUX3.

SET TERMINAL COLOR: Instead of specifying colors by number, the words BLUE, RED, MAGENTA, GREEN,
CYAN, YELLOW, or WHITE are appropriate. This is the color of the text in connect mode; background colors are
not available. Monochrome monitors will respond with display changing from most dim to most bright if the colors
are specified in the order given.

SET TERMINAL KEYCLICK: Not implemented in Kermit; use the NEC provided command.

Page 68 Kermit User Guide: MS-DOS KERMIT 1.11

Rainbow Key Verb Name Operation

PF1 \Kpf1,\Kgold Keypad function key
PF2..PF4 \Kpf2..\Kpf4 Keypad function keys
keypad 0..9 \Kkp0..\Kkp9 Keypad digit keys
keypad - \Kkpminus Keypad minus key
keypad , \Kkpcoma Keypad commma
keypad . \Kkpdot Keypad dot (period) key
keypad Enter \Kkpenter Keypad Enter key

up arrow \Kuparr Cursor keys
down arrow \Kdnarr
left arrow \Klfarr
right arrow \Krtarr
Shift Prev Screen \Khome Rewind to start of screen buffer
Shift Next Screen \Kend Unwind to end of screen buffer
Ctrl Prev screen \Kupone Backup one screen line
Ctrl Next screen \Kdnone Advance one screen line
Prev screen \Kupscn Backup one screen
Next screen \Kdnscn Advance one screen
Print Screen \Kprtscr Copy screen to printer
Ctrl Print Screen \Ktoggle_prn Toggle echoing screen to printer

(printer failure resets toggle)
Do \Kdump Copy screen to file (KERMIT.SCN)
Break \Kbreak Send a BREAK
Shift Break \Klbreak Send a Long BREAK
Main Screen \KDOS Push to DOS
Help \Khelp Show Connect mode help menu
Exit \Kexit Exit Connect mode
* \Knull send a null out the serial port
* \Khangup hangup phone by dropping DTR, RTS
* \Klogon resume logging, if active
* \Klogof suspend logging
* \Kstatus display status table

* (verbs not pre-assigned to keys)

Table 1-9: Kermit-MS Verbs for the DEC Rainbow

SET TERMINAL SCREEN-BACKGROUND: Not implemented.

During terminal emulation, screen scroll is handled by the PgUp and PgDn keys. If used in combination with the
Ctrl key, the display moves but one line. If used in combination with the Fnc key, the display scrolls to the end of
the buffer. The Fnc-INS combination toggles the mode line on/off. The Fnc-DEL combination toggles the terminal
emulation type. The Fnc-Break combination resets the emulator. The Help key pulls down the connect mode menu.
The ANSI escape sequence for disable/enable cursor is implemented.

1.12. Compatibility with Older Versions of MS-DOS Kermit Page 69

1.12. Compatibility with Older Versions of MS-DOS Kermit

The last monolithic (single source file) release of MS-DOS Kermit was 1.20. Meanwhile, implementations based on
versions of that vintage will have at least the following incompatibilies from the version described here:

• "RECEIVE filespec" is used instead of "GET filespec". There is no GET command in older versions,
and no way to specify a new name for an incoming file.

• No LOCAL or REMOTE commands.
• No 8th-bit prefixing, repeat counts, CRCs or 2-character checksums.
• No TAKE or initialization files.
• No command macros or command line arguments.
• No terminal session logging.

and others, depending on the specific version.

Incompatibilities between 2.29 and later releases include:

• LOCAL command has been removed from 2.30 and later.
• CLEAR command now means clear serial port buffer rather than key and macro definitions. Key and

macro definition string space is now garbage collected, so a CLEAR command for them is no longer
necessary.

• CLRINP command is gone (replaced by CLEAR).
• Numbers of the form \nnn default to decimal rather than octal.
• Status of Default Disk is now shown as default disk and path.
• LOG filespec replaced by LOG SESSION filespec and LOG PACKET filespec.
• SET KEY and SHOW KEY commands use different key identifications and syntax:

MS-Kermit no longer understands keycap names such as F1 and BACKSPACE because the codes are now highly
dependent on individual keyboards, software, and computers. Also, not every key press combination is supported
by the system software and key codes do depend on the keyboard in use. Thus, the SHOW KEY command is
normally used to obtain codes for keys on your system. In most cases, defining one key also redefines all other keys
sending the same character. This is a side effect of not knowing the physical details of every keyboard. However,
efforts have been made to recognize many such "aliased" keys and to generate unique identifications for each.
Special keys, such as F1, F2 and others which do not send an ASCII code are usually unique and are identified by
scan codes.

Previous versions of MS Kermit used a different key coding algorithm and not all old codes map to the expected
keys. However, Kermit does attempt to use the older SET KEY syntax properly as much as possible. The older
syntax required the keyword SCAN followed by a number WITHOUT the BACKSLASH. The current MS Kermit
uses decimal as the default number base and previous versions used octal in certain commands. So, when Kermit
senses an old style SET KEY command it converts the number, displays the new format and gives a warning
message. It is best to make a new style SET KEY file.

1.13. What’s Missing

Kermit-MS has plenty of room for improvement. Missing features (which may be added in future releases) include:

• Sliding window transport protocol.
• Default filetype for TAKE command files.
• Passing paramaters in TAKE command, like in DO command.
• A way to send files with their full path names.
• A way to play back session logs directly from disk to screen.
• Trapping of carrier loss during CONNECT or file transfer.
• A better built-in help facility.
• A way to dump or print Tektronix graphics screens.

Page 70 Kermit User Guide: MS-DOS KERMIT 1.14

1.14. Installation of Kermit-MS

If you already have Kermit on your PC, you can use it to obtain new versions of Kermit-MS when they appear on
the central system at your site. If you do not have Kermit or any other reliable file capture facility on your PC, you
can order a Kermit diskette from Columbia (write to Kermit Distribution, Columbia University Center for
Computing Activities, 612 West 115th Street, New York, NY 10025, USA, for information), or from any of a
number of user groups or diskette services. If you don’t have Kermit already, and absolutely can’t get a Kermit
diskette, but have access to another computer that has a copy of the MS-DOS Kermit program (usually in ‘‘.BOO’’
format, explained below), there are two recommended methods for getting it onto your PC:

1. Use another file capture facility to get it.

2. Type in and run the "baby Kermit" program (72 lines) from chapter 7 of the Kermit book.

The first method involves either "raw capture" (no error checking), or else use of another protocol, such as
Xmodem, which, like Kermit, requires a program to execute the same protocol on both ends of the connection.

Raw capture generally involves "typing" the file on the other computer, with your PC taking the place of the
terminal, and rather than displaying the file on the screen as it’s being typed, your PC is storing it on the disk. This
is a tricky process, however, because data can easily be lost or corrupted. For instance, you could write a very short
BASIC program to capture a file in this way, but it could probably not keep up -- even at low baud rates -- with the
transmission speed unless you included the tricky serial port BASIC commands. The DOS command COPY COM1
filename command has the same speed problem, and it stops only when it receives a Control-Z character from the
other computer.

If the other computer has Kermit on it -- which is likely, since this is probably the reason you want to get Kermit
onto your PC -- you should type in the receive-only BASIC Kermit program listed on pp.186-188 of the Kermit
book, and then use it in conjunction with the other computer’s Kermit to transfer the file. Make sure to set a long
enough delay on the other computer to give yourself time to escape back to the PC and start up the "baby Kermit"
before packets start to arrive, otherwise you’ll probably get fatal DOS i/o errors.

Note that Kermit programs are often distributed under names other than "Kermit". The Columbia Kermit program
library contains hundreds of Kermit programs, which must be given unique names. MS-DOS Kermit for the IBM
PC, for instance, is called MSVIBM. Once you have this program in .EXE format on your disk, you probably should
rename it to KERMIT.EXE, because the distribution name is harder to remember (and type).

You will probably also want to create an MS-Kermit initialization file. A sample is distributed with MS-Kermit as
MSVIBM.INI. This should be tailored to your requirements, and then renamed to MSKERMIT.INI, and stored
where Kermit can find it (in the current directory or any directory in your DOS PATH).

".BOO Files"
MS-Kermit (and many other Kermit programs) are often distributed using a special encoding called "boo" (short for
"bootstrap") format, developed especially for distribution of MS-Kermit over networks and communication lines.
MS-Kermit has grown to have so many features that the binary program image (the .EXE file) has become quite
large. But binary files are generally not compatible with the common labeled tape formats (e.g. ANSI D), electronic
mail, or raw downloading -- the methods most commonly used for Kermit distribution.

A common practice is to encode .EXE and other binary files into printable characters, such as hexadecimal digits,
for transportability. A simple "hex" encoding results in two characters per 8-bit binary byte, plus CRLFs added
every 80 (or less) hex characters to allow the file to pass through card-oriented links. A hex file is therefore more
than twice as large as the original binary file.

A .BOO file is a more compact, but somewhat more complicated, encoding. Every three binary bytes (24 bits) are
split up into four 6-bit bytes with 48 (ASCII character ‘‘0’’) added to each, resulting in four ASCII characters
ranging from ‘‘0’’ (ASCII 48) to ‘‘o’’ (ASCII 111), with CRLFs added at or near "column 76". The resulting file

1.14. Installation of Kermit-MS Page 71

size would therefore be about 4/3 the .EXE file size. This is still quite large, so .BOO files also compress
consecutive null (zero) bytes. Up to 78 consecutive nulls are compressed into two characters. Tilde (‘‘~’’) is the
null-compression lead-in, and the following character indicates how many nulls are represented (subtract 48 from
this character’s ASCII value). For instance ‘‘~A’’ means 17 consecutive nulls; ‘‘~~’’ means 78 of them. Repeated
nulls are very common in .EXE files.

4-for-3 encoding combined with null compression reduces the size of the encoded file to approximately the same
size as the original .EXE file, and sometimes even smaller. The first line of a .BOO file is the name (in plain
text) of the original file. Here’s what the first few lines of a typical .BOO file look like:

MSVIBM.EXE
CEYP0Id05@0P~3oomo2Y01FWeP8@007P000040HB4001‘W~28bL005\W~2JBP00722V0ZHPYP:
\8:H2]R2V0[‘PYP:68>H2S23V0YHPiP:Xg800;Qd~2UWD006Yg~2Ogl009]o~2L8000;20~~~~
~~~~~~~:R2H008TV?P761T410<H6@P40j4l6RRH0083l17@PP?‘1M@?YSP20o0Ee0nUD0h3l
1WD3jO@3]0VjW03=8L?X4‘N0o01h1\H6~20l>0i7n0o1]e7[@2\PO=8LH60@00Raj>04^97Xh0

Programs for Handling .BOO Files
Kermit Distribution includes several useful .BOO-file programs:

MSBPCT.BAS This Microsoft BASIC program can be used on any PC that has BASIC to decode a .BOO file
into an .EXE file. It’s about 50 lines line, so it can be typed in.

MSBPCT.BOO BASIC programs run rather slowly, so .BOO-file decoders have also been written in high-level
languages like C. The MSBPCT.EXE file that was produced by compiling MSBPCT.C is
encoded into MSBPCT.BOO, which can be decoded back into MSBPCT.EXE using
MSBPCT.BAS. Once you’ve done that, you don’t need to run the slow BASIC version any
more, which is a blessing, because the MS-Kermit .BOO file takes up to half an hour to decode
using the BASIC version (depending on the system), but only seconds using MSBPCT.EXE.

MSBPCT.* There are .BOO-file decoders written in other languages too, like assembler, Turbo Pascal,
Fortran, etc.  Take your pick.  They all do the same thing.

MSBMKB.* This is the program for encoding an .EXE file into a .BOO file. It is written in C, compiled, and
translated (by itself) into .BOO format, suitable for decoding back into .EXE form by any of the
MSBPCT programs.  Also in other languages, including Fortran and Turbo Pascal.

MSBHEX.* are C programs for producing and decoding straight hex files.

1.15. Program Organization

Kermit-MS version 2 is composed of separate assembler source files, assembled separately, and linked together.
The modules are:

System/Device Independent:

MSSKER.ASM Main program
MSSSEN.ASM File sender
MSSRCV.ASM File receiver
MSSSER.ASM Server operation
MSSFIL.ASM File i/o
MSSCMD.ASM Command parser
MSSTER.ASM CONNECT command
MSSCOM.ASM Packet reader and sender
MSSSET.ASM SET, SHOW, and STATUS commands
MSSSCP.ASM Script CLEAR, ECHO, INPUT, OUTPUT, PAUSE, TRANSMIT commands
MSSFIN.ASM Dummy module for the end of the data segment; must be linked LAST.
MSSDEF.H Data structure definitions and equates

System/Device Dependent:



Page 72 Kermit User Guide: MS-DOS KERMIT 1.15

MSGxxx.ASM System-dependent graphics terminal for system xxx
MSUxxx.ASM System-dependent keyboard translator for system xxx
MSXxxx.ASM System-dependent code for system xxx
MSYxxx.ASM Terminal emulation for system xxx
MSZxxx.ASM More terminal emulation for system xxx

The xxx is replaced by a 3-letter code for the particular system, e.g. IBM for the IBM PC family, RB1 for the
Rainbow-100, etc.

The modular organization allows easier modification of the program, quicker transfer of modified portions from
system-to-system. The modules are designed to be well-defined and self-contained, such that they can be easily
replaced. For instance, someone who prefers windows and mice to typing commands should be able to replace the
command parsing module without having to worry about the effect on the other modules.

To assemble any of the Kermit modules, file MSSDEF.H must be on the default disk.

All the Kermit implementations require the modules MSSCMD, MSSCOM, MSSFIL, MSSKER, MSSRCV,
MSSSCP, MSSSEN, MSSSER, MSSSET, MSSTER, MSSFIN.  MSSFIN must be linked last.

Each particular implementation requires at least an MSXxxx module, usually an MSUxxx module, and, if it is doing
terminal emulation in software, also an MSYxxx and possible also an MSZxxx module, and for graphics terminal
emulation, also an MSGxxx module. See the batch or make files from the source distribution for details of exactly
which modules are required for a particular implementation.

Once all the required object modules exist, they may be linked together to produce a Kermit program.  For example,
on the IBM PC:

A>link

Microsoft Object Linker V2.00
(C) Copyright 1982 by Microsoft Inc.

Object Modules [.OBJ]: msscmd+msscom+mssfil+mssker+mssrcv+mssscp+msssen+
mssser+mssset+msster+msgibm+msuibm+msxibm+msyibm+mszibm+mssfin
Run File [MSSCMD.EXE]: kermit
List File [NUL.MAP]:;

A>

Warning: old versions of MASM may not be able to assemble several of the large files now present in Kermit-MS.
The solution is to acquire Microsoft MASM 4.0 or later.

1.16. Bringing Kermit to New Systems

You can bring Kermit-MS to MS-DOS systems that are not explicitly supported in one of two ways -- attempt to run
the "generic" MS-DOS Kermit on it, or add explicit code to support your system.

To get started with Kermit on a new system, try running "generic" MS-DOS Kermit; in many cases, it will run as is.
The generic version accomplishes all its port and console i/o through DOS calls, and during terminal connection
does not attempt to emulate any particular kind of terminal.  In some cases, the generic version may still require
some fiddling to run on a new system; for instance, different systems refer to their communication ports in different
ways -- COM1, J1, AUX, etc.  The SET PORT command allows you to specify the port using any of these device
names, or using DOS file handles -- keep trying until you find the one that works.  Generic MS-DOS Kermit will
probably run no faster than 1200 baud, and it only works with DOS 2.0 or later.

If you want to write code to explicitly support a new system, first call or write Kermit Distribution at Columbia to
make sure no one else is already doing the same work.  If you’re the first, then begin by reading the file



1.16. Bringing Kermit to New Systems Page 73

MSXAAA.DOC, provided with the MS-DOS Kermit sources in the Kermit distribution, which is a guide to the
system dependent modules of Kermit-MS.  Then create new MSUxxx.ASM and MSXxxx.ASM modules, and, if your
version is also doing terminal emulation in software, also an MSY and possibly an MSZ module patterned after those
that have been written for other systems.



Page 74 Kermit User Guide: MS-DOS KERMIT 1.16

1.17. Kermit-MS VT102 Terminal Emulator Technical Summary

1.17.1. Treatment of Inbound Characters During Terminal Emulation

The following sections summarize the Kermit-MS keyboard and screen operation during emulation of H19, VT52,
and VT102 terminals, prinicipally for the IBM PC but also used by the NEC APC3, Victor 9000, and Sanyo 55x
systems.

Many things can happen to a character that arrives at the communication port before you see it.  The sequence of
events for version 2.32 is summarized in the following picture.  2.31 is similar except for no national characters.

character from serial port or network
|
v

NUL: discard unless DEBUG is ON
DEL: discard unless DEBUG is ON or doing Tektronix

|
character available to rest of Kermit

|
v

TERMINAL NONE <-------*-------*---> to packet reader
DISPLAY 8-BIT? | |
Yes No v v
| | | |
| remove 8-th bit | Script routines.
| | | remove parity bit, if parity used.
--------- | apply SET TRANSLATION INPUT table,
| | if active.
apply SET TRANSLATION | |
INPUT, if active | LOG SESSION active?
| | No Yes
copy char to printer? | | |
No Yes | | DEBUG ON or DISPLAY 8-BIT?
| | | | Yes No
| print char | | | |
| via DOS | | | remove 8-th bit
| | | | | |
--------- | | ---------
| | | |
log char if | | |
LOG SESSION active. | | |--> log character
| | v v
v | -------------

DEBUG ON? | |
No Yes | DISPLAY 8-BIT?
| | | Yes No
| show chars, with | | |
| tilde/caret modifiers | | remove 8-th bit
| | | | |
| Exit | v v
| | -------------> character to scripts
display char via DOS |
Exit |

v
VT102 terminal emulator

|
SET DEBUG ON?

No Yes --> display characters:
| show leading tilde if bit 8
| set; for lower 7 bits show
| caret-char if Control code.
| |
| Exit.
v

Printing Transparently? (ESC [ 4/5 i)



1.17.1. Treatment of Inbound Characters During Terminal Emulation Page 75

No Yes
| |
| log character if LOG SESSION is active,
| send char to printer but not to screen.
| |
| Exit.
v

SET DISPLAY 8-BIT?
Yes No
| |
| remove 8-th bit of character
| |
v v
-----------------

|
v

Control character?
Yes No
| |
| Doing escape sequence?
| No Yes
| | |
v v |
----------------- |

| |
v |

do SET TRANSLATION INPUT, |
if active. |
| v
---------------------------------

|
v

NUL or DEL character?
No Yes --> Exit (discard)
|
|

log character if LOG SESSION is active.
|

Control character?
Yes No
| |

do control ops map character according to
| active character-set pointer. (See below)
Exit |

display character on screen
(with double width/height, if req’d).
|
print character via DOS if
Controller Print is active (ESC [ ? 4/5 i)
or if Kermit copy screen to printer active.
|
v
Exit

Updating of the cursor position is automatic and can be influenced by the Kermit command SET TERMINAL
DIRECTION {RIGHT-TO-LEFT | LEFT-TO-RIGHT}. As a convenience, the keyboard left and right arrow keys
are interchanged when the writing direction is reversed; thus, the right arrow always requests the host to move the
cursor to the visual right.

The active character-set pointer is determined by two conditions:

1. The VT102 maintains two character set pointers (selectors), G0 and G1.  G0 is the default pointer.
Reception of Control-O selects the G0 pointer, Control-N selects the G1 pointer.

2. Which character set: US-ASCII, UK-ASCII, ALTERNATE-ROM, or line-drawing, has been assigned



Page 76 Kermit User Guide: MS-DOS KERMIT 1.17.1

to G0 and G1 pointers.  The command SET CHARACTER-SET {US-ASCII, UK-ASCII,
ALTERNATE-ROM} assigns that set to the G0 AND G1 pointers. Similarly, the host can assign any
of the four sets to either G0 OR G1 via the escape sequences ESC ( char or ESC ) char,
respectively, as summarized below:

ESC ( A G0 points to UK symbols (ASCII with Pound Sterling sign)
ESC ) A G1 points to UK symbols
ESC ( B G0 points to ASCII symbols (ASCII with US pound sign #)
ESC ) B G1 points to ASCII symbols
ESC ( 0 G0 points to special (line drawing) graphics
ESC ) 0 G1 points to special (line drawing) graphics
ESC ( 1 G0 points to ALTERNATE-ROM national characters
ESC ) 1 G1 points to ALTERNATE-ROM national characters
ESC ( 2 G0 points to special (line drawing) graphics
ESC ) 2 G1 points to special (line drawing) graphics

All character sets produce

!" pound-sign $%&’()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_

The lower case field, ‘ab..yz{|}~ changes to line drawing or national characters, depending on the character set.
National characters replace the character codes 60h to 7Ah (accent grave, lower case a-z) with codes 80h to 9Ah;
lower case a becomes umlated u, etc in standard IBM display adapters.

DOS Code Page support

Code Pages are sets of translation tables maintained within DOS to support national languages. They affect the
characters reported by the keyboard and those displayed on the screen and printer. Code Page support is loaded as
device driver information in CONFIG.SYS and activated by DOS programs NLSFUNC, CHCP, KEYB, and
MODE, at least under PC DOS 3.30.  An EGA adapter is required for screen support; similarly, only IBM printers
are discussed.  Making Code Pages operate is not exactly easy, and there have been rumors that MS-DOS Code
Pages from various vendors are not bug free.  However, the goal is an ability to change translations for screen,
keyboard, and printer by DOS commands.

Since Code Pages are the province of DOS it is clear that operations at the Bios or hardware levels will not
experience Code Pages.  Kermit uniformly uses DOS for printer output.  Kermit CONNECT mode keyboard reading
is normally done via the Bios, unless SET KEY OFF has been stated.  Kermit CONNECT mode Screen reading and
writing is done via both the Bios and the hardware for the VT102/VT52/Tek4010 emulators, but the terminal type of
NONE uses only DOS.  Thus, full Code Page support is available in Kermit by stating SET KEY OFF (use DOS)
and SET TERMINAL NONE (use DOS). Outside of CONNECT mode all Kermit screen and keyboard input and
output is done through DOS.



1.17.1. Treatment of Inbound Characters During Terminal Emulation Page 77

1.17.2. Keyboard Layout and Characters Sent

Here is how the keypad functions are assigned to the IBM keyboard function keys.  You may change them by using
the SET KEY command to define a desired key as the appropriate Kermit action verb; use SET KEY without a
definition to undefine a key.  Names of appropriate verbs are also shown for use in the Set Key command, such as

Set Key \2352 \Kbreak (IBM Alt-B assigned to verb BREAK)

Verb names are system dependent, use ? in the Set Key definition part for a list of local verbs.  IBM PC verbs are
listed in Table 1-6; IBM key values are either straight ASCII or the IBM Bios scan code, plus 256, plus 512 for Shift
key held down, plus 1024 for Control key held down, plus 2048 for Alt key held down; non-ASCII keys are always
256 decimal or greater.  Keys particular to the Enhanced Keyboard have 4096 added to the result.

Heath-19 and VT52 Keypads VT102 keypad
IBM Keys IBM keys

+------+------+-------+----------+ +------+------+------+------+
| Blue |  Red |  Grey | up arrow | | PF1 |  PF2 |  PF3 |  PF4 |
| F1 | F2 | F3 | up arrow | | F1 | F2 | F3 | F4 |
+------+------+-------+----------+ +------+------+------+------+
| 7 | 8 | 9  |down arrow| | 7 | 8 | 9 | - |
| F5 | F6 | F7 |down arrow| | F5 | F6 | F7 | F8 |
+------+------+-------+----------+ +------+------+------+------+
| 4 | 5 | 6  | rgt arrow| | 4 | 5 | 6 | , |
| F9 | F10 |  SF1  | rgt arrow| | F9 | F10 |  SF1 |  SF2 |
+------+------+-------+----------+ +------+------+------+------+
| 1 | 2 | 3  |left arrow| | 1 | 2 | 3 | E |
| SF3 |  SF4 |  SF5  |left arrow| | SF3 |  SF4 |  SF5 |  n  S|
+------+------+-------+----------+ +------+------+------+ t F|
| 0------0 | .  | Enter | | 0------0 | . | e 6|
| SF7 | SF8 | SF6 | | SF7 | SF8 |  r |
+-------------+-------+----------+ +-------------+------+------+

SF1 means push Shift and F1 keys simultaneously

CURSOR KEYS:
H-19 & VT52 VT102

VT52/H19 key IBM Verb  IBM key All Modes Numeric Application

up arrow UPARR up arrow ESC A ESC [ A ESC O A
down arrow DNARR down arrow ESC B ESC [ B ESC O B
right arrow RTARR right arrow ESC C ESC [ C ESC O C
left arrow LFARR left arrow ESC D ESC [ D ESC O D

AUXILIARY KEYPAD:
Heath-19 & VT52 VT102

VT52/H19 key IBM Verb  IBM key Numeric Applic. Numeric Applic.

PF1/HF7/Blue GOLD,PF1 F1 ESC P ESC P ESC O P ESC O P
PF2/HF8/Red PF2  F2 ESC Q ESC Q ESC O Q ESC O Q
PF3/HF9/Grey PF3 F3 ESC R ESC R ESC O R ESC O R
PF4/HF1 PF4 F4 ESC S ESC S ESC O S ESC O S
0 KP0 SF7 0 ESC ? p 0 ESC O p
1 KP1 SF3 1 ESC ? q 1 ESC O q
2 KP2 SF4 2 ESC ? r 2 ESC O r
3 KP3 SF5 3 ESC ? s 3 ESC O s
4 KP4 F9 4 ESC ? t 4 ESC O t
5 KP5 F10 5 ESC ? u 5 ESC O u
6 KP6 SF1 6 ESC ? v 6 ESC O v
7 KP7 F5 7 ESC ? w 7 ESC O w
8 KP8 F6 8 ESC ? x 8 ESC O x



Page 78 Kermit User Guide: MS-DOS KERMIT 1.17.2

9 KP9 F7 9 ESC ? y 9 ESC O y
comma (,) KPCOMA SF2 , ESC ? l , ESC O l
minus (-) KPMINUS F8 - ESC ? m - ESC O m
period (.) KPDOT SF8 . ESC ? n . ESC O n
Enter KPENTER SF6  ^M(cr) ESC ? M ^M ESC O M

(SFn means hold down Shift key while pressing Function key n.)

An often confusing item is knowing the mode of the auxillary keypad: numeric or application.  Digital Equipment
Corporation designed the terminal to change modes only under command from the remote computer and not at all
from the keyboard.  So the startup state is numeric/cursor mode, and reception of escape sequences ‘‘ESC [ ? 1
h’’ or ‘‘l’’ changes the mode.  Kermit verbs for the keypad and cursor keys generate the correct escape sequences
appropriate to the current mode and terminal type.

A best attempt is made to safely test for the 101/102 key Enhanced keyboard and use it if present.  If it is present
then the keyboard translator separates the individual arrow keys from those on the numeric keypad and also
separates the asterisk and forward slash keys on the keypad from those on the regular typewriter keyboard.  These
special Enhanced keyboard keys are reported as scan codes with 4096 added to the base scan code.

OTHER IBM KEYS OPERATIONAL IN CONNECT MODE:

IBM key IBM Verb Action

Keypad Del Send ASCII Del code (rubout) \127
Backspace (<-) Send ASCII Del code (rubout) \127  (BS is \8)
Keypad - MODELINE Toggle mode line on/off (only if Mode Line is

enabled and not used by the host).
Alt - TERMTYPE Toggle among H-19, VT52, and VT100 emulations.
Alt = RESET Clear screen and reset terminal emulator to

starting (setup) state.
Alt B BREAK Send a BREAK signal
Alt H HELP Show drop down help menu (detailed below)
Alt S STATUS Show settings
Alt X EXIT Exit Connect mode, back to Kermit prompt

Home HOMSCN Roll screen up (text down) to beginning of
storage.

End ENDSCN Roll screen down (text up) to end of storage.
PgUp UPSCN Roll screen up (back, earlier) one screen.
PgDn DNSCN Roll screen down (forward, later) one screen.
Ctrl-PgUp UPONE Roll screen up one line.
Ctrl-PdDn DNONE Roll screen down one line.

Control PrtSc PRTSCN Toggle on/off copying of received text to
printer, "PRN" shows on far right of mode
line when activated.

Control-End DUMP  Dump image of screen to a disk file or device.
Default filename is KERMIT.SCN in the current
directory. Use command SET DUMP to change the
filename. Screen images are appended to the
file, separated by formfeeds.

Shift-PrtSc Standard DOS Print-screen, dump screen image to printer.

unassigned HOLDSCRN DEC style Holdscreen, same as typing Control-S.

"Alt -" means hold down Alt and type minus on the upper key rank.  This switches among the various kinds of
emulation but does not change most operating parameters of the emulator.

CONNECT ESCAPE COMMANDS:



1.17.2. Keyboard Layout and Characters Sent Page 79

Type the Kermit escape character (normally ‘‘^]’’), then one of the keys below:

(equivalent IBM Verb)
? display this short list. HELP
0 send a null character. NULL
B send a BREAK signal. BREAK
C close connect session & return to Kermit prompt. EXIT
F dump screen to filespec, default is KERMIT.SCN. DUMP
H hangup the phone or network connection HANGUP
L send a Long BREAK signal LBREAK
M toggle mode line on/off. MODELINE
P push to DOS. DOS
Q quit (suspend) logging. LOGOFF
R resume logging. LOGON
S show status. STATUS
Kermit escape character itself: send it to the host.

1.17.3. Responses To Characters Received By the Terminal Emulator

Spaces shown between characters of escape sequences are there for ease of reading.  The actual sequences contain
no spaces.  Unknown escape sequences of the form "ESC char" are absorbed by the emulator without further effect;
longer unknown escape sequences echo the extra characters.

DEC VT102 functions while in ANSI (VT102) mode, unsupported features marked by an asterisk (*):

Escape Seq Mnemonic Description of Action

ESC D IND Index, moves cursor down one line, can scroll
ESC E NEL Move cursor to start of line below, can scroll
ESC H HTS Set one horizontal tab at current position
ESC M RI Reverse Index, cursor up one line, can scroll
ESC Z DECID Identify terminal (response is ESC [ ? 6 c)
ESC c RIS Reset terminal to initial state
ESC = DECKPAM Enter keypad application mode
ESC > DECKNPNM Enter keypad numeric mode
ESC 7 DECSC Save cursor position and attributes
ESC 8 DECRC Restore cursor from previously saved position
ESC # 3 DECDHL Double height and width line, top half
ESC # 4 DECDHL Double height and width line, bottom half
ESC # 5 DECSWL Single height and width line
ESC # 6 DECDWL Double width single height line
ESC # 8 DECALN Test screen alignment, fill screen with E’s
ESC [ Pn @ ICH ANSI insert Pn spaces at and after cursor
ESC [ Pn A CUU Cursor up Pn lines, does not scroll
ESC [ Pn B CUD Cursor down Pn lines, does not scroll
ESC [ Pn C CUF Cursor forward, stays on same line
ESC [ Pn D CUB Cursor backward, stays on same line
ESC [ Pn; Pn H CUP Set cursor to row, column (same as HVP)
ESC [ Ps J ED Erase in display:

0 = cursor to end of screen, inclusive
1 = start of screen to cursor, inclusive
2 = entire screen, reset lines to single

width, cursor does not move.
ESC [ Ps K EL Erase in line:

0 = cursor to end of line, inclusive
1 = start of line to cursor, inclusive
2 = entire line, cursor does not move

ESC [ Pn L IL Insert Pn lines preceding current line.
ESC [ Pn M DL Delete Pn lines from current downward, incl.
ESC [ Pn P DCH Delete Pn chars from cursor to left, incl.
ESC [ Pn; Pn R CPR Cursor report (row, column), sent by terminal

Example: home position yields ESC [ 1; 1 R



Page 80 Kermit User Guide: MS-DOS KERMIT 1.17.3

ESC [ Pn c DA Device attributes (reports ESC [ ? 6 c)
ESC [ Pn; Pn f HVP Set cursor to row, column (same as CUP)
ESC [ Ps g TBC Tabs clear, 0 = at this position, 3 = all
ESC [ 4 h IRM  Insert mode on
ESC [ 20 h LNM Set newline mode (cr => cr/lf)
ESC [ 4 l IRM  Replacement mode on
ESC [ 20 l LNM Reset newline mode (cr => cr)
ESC [ ? Ps;...;Ps h  SM Set mode, see table below
ESC [ ? Ps;...;Ps l  RM Reset mode, see table below

Ps Mnemonic Mode Set (h) Reset (l)
0 error (ignored)
1 DECCKM cursor keys application cursor/numeric
2 DECANM ANSI/VT52 ANSI/VT102 VT52
3 DECCOLM Columns +132 col 80 col
4 DECSCLM *Scrolling smooth jump
5 DECSCNM Screen reverse video  normal
6 DECOM Origin relative absolute
7 DECAWM Autowrap on off
8 DECARM *Autorepeat on off
9 DECINLM *Interlace on off
18 DECPFF Printer termination character, use FF if set
19 DECPEX Printer extent,set=screen,off=scrolling region
34 n/a Invoke macro:  TERMINALS TERMINALR
38 n/a Graphics (Tek) ++graphics text

+ See comments on EGA boards.
++ Ignored if DISABLE TEK has been given.

ESC [ Pn i MC Printer controls (Media Copy)
0 Print whole Screen
4 Exit printer controller (transparent print)
5 Enter printer controller (transparent print)

ESC [ ? Pn i MC Printer controls (Media Copy)
1 Print line containing cursor
4 Exit auto print (stop echoing to printer)
5 Enter autoprint (echo screen chars to printer)

ESC [ Ps;...;Ps m  SGR Select graphic rendition
0 = all attributes off (#’s 1, 4, 5, 7)
1 = bold, intensify foreground
4 = underscore (reverse video on IBM CGA)
5 = blink
7 = reverse video

non-DEC extensions: 30-37 = foreground color = 30 + colors
40-47 = background color = 40 + colors
colors: 1 = red, 2 = green, 4 = blue

ESC [ Ps n DSR Device Status Report.
Response from VT100: 0=ready, 3=malfunction.
Command to VT100: 5=report status with DSR,
6=report cursor position using CPR sequence.

ESC [ Ps;...;Ps q  DECLL Load LEDs, Ps = 0 means clear LED #1-4
Ps = 1,2,3,4 sets LED # 1,2,3,4 on status line.

ESC [ Pn; Pn r DECSTBM Set top and bottom scrolling margins, resp.
ESC [ r resets margin to full screen.

ESC [ sol x DECREQTPARM Request terminal parameters, see table below
ESC [ sol; par; nbits; xspeed; rspeed; clkmul; flags x

DECREPTPARM Reports terminal parameters
sol = 0  request; terminal can send unsolicited
reports - supported as sol = 1 below.

sol = 1, request; term reports only on request
sol = 2, this is a report (DECREPTPARM)
sol = 3, terminal reporting only on request
par = 1 none, 2 space, 3 mark, 4 odd, 5 even
nbits = 1 (8 bits/char), 2 (7 bits/char)
xspeed,rspeed = transmit & receive speed index

0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120,128 correspond to speeds of



1.17.3. Responses To Characters Received By the Terminal Emulator Page 81

50,75,110,134.5,150,200,300,600,1200,1800,2000,2400,3600,4800,9600,19200,
and 38400 baud. clkmul = 1 (clock rate multiplier is 16)

flags = 0-15 (Setup Block #5), always 0 here
ESC [ 2; Ps y  DECST *Confidence tests - not supported

SCS Select character sets.
ESC ( A SCS G0 points to UK symbols
ESC ) A SCS G1 points to UK symbols
ESC ( B SCS G0 points to ASCII symbols
ESC ) B SCS G1 points to ASCII symbols
ESC ( 0 SCS G0 points to special (line drawing) graphics
ESC ) 0 SCS G1 points to special (line drawing) graphics
ESC ( 1 SCS G0 points to alt char ROM - national symbols
ESC ) 1 SCS G1 points to alt char ROM - national symbols
ESC ( 2 SCS G0 points to alt graphics ROM - as ESC ( 0
ESC ) 2 SCS G1 points to alt graphics ROM - as ESC ) 0

(Separate graphics used for DEC and Heath)
^E ENQ *Answerback message (not supported)
^G BELL Sound VT102 style beep
^H BS Backspace, move cursor left one character
^I HT Horizontal tab, move cursor to next tabstop
^J LF Linefeed, move cursor down one line
^K VT Vertical Tab, treated as a line feed
^L FF Formfeed, treated as a line feed
^M CR Carriage return, move cursor to col 1
^N SO Select usage of G1 character set
^O SI Select usage of G0 character set
^X CAN Cancel escape sequence in progress
^Z SUB Treated as a CAN

Other extensions:
ESC [ 25; Pc f VT52/VT100 move cursor to 25th line.
ESC [ 25; Pc H VT52/VT100 move cursor to 25th line.

(These will disable Kermit’s own status line.)
ESC * char VT200 series graphics command, ignored.
ESC ^L Enter Tektronix sub-mode, clear Tek screen.

(This is ignored if DISABLE TEK has been given)

1.17.4. DEC VT102 Functions While in VT52 Mode

Escape sequence Description of action

ESC A Cursor up
ESC B Cursor down
ESC C Cursor right
ESC D Cursor left
ESC F Enter graphics mode
ESC G Exit graphics mode
ESC H Cursor home
ESC I Reverse line feed
ESC J Erase to end of screen
ESC K Erase to end of line
ESC V Print cursor line
ESC X Exit Printer Controller mode, transparent print
ESC Y row column Direct cursor address, offset from space
ESC W Enter Printer Controller mode,transparent print
ESC Z Identify (response is ESC / Z)
ESC ^ (caret) Enter autoprint mode (printer echoes screen)
ESC _ (underscore) Exit autoprint mode
ESC ] Print Screen
ESC = Enter alternate keypad mode
ESC > Exit alternate keypad mode
ESC < Enter ANSI mode (changes to VT102)



Page 82 Kermit User Guide: MS-DOS KERMIT 1.17.5

1.17.5. Heath-19 Functions While in Non-ANSI Mode

Escape seq Mnemonic Description of action

ESC A HCUU Cursor Up
ESC B HCUD Cursor Down
ESC C HCUF Cursor Forward, stays on same line
ESC D HCUB Cursor Backward, stays on same line
ESC E HCD Clear display
ESC F HEGM Enter Graphics mode
ESC G HXGM Exit Graphic mode
ESC H HCUH Cursor Home
ESC I HRI Reverse Index
ESC J HEOP Erase to end of page
ESC K HEOL Erase to end of line
ESC L HIL Insert line
ESC M HDL Delete line
ESC N HDCH Delete character
ESC O HERM Exit Insert Char mode
ESC Y row col  HDCA Direct cursor addressing, offset from space
ESC Z HID Identify (response is ESC / K  which is a VT52)
ESC b HBD Erase Beginning of display
ESC j HSCP Save cursor position
ESC k HRCP Set cursor to saved position
ESC l HEL Erase entire line
ESC n HCPR Cursor Position Report request
ESC o HEBL Erase beginning of line
ESC p HERV Enter Reverse Video mode
ESC q HXRV Exit Reverse Video mode
ESC r Bn HMBR *Modify baud rate - not supported
ESC t HEKS *Enter Keypad shifted mode, not supported
ESC u HXKS *Exit Keypad shifted mode, not supported
ESC v HEWA Wrap around at end of line
ESC w HXWA Discard at end of line
ESC x Ps HSM Set Mode. See table below
ESC y Ps HRM Reset Mode. See table below

Ps Mnemonic Mode Set (x) Reset (y)
1 HSM/HRM 25th line enabled +disabled
2 *keyclick off on
3 *holdscreen enabled disabled
4 cursor type block  underline
5 cursor on/off on off
6 *keypad-shifted shifted unshifted
7 alt app keypad  enabled disabled
8 *linefeed lf=>cr/lf lf=>lf
9 newline mode cr=>cr/lf cr=>cr

+ disabling the 25th line also clears it

ESC z HRAM Reset to power-up configuration
ESC = HAKM Enter Alternate Keypad mode
ESC > HXAM Exit Alternate Keypad mode
ESC < HEAM Enter ANSI mode (ESC [ stuff)
ESC @ HEIM Enter Insert Char mode
ESC [ HEHS *Enter Hold Screen mode, not supported
ESC \ HXHS *Exit Hold Screen mode, not supported
ESC { and } HEK, HDK *Keyboard enable/disable, not supported
ESC ] HX25 *Transmit 25th line, not supported
ESC # HXMP *Transmit page, not supported



1.17.6. Heath-19 Functions While in ANSI Mode Page 83

1.17.6. Heath-19 Functions While in ANSI Mode

Escape Seq Mnenonic Description of Action

ESC [ s PSCP Save cursor position & attributes
ESC [ u PRCP Restore cursor position & attributes
ESC [ z PRAM Reset to power-up configuration
ESC [ 2 J ED Erase entire screen but do not move cursor;

regular Heath-19 moves cursor to Home.
ESC [ ? 2 h PEHM Revert to normal Heath-19 non-ANSI mode
ESC [ > Ps h SM Same as ESC x Ps
ESC [ > Ps l RM Same as ESC y Ps

Plus most of the ANSI escape sequences listed for the VT102.

1.17.7. Tektronix 4010/4014 Graphics Terminal Functions

MS-Kermit’s Tektronix 4010 emulator responds to ordinary text, several special control codes (for drawing lines
and dots), and several escape sequences, as shown in Table 1-10.  The commands SET DEBUG and SET
TRANSLATION INPUT are effective in Tek mode.

Control Code Action
FS, Control-\ Backslash draw dots
GS, Control-] Right square bracket draw lines
RS, Control-^ Caret Draw dots incrementally
US, Control-_ Underscore Display text
BEL, Control-G Beep, make a noise
BS, Control-H Backspace, non-destructive
HT, Control-I Tab, convert to single space
LF, Control-J Line feed, go down one line
VT, Control-K Move up one text line
FF, Control-L Clears the screen
CR, Control-M Carriage return, start of line
CAN, Control-X Exit Tek sub-mode, or ignore
DEL, RUBOUT Delete code, same as BS

Escape Sequence Action
ESC Control-E Send a status report, turn on Bypass mode
ESC Control-L Clear the screen (enter sub-mode from VT102)
ESC Control-X Turn on Bypass mode
ESC Control-Z Activate crosshairs (GIN mode) and Bypass mode
ESC Z Send terminal identification
ESC ‘ (accent grave) Use solid lines in drawing
ESC a through ESC e Use dashed line patterns:

a=fine dots, b=short dashes
c=dash dot,  d=long dash dot
e=dash dot dot.

ESC [ Pn ; Pn m Set ANSI colors. Same as for VT102.
ESC [ ? 3 8 l Exit Tek mode (become text terminal, VT102 etc)
ESC [ ? 3 8 h Enter Tek mode (from VT102 mode)

Table 1-10: Response of MS-Kermit Tektronix Emulator to Received Characters

In the table, US is the name for the ASCII character Control-Underscore, 31 decimal.  Text is written starting with
the last drawn point being the lower left corner of the first 8 by 8 character cell.  The drawing position is updated by
8 dots to the right for each character, and lines wrap at column 80 (column 90 for Hercules boards).  If text extends



Page 84 Kermit User Guide: MS-DOS KERMIT 1.17.7

"below the screen" the sign "More >" is shown at the bottom right corner and the user needs to press a key to
continue. Then the screen will be cleared and the new text will start at the top of the screen (no scrolling is done in
graphics mode).  A real Tek 4010 begins new text at column 40 and will overwrite dots from older material.  The
high resolution EGA screen and the Hercules screen will hold 43 lines, the CGA and Monochome screens hold 25
lines, and the AT&T screen holds 50 lines.  Hercules screens are 90 characters wide and others are 80 characters
wide. Monochrome systems lack graphics so the text is the normal hardware character font placed at the nearest
normal 80x25 location (similarly, "drawing" on Monochrome systems is achieved by using a text plus ("+") sign
where a dot would appear).  Text mode is interrupted by the drawing commands discussed below.

Bypass Mode:

Certain Tektronix commands turn on or off "Bypass" mode whereby incoming text is not displayed on the screen.
Removal of echos of the GIN mode, discussed below, is the major use of Bypass. Bypass mode is turned on by
receipt of ESC Control-E, ESC Control-X, and ESC Control-Z and it is turned off upon receipt of BEL, LF, CR, US,
other escape sequences, and resetting the terminal.

Drawing commands GS, FS, RS:

1. Draw a line or move to a point: GS <xy xy . . . xy>

GS is the name for ASCII character Control-] (right square bracket), decimal 29.  <xy> stands for an encoded x,y
coordinate as explained below. One or more x,y coordinates may follow GS and line segments are drawn from point
to point.  The first point is reached without drawing so that GS and the initial <xy> is a simple "move-to" command
rather than a "draw-to" command.  Lines may be constructed from six dash patterns described in Table 1-10.  <xy>
coordinates are encoded by separating the 10 bit value of x and of y into 5 bit components and then adding two high
bits to each to identify which component is being represented: high-y, low-y, high-x, or low-x. They are transmitted
in that order, with the low-x byte always sent last.  In fact, bytes may be omitted if they do not change from point to
point, provided that low-x is always sent.  These bytes range from ASCII space (32 decimal) to ASCII DEL (127
decimal). Details are given below, and summarized in Table 1-12.  This mode completes when a new command or a
CR LF (carriage return, line feed) arrives; escape sequences are processed transparently but other control codes are
ignored. The interrupting character is accepted and processed next.

2. Draw dots at given locations: FS <xy xy . . . xy>

FS is the name for the ASCII character Control-\ (backslash), decimal 28.  <xy> is in the same form as above.  A dot
is drawn at each x,y point.  This mode completes when a new command or a CRLF character arrives; escape
sequences are processed transparently but other control codes are ignored. The interrupting character is accepted
and processed next.

3. Draw dots from the current location: RS <pen> <direction> <direction> . . . <direction>

RS is the name for the ASCII character Control-^ (caret), decimal 30. pen is the character Space (32 decimal) to
move without drawing or P (80 decimal) to draw while moving. <direction> is one of the letters A, E, D, F, B, J, H,
I as shown in Table 1-11.

Example: RS P J J J (no spaces here, naturally) means draw three dots in the southwest direction, stepping to
each in turn.  This mode completes when a new command or a non-<pen> or non-<direction> character arrives; the
interrupting character is accepted and processed next.



1.17.7. Tektronix 4010/4014 Graphics Terminal Functions Page 85

direction Move One Tek Dot This Way
A East (right)
E East and North F D E
D North (up)
F North and West B * A (* is current location)
B West
J South and West J H I
H South
I South and East

Table 1-11: Tektronix Dot-Drawing Commands

Graphics INput (GIN) mode:

Graphics input mode is entered when ESC Control-Z is received.  A crosshair is drawn on the screen and may be
moved by the numeric keypad arrows (fine scale motion) or the Shift key and these arrows (coarse scale motion).
Pressing an ASCII-producing key sends the position of the crosshairs to the host as the sequence of: pressed key, X
coordinate, Y coordinate, carriage return, then removes the crosshairs, and then returns to text mode. The
coordinates are encoded by splitting them into five bit fields, adding an ascii space (20H) to each, and are sent as
high-y, low-y, high-x and low-x bytes. Bypass mode is active while the report is sent to supress echos of the report.
One may prematurely exit GIN mode by typing Control-C or Control-Break.  Shift-PrtSc (DOS screen dump)
remains active, however.

Status or Position Report:

ESCAPE Control-E requests a status report from the emulator. Tek terminals have many sub-fields.  Kermit-MS
sends a byte of 24 hex for being in text mode or 20 hex otherwise, followed by the encoded X then Y coordinates
and a carriage return.  Coordinates are encoded 5 bits at a time similar to the GIN report.

Identification Report:

ESCAPE Z requests terminal identification, as for VT52 and VT102.  Currently this report is the 10 character
sequence IBM_TEK ESCAPE / Z (no spaces).

Screen Capturing:

Kermit does not implement a graphics screen capture facility. There are many such Terminate-and-Stay-Resident
(TSR) programs in circulation, as either public domain offerings or parts of commercial packages (Paint programs
and even GRAPHICS.COM from DOS).  High resolution EGA screens require more than the GRAPHICS.COM
program. MS Windows tells the program (Kermit-MS) the system is using a pure text-only monochrome adapter so
dots are shown as plus signs.

Although Kermit cannot save graphics screens directly (e.g. via the ^]F connect-mode command), the received
Tektronix escape sequences can still be logged to a PC file using the LOG SESSION command.  The resulting log
cannot be "played back" directly on the PC, but it can be transferred to the host and run through Kermit’s Tek
emulator again, just like a character-mode Kermit session log.



Page 86 Kermit User Guide: MS-DOS KERMIT 1.17.7

VGA Modes:

Considerable effort went into ensuring the graphics display would work automatically and not damage monitors.
Thus, Kermit-MS safely tests the active display adapter for its kind and capabilities before starting graphics mode.
Recent VGA and EGA+ display boards are capable of the 640 by 480 scan-line 16-color "VGA" mode which is now
available on IBM PS/2 computers.  The Tek emulator will happily run with 480 scan lines, but: the normal 256KB
of video memory is sufficient to save only the top 407 lines of the graphics image.  So activating this higher
resolution mode is accomplished by the command SET TERMINAL GRAPHICS VGA and is not done
automatically (the VGA is used in EGA mode).  The 320 by 200 line by 256 color MCGA mode has too coarse a
resolution for graphics line drawing and is not supported by Kermit.

Coordinate Encoding:

Coordinate 0,0 is the lower left corner and the X axis is horizontal. Tektronix positions are mapped into the typically
640 dots wide by 200 or 350 dots high PC screen and thus adjacent Tek positions may yield the same PC screen dot.

4010-like devices use positions from 0 to 1023 for both X and Y, although only 0 to 779 are visible for Y due to
screen geometry.  The Tek screen is 10.24 by 7.80 inches and coordinates are sent as 1-4 characters.

4014-like devices use positions 0 to 4095, but each movement is a multiple of 4 positions unless the high-resolution
LSBXY are sent.  This makes it compatible with the 4010 in that a full sized plot fills the screen.  The emulator
accepts the LSBXY components but does not use them.

The various modes are summarized in Table 1-12, in which the following notation is used:

HIX, HIY = High order 5 bits of a 10 or 12 bit position.
LOX, LOY = Middle order 5 bits of position (low order of Tek 4010).
LSBXY = Low order 2 bits of X + low order 2 bits of Y (4014 mode),

recognized by the Tek emulator but not used to calculate position.

Hi Y Lo Y Hi X LSBXY Characters Sent (Lo-X Always Sent)
Same Same Same Same Lo-X
Same Same Same Diff LSB, Lo-Y, Lo-X 4014
Same Same Diff Same Lo-Y, Hi-X, Lo-X
Same Same Diff Diff LSB, Lo-Y, Hi-X, Lo-X 4014
Same Diff Same Same Lo-Y, Lo-X
Same Diff Same Diff LSB, Lo-Y, Lo-X 4014
Same Diff Diff Same Lo-Y, Hi-X, Lo-X
Same Diff Diff Diff LSB, Lo-Y, Hi-X, Lo-X 4014
Diff Same Same Same Hi-Y, Lo-X
Diff Same Same Diff Hi-Y, LSB, Lo-Y, Lo-X 4014
Diff Same Diff Same Hi-Y, Lo-Y, Hi-X, Lo-X
Diff Same Diff Diff Hi-Y, LSB, Lo-Y, Hi-X, Lo-X 4014
Diff Diff Same Same Hi-Y, Lo-Y, Lo-X
Diff Diff Same Diff Hi-Y, LSB, Lo-Y, Lo-X 4014
Diff Diff Diff Same Hi-y, Lo-Y, Hi-X, Lo-X
Diff Diff Diff Diff Hi-y, LSB, Lo-Y, Hi-X, Lo-X 4014

Kind code for byte: 20h 60h 60h 20h 40h
(transmitted left to right)

Table 1-12: MS-Kermit Tektronix Coordinate Interpretation

Note that LO-Y must be sent if HI-X has changed so that the Tektronix knows the HI-X byte (in the range of



1.17.7. Tektronix 4010/4014 Graphics Terminal Functions Page 87

20h-3Fh) is HI-X and not HI-Y.  LO-Y must also be sent if LSBXY has changed, so that the 4010 will ignore
LSBXY and accept LO-Y.  The LSBXY byte is

60h+(MARGIN×10h)+(LSBY×4)+LSBX

MARGIN is 0 here and refers to splitting the screen left and right for text rollover, which the Kermit Tek emulator
does not do.

Tek 4010 Example:

Suppose <xy> is point y = 300, x = 500 in Tektronix coordinates.  Split each 10-bit coordinate into 5-bit groups, add
add the Kind code to each. Send the X part last.

HI-Y LO-Y HI-X LO-X
Y=300d=012Ch= 01001  01100 X=500d=01F4h= 01111  10100
+Kind code +100000 +1100000 +kind code +100000 +1000000

Binary 101001 01101100 101111 1000100
ASCII ) l / D

So <xy> = (500,300) is sent or received in a GS command as ‘‘)l/D’’. An example in C (program fragments):

#define ESC  27
#define GS 29
#define US 31
FILE *fp; /* File descriptor for terminal */
. . .

fputc( GS, fp); coord( 75, 65); /* Move to 75,65 */
fputc( ESC, fp); fputs("[31m", fp); /* Set foreground to red */
fputc( US, fp); fputs("A House", fp); /* Annotate at 75,65  */
fputc( ESC, fp); fputs("[33m", fp); /* Set foreground to yellow */
fputc( GS, fp); /* Now draw lines...  */
coord( 50, 50); coord(300, 50); /* Bottom side */
coord(300,200); coord( 50,200); /* Right wall, top */
coord(175,250); coord(300,200); /* Roof */
fputc( GS, fp); /* Start a new line */
coord( 50, 50); coord( 50,200); /* Left wall at 50,50 */
fputc( ESC, fp); fputs("[37m", fp); /* Set foreground to white */
. . .

coord(x, y) int x, y; { /* Send x,y coordinates to Tek 4010 */
fputc((y / 32) + 32, fp); /* High y */
fputc((y % 32) + 96, fp); /* Low  y */
fputc((x / 32) + 32, fp); /* High x */
fputc((x % 32) + 64, fp); /* Low  x */

}

1.18. IBM PC Kermit Technical Summaries

Under normal circumstances, MS-Kermit takes advantage of the computer’s hardware, and often bypasses DOS
(sometimes even BIOS) to achieve high performance, to exercise special machine features, or to produce an
attractive screen display.  Thus, it is not in all respects a "well behaved" DOS program.

MS-Kermit redirects interrupts 0BH (COM2/4) or 0CH (COM1/3), 14H (serial port), 23H (Control-Break), 24H
(DOS Critical Error) and returns them when done. It uses the BIOS for keyboard, video display, and system
information interrupts.  It examines segment 40H for EGA operating modes and it does direct screen reads and
writes. Memory for the screen roll backbuffer is negotiated with DOS to leave room for a second copy of
COMMAND.COM to run tasks within Kermit; about 100KB to 148KB is needed for the entire program.  Video page
zero is normally used, but page one is employed to save screens with non-standard dimensions.  Hercules and other
graphics mode displays are supported only in Tektronix terminal mode.  Kermit’s timing delays are dynamically
adjusted each time the serial port is started to accomodate machines of different speeds; duration of the normal



Page 88 Kermit User Guide: MS-DOS KERMIT 1.18

software timing loop is measured with the hardware timer chip and looping is adjusted to produce uniform delays on
8088 through 80386 machines.

1.18.1. Kermit-MS/IBM on Local Area Networks

The IBM version of Kermit-MS has support for the IBM Local Area Network NetBIOS (and emulators) interface,
Interrupt 5CH, with additional support for selected vendor specific features (presently just AT&T STARLAN),
activated by the SET PORT NET command, described above, direct support for the Ungermann Bass Net One
proprietary Interrupt 14h interface, and via SET PORT BIOSn support for many other networks which intercept the
Bios serial port interrupt 14h.  Communications across a LAN occurring through the NetBIOS interface use virtual
circuits (Sessions), named nodes, and conventional NetBIOS packets.  Kermit-MS does not use LAN terminal
interface packages nor the Redirector or similar functions.

Kermit LAN operations are harmonious with normal network activity and many pairs of Kermits can communicate
simultaneously. Kermit does not use LAN File Server functions, since these are proprietary and vendor-specific.
Kermit can, however, send and receive files to/from a LAN file server.

Since Kermit uses the standard NetBIOS interrupt 5CH interface, it will run on most LANS including IBM PC Net,
IBM Token Ring, AT&T STARLAN, and many others, and will run with Novell NetWare software. Presently,
Kermit knows some details of STARLAN and is able to send a BREAK across the net and can use ISN node names
with long path parts.  If STARLAN is not operating these features are not available. As more detailed information
becomes available special features of other networks can be built-in.

The sequence of operations is similar for a client or server Kermit.  The SET PORT NET command is issued by
both. This command causes Kermit to validate the presence of the Interrupt 5CH interface, test for vendor additions,
test for a session already underway, establish and display a unique Kermit node name, but not make a network
session. The node name of the remote server machine follows the word NET; this is not to be confused with our
own node name discussed below.

If an earlier LAN session is still active then the current remote node name field of the command is examined for
presence of a name. If a name is given then Kermit asks the user whether to RESUME the session or start a NEW
one. Starting a new one results in Kermit hanging up the old session (HANGUP) before proceeding; resuming an
old one requires no further work at this point.

When Kermit attaches to the network for the first time it needs to select a unique local node name so that two
systems can form a Session by using these names as addresses. Kermit uses a simple algorithm to make the name.
Kermit probes the network adapter board/software for the name of the local system.  If the name is present Kermit
makes its own name by appending a dot K (.K) to the local name. If the local name is absent then Kermit first tries a
standard name of "mskermit.K"; should the network report that the name is not unique (another node is using the
name) then the user is asked to choose a name. This process continues until a unique name is obtained or the user
decides to quit.  The final Kermit node name is reported on the screen; client Kermits will need to know the name of
the server Kermit.

Communication across the LAN begins differently for client and server Kermits.  The server must be started first, by
simply placing a Kermit in server mode.  This results in a network Listen request being posted so that arriving
packets with the correct node name can be delivered to the server Kermit. Next, a client Kermit tries to connect to
the server by issuing a Kermit server command to the proper node name (as given in the client’s SET PORT NET
node command); REMOTE WHO is a satisfactory choice. The client machine actually issues a network Call to the
server’s node name to make a connection and then follows it with data packets holding the Kermit server request.
The initial exchange of packets establishes a particular virtual circuit between the two nodes. If the connection
cannot be started then the client Kermit reports this fact to the user. The most common causes of a failure at this
point are:

1. The client Kermit did not specify the correct server Kermit node name (spelling errors, wrong case for



1.18.1. Kermit-MS/IBM on Local Area Networks Page 89

letters, missing dot K),

2. One or both machines are using a network adapter board which is not the first in the machine; Kermit
uses only the first board,

3. The LAN NetBIOS emulator does not fully support IBM standard virtual circuits,

4. The server machine was not started on the network before the client.

A virtual circuit will be broken if a sender or receiver gets no response to a request within a short time interval set by
the LAN hardware/software.  However, the LAN procedures within Kermit automatically reestablish the circuit
transparently to the user when new information is communicated; the last used remote node name is remembered
internally for this purpose.  This also means the server Kermit will respond to a connection from a new client Kermit
if the first client is idle for say a minute or so. A session can be terminated by the user by issuing the HANGUP
command or by exiting Kermit. A session will not be broken this way if the user on the client Kermit changes to a
regular serial port.

Finally, when Kermit returns control to DOS, but not via the PUSH command, its unique Kermit node name is
removed from the network adapter board.

During network communications Kermit uses network packets holding 256 bytes of data.  If both Kermits are given
the command

SET RECEIVE PACKET 1000

then the network and Kermit will be used to best efficiency.  Experience has shown that the client Kermit should
have its TIMER OFF because the server may be asked to do an operation via DOS which does not complete before
the client side would timeout. An observation of some token passing networks indicates that Kermit packets slightly
longer than 256, 512, etc bytes result in marked slowing down because the remaining small piece is not sent until a
net timer expires.  Carrier sense (Ethernet, STARLAN) boards seem to be more agressive and export small packets
immediately.

Support for the Ungermann-Bass Net/One network, with its NET Command Interface (NETCI), was contributed by
Renne Rehmann and Henrik Levkowetz.  In addition to the SET PORT NET [nodename] command, which may be
used to connect to other nodes on the net with the standard NetBIOS calls, NETCI provides the means to connect
directly to serial ports on the Ungermann-Bass network.  Use SET PORT UB-Net1 and enter Connect mode. The
NETCI prompt, >>, should appear and all the usual NETCI commands (connect, get, list, resume, abandon,
examine, identify, set, logout, quit) may be selected.  This line is disconnected when Kermit exits. However, the line
may be put on hold, exit Kermit, then later restart Kermit and give the SET PORT UB-Net1 and CONNECT
commands, and Resume the line.

Some LANs intercept the normal serial port Bios interrupt 14H and masquerade as a modem. This service can be
engaged within Kermit by the SET PORT BIOSn command, where n is 1, 2, 3, or 4, as appropriate for the LAN
software. To work properly the LAN must support the same use of registers as the system Bios. Several X.25 and
TCP/IP packages have been operated successfully with the SET PORT BIOSn command. Since this channel appears
to Kermit as a simple software level serial port, Kermit provides neither interrupt driven i/o nor LAN session
support.

Kermit can access files on the LAN file server via DOS even while using the LAN as a communications medium.
Network administrators should note this point because a user operating Kermit in Server mode can allow his or her
file server directories to be available to other network users also running Kermit, without additional security
checking of the other users.  The network drives visible to the Server Kermit can become devices available for
Kermit-to-Kermit file transfers, etc, unless the DISABLE command is used to confine access to the current disk and
directory. A corollary is when files are accessible to DOS commands they can become public.



Page 90 Kermit User Guide: MS-DOS KERMIT 1.18.2

1.18.2. Use of Kermit-MS with External Device Drivers

It is often desirable to supplement or modify the behavior of a DOS program by loading it with special external
device drivers.  These drivers may operate at either the DOS or BIOS level.  When Kermit-MS accesses the BIOS
directly, DOS-level drivers are ineffective.  When Kermit accesses the hardware directly, both the DOS and the
BIOS level drivers are bypassed.  Kermit-MS provides several mechanisms to allow these external drivers to operate
as intended.

Here are a few examples:

• IBM’s ANSI.SYS console driver operates at the DOS level.  It allows the major IBM PC keys to be
redefined, and also interprets selected ANSI-format escape sequences for screen control.  It works fine
at Kermit-MS command level, except SHOW KEY does not recognize strings assigned to keys via
ANSI.SYS, and fine at CONNECT level.  To use ANSI.SYS at CONNECT level, issue the
Kermit-MS commands SET KEY OFF (to read keys via DOS) and SET TERMINAL NONE (to display
characters through DOS).

• Blind people often have speaking or Braille machines attached to their PCs.  DOS-level device drivers
are generally used to redirect screen output to these devices, which works OK at DOS or MS-Kermit
command level.  SET TERMINAL NONE will allow this redirection to take place during CONNECT.
But these devices also need to have the computer’s output appear as a coherent stream of text, so users
should also take care to inform the remote host to format its output for a "dumb" or hardcopy terminal.
In addition, Kermit-MS’ normal file transfer display does not mesh well with these devices, but that can
be remedied using SET DISPLAY SERIAL.

• People with motor impairments may be using special keyboard replacements supported by DOS-level
device drivers.  As with ANSI.SYS, Kermit-MS may be directed to use such keyboard drivers with the
command SET KEY OFF.

• Other keyboard drivers are available that work, like Kermit-MS, at BIOS level.  Examples include
ProKey and SuperKey.  These may be used at DOS or Kermit-MS command level as well as during
CONNECT.

• Conceivably, drivers exist that allow DOS communication programs to emulate terminals other than
ANSI. You should be able to use them, if they exist, in conjunction with Kermit-MS by telling Kermit
to SET TERMINAL NONE, but the speed may not be high because of the intervening DOS calls.

1.18.3. Kermit-MS/IBM Serial Port Information

Kermit-MS for IBM PC’s and compatibles does testing of serial ports before use.  This section describes those tests
so users may understand what Kermit does.

When a serial port is selected by the SET PORT COMx command Kermit looks at low memory addresses in
segment 40H assigned to hold the base address of each COMx port; COM1 is in word 40:0H, COM2 is in word
40:2H, and so on. If the value in the appropriate word is binary zero then Kermit declares the port to be unavailable.
Otherwise, Kermit runs read-only (i.e., safe) tests at the base address to validate the presence of an official 8250
UART chip.  If the tests fail Kermit indicates it will do i/o through the slow Bios pathway; some PC clones need to
work this way even though the Bios has speed problems even at 1200 baud.  Otherwise, interrupt driven i/o will be
done through the 8250 UART (that is, very fast).

There is a special case when a communications board is present, set for COM2, but a normal COM1 serial port is
not. Kermit detects this situation.

Many machines now have more than two serial ports, but until recently there has been no standard about addresses
for COM3 and COM4.  PC DOS 3.30 does not assign them either because it is really a problem of the system ROM
Bios boot code run when the power is turned on.  However, Kermit will use COM3 and/or COM4 if the base address
of a port is placed in low memory words 40:4H (COM3) or 40:6H (COM4); the tests described above are then



1.18.3. Kermit-MS/IBM Serial Port Information Page 91

carried out.  One restriction is that the Interrupt ReQuest number (IRQ in the serial port board manual) must be
either IRQ4 or IRQ3.  Kermit attempts to locate which line is correct with a short test.  If the test is not successful it
uses the IRQ4 for COM3 (and for COM1) and IRQ3 for COM4 (and for COM2) on the PC/AT, and on the PS/2 it
uses IRQ3 for COM2, COM3, and COM4.  Check the board and its manual. DOS utility DEBUG can be used to
create a short program to insert the board’s addresses into the segment 40H memory locations; a sample program is
given below.

Serial Port Address IRQ Line Conventions
COM1 03F8H 4 IBM standard
COM2 02F8H 3 IBM standard
COM3 ? 4 (3 for PS/2) Board
COM4 ? 3 Board

Table 1-13: IBM PC/XT/AT Serial Port Numbers

The addresses shown as query marks are to be found in the board’s reference manual; values such as 2E8H and
2E0H would be common.  However, there is no standard for anything to do with COM3 and COM4 on non-PS/2’s.

Assuming that you have selected an address in harmony with the rest of the system (good luck on that part), set the
board’s switches or jumpers, and use DEBUG to insert the address(es) in segment 40H memory. The example
below creates a small program named SETCOM3.COM to put address 02E8H into the memory word 40:04H for
COM3 and writes the program to drive A. (Disregard the xxxx items below):

A> DEBUG don’t type these comments
-n a:setcom3.com sets name of output file
-a assemble command
xxxx:100 mov ax,40 value 40h
xxxx:103 mov es,ax put it into register es
xxxx:105 mov ah,02 the 02 part of 02E8H
xxxx:107 mov al,e8 the E8 part of same
xxxx:109 es:
xxxx:10A mov [4],ax store in 40:4 for com3 ([6] for com4)
xxxx:10D int 20 return to DOS
xxxx:10F blank line to end assemble mode
-r cx show contents of register cx
CX 0000
: 0f set register cx to write 0fh bytes
-w write material to the disk file
-q quit debug
A> DEBUG setcom3.com
-u unassemble to see if all is well
-q quit debug

Note, for COM4, use [6] above rather than [4], and of course employ your board’s port address in place of
02E8H (check the manual).  Finally, try it:

A> setcom3 run the program
A> DEBUG now see what’s down there
-d 40:00 display bytes in seg 40H

( Shows many bytes.  See yours?  Good. )

-q
A>

A small side effect noted in practice is the first time the extra port is used there may be garbage from it.  Just return
to the Kermit prompt and try again, if necessary SET PORT to the other COM lines momentarily, all should be well



Page 92 Kermit User Guide: MS-DOS KERMIT 1.18.3

the second time.

More technical comments, for those with an interest.  When Kermit finishes with a port it disables interrupts for that
serial port and returns the IRQ signal line to its state found when Kermit started since many devices can share the
same Interrupt ReQuest line but only one device at a time can be active on it.  If you find that transmissions are good
but there is no reception then another device has stolen the IRQ; disable it or find a guru.  Kermit will work with
non-standard addresses for COM1 and COM2 but the IRQ’s must be as in the table above.  Accessing a non-existent
port produces a message and all communications are discarded safely in the bit bucket.

1.18.4. CTTY COMx for IBM Machines

The DOS command CTTY COMx redirects the standard input and output from the keyboard and screen,
respectively, to the indicated communications channel. If a Kermit Server is operated this way, "through the back
port", then both DOS and Kermit can access the port hardware simultaneously; a deadlock develops on IBM
machines. The items below refer to only the IBM version of Kermit-MS.

Kermit-MS/IBM version successfully resolves the deadlock in the following manner.  When Kermit requires the
serial port it also attaches itself to Interrupt 16H, the Bios RS232 serial port routine. Code within Kermit receives
the DOS serial port requests via Interrupt 14H and either passes the request to the Bios if the COM line is not that
used by Kermit or it handles the request internally for conflicting situations.  When the same port is used by both
DOS and Kermit, Kermit discards DOS output material (typically a prompt, but could be the dreaded Abort, Retry,
Ignore message) and returns a success code to DOS, it returns an ascii Backspace code to DOS read requests (this is
a key item to keep DOS complacent while Kermit communicates), and it returns reasonable status for modem status.
The interception ceases when Kermit releases the port, such as when the Kermit prompt is displayed, and this lets
DOS converse out the serial port.

It is worth restating that a large number of programs bypass DOS to achieve higher performance. When such
programs are started through the back door they may still require input from the real keyboard and will hang,
waiting for it.  There is nothing to do about this situation except a) don’t let it happen, b) contact the local operator
to push some keys.

1.18.5. Screen Sizes and the EGA Board, IBM Versions

Support has been included for Enhanced Graphics Adapter (EGA) video display boards which can be configured for
other than the standard 80 columns by 25 lines, say 132 columns or 43 lines or other.  Several boards, the Tseng
Labs EVA (also Orchid Designer) board with the 132 column kit installed, the ATI EGA Wonder, the Video 7
Deluxe and VGA, and the Everex EV-659 (ega) and EV-673 (vga), can be controlled directly by Kermit for 80/132
column changes.  Other boards need to be placed in the desired display mode by the user.  Kermit then adapts to the
settings if the board obeys standard rules for using the Bios EGA memory areas in segment 40H.  The Video-7
boards have been used successfully in all screen sizes, including 132 columns by 43 lines, with an NEC Multisync
monitor.

The IBM EGA board has several noteworthy bugs which are now standards.  One is the cursor dots are not always
on the correct scan lines when the number of screen lines is other than 25.  Kermit-MS attempts to compensate for
this attribute.  Screen roll back space is fixed in size so there are fewer pages for more dense screens; standard
screens use an internal buffer, non-standard screens use a buffer plus video page 1. ANSI.SYS is hard coded for 25
line displays so all DOS i/o will eventually overwrite itself on line 25; the emulator does not use DOS i/o.
Commercial replacements for ANSI.SYS should be able to use all screen lines.

Screen dumps work correctly if done with Kermit commands.  DOS PrintScreen may or may not, depending on your
EGA board. Graphics dumps are not managed by Kermit.

When the VT102 receives escape sequences to change between 80 and 132 column modes the screen is reset and the
ATI EGA Wonder, or Everex EV-659 (EGA) or EV-673 (vga), Tseng Labs Multipak (and Orchid Designer), or



1.18.5. Screen Sizes and the EGA Board, IBM Versions Page 93

Video 7 Vega or VGA board is asked to change modes (but only if that board is present); other display adapters are
left in their current state. Users of Tseng boards must run the Tseng BIGSCR /R:25 program before starting Kermit.
The right margin is enforced strongly so a board in 132 column mode will not display material to the right of
column 80 if the emulator is in 80 column mode.  Similarly, material to the right of column 80 is not preserved in
the emulator if the display adapter is operating in 80 column mode; real VT102s keep that invisible material in
hardware memory whereas the emulator does not.

Reference is made to line 25 in the emulator; this is normally the status/mode line in Kermit. Real VT102’s have
only 24 line displays.  If the display adapter is set for a different number of lines per screen then the 25th line is
interpreted to mean the bottom display adapter line, such as line 43.  Should the host access the status/mode line
then the line is declared to be disabled (same as SET MODE OFF) so that Kermit’s own status information does not
overwrite the host’s when the screen is restored.  Toggling a disabled mode line has no effect; only SET MODE ON
will enable it again.  The Heath-19 terminal has the unusual feature that disabling the mode line (ESC y 1) also
clears it.

1.18.6. Kermit-MS/IBM Printer Control

The IBM PC MS-Kermit VT102 terminal emulator also supports full transparent printing of 8-bit binary bytes. The
escape sequence ‘‘ESC [ 5 i’’ turns on transparent printing, in which all further 8-bit characters are sent directly
to the printer, bypassing the SET TRANSLATION INPUT filter, and are not shown on the screen.  Escape sequence
‘‘ESC [ 4 i’’ turns off transparent printing and the escape sequence is not sent to the printer.  Non-transparent
printing is controlled by the ‘‘ESC [ ? 5 i’’ and ‘‘ESC [ ? 4 i’’ sequences.  Such printing simply
duplicates text intended for the screen, excluding escape sequences.  The text also appears on the screen.

Kermit-MS accesses the system printer through DOS calls several ways; neither the Bios nor the hardware are used.
Files directed to the printer by the SET DESTINATION PRINTER command are written by opening a file with the
name PRN (DOS’s name for the system printer) and writing to it the same as to a disk file; DOS provides limited
buffering. LOGging to device PRN works the same way, as can be noticed by the last line or so not being printed
until the log file is CLOSED.  DOS is used again while emulating a terminal in CONNECT mode. If the VT102
emulator found in the IBM PC is used for transparent or Controller printing, single characters are written to DOS
file handle 4, the DOS standard print device.  If the screen is echoed to the printer via the typical Control PrtSc key
combination, or equivalent, single characters are written by the DOS function 05H Printer Output call.  In both cases
of terminal emulation the printer’s ready status is found by the DOS IOCTL 44H call.  Only the Control PrtSc case
results in the PRN message being displayed on the status line. Finally, the classical IBM PC Shift PrtSc command
to copy the whole screen to the printer is unknown to Kermit because the system Bios traps the key combination and
does not tell Kermit about it. If the Control P command is given to DOS before Kermit starts then again characters
are echoed by the system Bios without Kermit’s knowledge; this situation can result in lost characters.

Print spoolers generally operate by being told an existing filename and then in the background they steal cpu cycles
to read from disk and write to the printer.  The DOS PRINT command invokes such a spooler.  Although an active
Kermit does not feed these software programs directly the spooler and Kermit can compete for cpu cycles and
characters can be lost.  If a non-DOS resident program intercepts characters destined for the printer device and
spools them Kermit does not know about it and similar competion can occur.

During file transfers printing is carefully sequenced to occur only when the local Kermit is in control of the
communications line so that a small pause will not result in missing characters arriving at the serial port.  When
terminal emulation is active then printing competes for cpu time with the serial port routines.  Generally, the serial
port wins such contests if the port is interrupt driven (Generic Kermit is not interrupt driven, so beware).  However,
the printing itself can use enough cpu cycles to delay processing of characters to the screen and eventually the
receive buffer of the serial port fills to the high water mark and an XOFF flow control character is sent to the host to
suspend further transmissions until we send an XON.  If FLOW is NONE then expect lost characters at the serial
port. Experience with ordinary IBM PC’s through 80386 machines at very high baud rates indicates no characters
are lost when FLOW is XON/XOFF.  However, it is possible on some machines for the printer to have priority over
the serial port, and hence to have lost characters, especially if a Terminate Stay Resident program intercepts



Page 94 Kermit User Guide: MS-DOS KERMIT 1.18.6

characters destined for the printer and keeps interrupts turned off too long.



MS-DOS Kermit Page 95

Index
-F Command 8, 17 File Warning 50

Flow Control 38, 93
.BOO Files 70
.PIF Files 10 Generic MS-DOS Kermit 43, 72

German 49
132 Column Mode 92 GOTO Command 58

Graphics 23, 83
7171 60 Graphics Screen Capture 85

Alarm 35 Handicapped 37, 90
ANSI Printer Control 93 Handshake 39
ANSI.SYS 14, 17, 41, 44, 47, 67, 92 HANGUP 21
ASCII 13 Heath/Zenith-19 Emulation 74
ASSIGN 54 Hebrew 65
Asynchronous Communication Server 10 Help 12
ATI EGA Wonder 92
Attributes 25, 36 IBM Mainframe 60
Autoanswer Modem 30 IBM PC Family 1
AUTOEXEC.BAT 10 IF Command 58

Incomplete File Disposition 27, 39
Backslash Number Format 12 INPUT Command 39, 43, 55
Batch Operation of Kermit-MS 9 International Characters 62
Baud Rate 4, 47
Bell 36 Japanese 4
Binary Files 6, 25, 43
BIOS 87 Kana, Kanji 4
Bios LAN 89 Key Redefinition 39
Blind 21, 37, 90
Block Check 36 Labels 58
BOO Files 70 LAN 10
Bootstrapping MS-DOS Kermit 70 Local Area Network 10, 31

Local Echo 20, 41
Cancelling a File Transfer 26, 27 LOG Command 34
Checksum 36 LOG PACKETS 34
CLOSE Command 34 LOG SESSION 29
Code Page 66, 76 LOG TRANSACTION 34
COM3 and COM4 43, 90 Long Packets 45
Command Files 47
Command Macro 51 Macro 51
COMMENT Command 17 MAIL Command 33
Completion 8, 12 MASM 72
Concurrent DOS 10 Menu 12
CONFIG.SYS 9 Mode Line 22, 42
CONNECT Command 19 Modem 5, 15, 20, 21, 51, 59
Control-X,-Z 26, 27 MS-DOS 1
Count 36 MS-Windows 2, 10
CRC 36 MSKERMIT.INI 7, 15, 40, 47, 60
CTTY 9, 45, 66

National Characters 12, 19, 37
Debugging 36 NEC APC3 67
DEFINE 51 NetBIOS 10, 44, 88
DG/1 2 Network 10
DIAL Command 53 Network security 31, 89
Display, File Transfer 37, 90 Novell 88
DO Command 52
Dump Screen 22, 38 OUTPUT Command 56

ECHO Command 17 Parity 29, 43, 56
EGA Boards 92 PATH 5, 8, 10, 15, 17, 27
Eighth-Bit Prefix 43 PC-DOS 1
End Of File 6, 38 POP 16
ERRORLEVEL 9, 38 POP Command 59
Escape Character for CONNECT 19, 21, 38 Printer 19, 22, 29, 37, 43, 93
Everex EV-659 92 ProKey 41
EXEPACK 2 Protocol Converter 60

PUSH Command 15
File Attributes 25



Page 96 Kermit User Guide

Rainbow 66, 67
RAM Disk 9, 25
RECEIVE Command 27
Redirected input and output 9
REINPUT Command 56
Rollback 22

Screen Dump 22, 38
Screen Rollback 22
Script Files 54
Security 31, 89
SEND Command 26
Server 30
SET PORT NETBIOS 10, 44
SET PORT UB-NET1 10, 44
SET TERMINAL 47
Speaking Device 37
Speed 47
Starlan 88
STAY 8
STAY Command 15
STOP 16
STOP Command 59
SuperKey 41

Tab Stops 49
Tektronix 23, 47, 83
Telenet 43
Terminal Emulation 2, 21
Terminal Settings 47
Timeout 49
Token Ring 88
TopView 2
TRANSLATION 49
TRANSMIT 28
Tseng Labs Multipak 92

UART 2
Ungermann Bass Net One LAN 89
Ungermann-Bass 10, 89

Variables, substitution 52
VERSION 14
Video 7 Vega 92
VT102 Emulation 2, 47, 74
VT52 Emulation 74

Warning 50
Wildcard 6, 26

Xmodem 70
XON/XOFF 2, 28, 38
XSEND 27



MS-DOS Kermit Page i

Table of Contents

1. MS-DOS KERMIT 1
1.1. System Requirements 2
1.2. History 2
1.3. Using MS-Kermit 4
1.4. The MS-DOS File System 5

1.4.1. File Specifications 5
1.4.2. File Formats 6

1.5. Program Setup and Invocation 7
1.6. Kermit-MS Commands 11

1.6.1. Program Management Commands 14
1.6.2. Local File Management Commands 17
1.6.3. COMMANDS FOR TERMINAL CONNECTION 19
1.6.4. COMMANDS FOR FILE TRANSFER 25
1.6.5. Hints for Transferring Large Files 28
1.6.6. Commands for Raw Uploading and Downloading 28
1.6.7. Kermit Server Commands 30
1.6.8. Commands for Controlling Remote Kermit Servers 32
1.6.9. The LOG and CLOSE Commands 34
1.6.10. The SET Command 35
1.6.11. The STATUS and SHOW Commands 50

1.7. Macros 51
1.8. SCRIPTS 54
1.9. Initialization Files Revisited 60
1.10. International Character Sets 62
1.11. MS-Kermit Features for Different Systems 66
1.12. Compatibility with Older Versions of MS-DOS Kermit 69
1.13. What’s Missing 69
1.14. Installation of Kermit-MS 70
1.15. Program Organization 71
1.16. Bringing Kermit to New Systems 72
1.17. Kermit-MS VT102 Terminal Emulator Technical Summary 74

1.17.1. Treatment of Inbound Characters During Terminal Emulation 74
1.17.2. Keyboard Layout and Characters Sent 77
1.17.3. Responses To Characters Received By the Terminal Emulator 79
1.17.4. DEC VT102 Functions While in VT52 Mode 81
1.17.5. Heath-19 Functions While in Non-ANSI Mode 82
1.17.6. Heath-19 Functions While in ANSI Mode 83
1.17.7. Tektronix 4010/4014 Graphics Terminal Functions 83

1.18. IBM PC Kermit Technical Summaries 87
1.18.1. Kermit-MS/IBM on Local Area Networks 88
1.18.2. Use of Kermit-MS with External Device Drivers 90
1.18.3. Kermit-MS/IBM Serial Port Information 90
1.18.4. CTTY COMx for IBM Machines 92
1.18.5. Screen Sizes and the EGA Board, IBM Versions 92
1.18.6. Kermit-MS/IBM Printer Control 93

Index 95



Page ii Kermit User Guide



MS-DOS Kermit Page iii

List of Figures
Figure 1-1: MS-Kermit File Transfer Display Screen 25
Figure 1-2: MS-Kermit Script for Logging In 60
Figure 1-3: MS-Kermit Script for More Control of a Hayes 2400 bps Modem 61
Figure 1-4: MS-DOS Batch File Invoking Kermit to Send VAX Mail 62
Figure 1-5: MS-Kermit Script for Logging into VAX and Sending Mail 63
Figure 1-6: An Advanced MS-Kermit Initialization File 64



Page iv Kermit User Guide



MS-DOS Kermit Page v

List of Tables
Table 1-1: MS-DOS Kermit Backslash Codes 12
Table 1-2: The US ASCII Character Set (ANSI X3.4-1977) 13
Table 1-3: RS-232-C Modem Signals 20
Table 1-4: Kermit-MS Single-Character CONNECT Escape Commands 21
Table 1-5: Adapters Supported by IBM PC MS-Kermit for Tektronix Emulation 24
Table 1-6: Kermit-MS Verbs for the IBM PC Family 42
Table 1-7: Kermit-MS Terminal Emulation Options 66
Table 1-8: Kermit-MS Screen Scroll Keys 67
Table 1-9: Kermit-MS Verbs for the DEC Rainbow 68
Table 1-10: Response of MS-Kermit Tektronix Emulator to Received Characters 83
Table 1-11: Tektronix Dot-Drawing Commands 85
Table 1-12: MS-Kermit Tektronix Coordinate Interpretation 86
Table 1-13: IBM PC/XT/AT Serial Port Numbers 91


