K COBOL interface

THE USE OF COBOL CRIPPLES THE MIND; ITS TEACHING SHOULD,
THEREFORE, BE REGARDED AS A CRIMINAL OFFENSE.

— EDSGER W. DIJKSTRA,

Selected Writings on Computing: a Personal Perspective (1972).

K.1 ~COBOL history and language overview| K-1
K2 COBOLcodelayout] K-4
K. Free-form rcecodel. L K4
K.4 ntrol fl nd modularizationin COBOL|. K4
K.5 Formatted output and roundingin COBOL{ K-5
.6 arithmetic deviations in COBOLf K-7
[K.7 Interfacing COBOLto C|. e K-7

COBOL is the third major programming language still in use, after Fortran and Lisp. A multidisciplinary panel
met in 1959 to work on the design of a new language intended for business data processing, and named it COBOL,
an acronym of COmmon Business-Oriented Language. The first COBOL compiler was operational in the summer of
1960, and in the more than six decades since, it became one of the most widely used programming languages, with
compiler implementations on most commercial computers, and multiple national and international standards
from 1968 to 2023. ISO/IEC 1989:2023 is the third, and latest, edition.

Many modern programming languages share a common ancestry. The first version of the Algol language was
designed by an international committee of computer scientists who met in Zurich, Switzerland, in early 1958, and
the first Algol compiler was operational later that year. Significant extensions of Algol 58 were introduced in 1960
and 1968, but the language largely disappeared from use in the 1970s, and never saw wide interest outside of
Europe. It was, however, replaced by numerous descendants, including the teaching language Pascal, and the
C-language family, all of which borrow important ideas, and syntax, from Algol. The Algol designs were founded
on rigorous minimal grammars, a practice followed in most modern programming languages. However, Algol
appears to have had no effect whatever on the COBOL language design, which progressed in isolation from most
other computer languages, and became large, complex, and idiosyncratic.

Lisp and Algol introduced the useful notion of recursive functions, most easily implemented with a run-time
call stack, but few other languages of the time permitted recursion, and COBOL still does not, except in a restricted
form introduced in the 2002 ISO COBOL Standard.

K.1 COBOL history and language overview

Although Fortran had a five-year head start on COBOL, and was already in wide use on computers from multiple
vendors, Fortran lacked several critical features considered essential for business applications, including character
strings, wide-precision decimal arithmetic for financial calculations, record structuring of program data and files,
and sorting and merging of external files. For example, an inventory record might have character string fields
containing things like catalog numbers, manufacturer names and addresses, part numbers, product descriptions,
purchase dates, and so on, plus numeric fields for item quantities and unit costs.

In addition, the COBOL designers may have felt that the mathematical notation for expressions in Fortran
would be foreign to people in the business community, so the language was defined with concepts like divisions,
paragraphs, sections, sentences, and statements, and with verbose descriptions of expression evaluation that

K-1 [9861987]

K-2[9861987] Appendix K. COBOL interface

resemble English sentences. Thus, COBOL programs contain statements like MULTIPLY COST BY TAX-RATE GIVING
BILLABLE-AMOUNT, whereas a Fortran programmer might more succinctly write BILAMT = TAXRTE * C0ST. COBOL
has another statement verb that shortens numeric expression evaluation, allowing COMPUTE BILLABLE-AMOUNT =
COST * TAX-RATE.

Unlike most modern programming languages, there are no semicolons in COBOL to permit multiple short
statements per line.

Assignments in COBOL can be written as MOVE X TO Y, or as COMPUTE Y = X. Assignments can have multiple
targets, asinMOVE E TO A, B, C, D and COMPUTE A, B, C, D = E.

The COMPUTE verb can be used only for numeric expressions; character-string assignments require the MOVE
form.

Because hyphens are valid characters in COBOL identifiers, surrounding spaces are essential if hyphen means
subtraction: COMPUTE A = B - C does arithmetic, but COMPUTE A = B-C is an simple assignment of the value of
the variable B-C.

Addition and subtraction operations can be applied to multiple variables with code like SUBTRACT 3 FROM A,
B, C. Summing a list of variables can be done with ADD A, B, C, D GIVING E or COMPUTE E = A + B + C + D.
There is similar syntax for DIVIDE and MULTIPLY, but that form is likely rare.

In its early years, COBOL'’s only numeric type was fixed-point decimal, where type declarations indicated
whether values can be signed, and how many digits there are on both sides of a decimal point. Thus, a COBOL
program might contain variable declarations like these:

WORKING-STORAGE SECTION.
01 K PICTURE S9(3).

01 L PICTURE S999.

01 COST PICTURE 9(7)V9(2).

They declare top-level variables K and L as signed 3-digit decimal integers, and COST as an unsigned decimal value
with 7 digits before the decimal point, and 2 after. The letter V (possibly from French virgule, meaning comma) in
the PICTURE specification represents the decimal point, which is implicit in the stored fixed-point value.

Identifiers in COBOL may be up to 30 characters long, and may contain letters, digits, hyphen, and underscore,
but may not start or end with a hyphen, or begin with an underscore, For example, X1, X-1, and X_1 are valid
variable names, and surprisingly, so are 1X, 1-X, and 1_X.

The maximum number of decimal digits in a number has varied with COBOL Standards. It was set at 18 in the
1960s, but was raised in 1985 to 23, and later, to 30. IBM mainframe compilers with a special option permit up to
31, and GnuCOBOL permits up to 38. The design of the IEEE 754 128-bit 34-digit decimal floating-point format
was partly guided by the needs of COBOL, as well as ensuring the useful property that products of floating-point
numbers are exactly representable in the next higher precision, and free from both underflow and overflow.

Characters string variables in COBOL are fixed length, blank padded on the right when assigned a shorter
string, and truncated on the right when assigned a longer string. They are limited to at most 150 characters, and
are declared and used with code like this:

WORKING-STORAGE SECTION.
01 S PICTURE X(40).

MOVE 'This is a string’ TO S
MOVE "This is also a string" TO S
MOVE 'This is a string, isn’’'t it?’ TO S

MOVE "This is a string with ""quoted words""" TO S

As shown, either apostrophes or quotation marks may delimit strings. If the delimiter is needed inside the string,
it is doubled, just as is done with apostrophe-delimited strings in Fortran. Unlike strings in the C-language family
and many others in the Unix world, there is no provision in COBOL for embedded octal or hexadecimal or Unicode
escape sequences to represent unprintable, or hard to input, characters.

Although most IBM mainframe operating systems use the 8-bit EBCDIC (Extended Binary-Coded Decimal
Interchange Code) character set, most other operating systems and programming languages developed since the

K.1. COBOL history and language overview K-3[9861987]

late 1960s use the 7-bit ASCII (American Standard Code for Information Interchange) character set. Starting in
the 1980s, work began to extend ASCII to handle all of the world’s historical writing systems, for which more
than 100,000 character glyphs are required. The new character set is called Unicode, and nominally requires 21-bit
characters. However, multiple encodings of Unicode are possible, including UTF-8, UTF-16, and UTF-32. The
UTF-8 encoding is widely used on Unix systems, because it automatically makes ASCII files valid UTF-8 files.
Microsoft Windows, and IBM COBOL, prefer the UTF-16 encoding, where two bytes are needed for every character,
and there is provision for an escape to higher character numbers beyond the 2!¢ = 65536 slots in UTF-16. UTF-8
may need 1 to 4 bytes to encode every Unicode character. The GnuCOBOL compiler expects UTF-8 encoding in
strings, and IBM mainframe COBOL compilers assume EBCDIC in ordinary quoted strings, or UTF-16 in national
quoted strings of the form N’ .. .’, or hexadecimal representations of UTF-16 in NX’hhhh. . .’, where the number
of hexadecimal digits must be a multiple of 4. String variables to hold n UTF-16 characters are declared with
PICTURE N(n).

In support of communication with code in the C-language family, some recent COBOL compilers permit
variable-length NUL-terminated string constants in the form Z"This is a string". If that form is not supported,
it can be simulated with an expression FUNCTION CONCATENATE(StringName, X'00').

Because of its English-like syntax, COBOL has almost 1000 reserved words, many with abbreviated forms
(such as PIC for PICTURE) and many of them candidates for program variables, such as ADDRESS, LINE, TITLE, USER,
and WINDOW. In addition, the existence of several different language standards, and multiple independent compiler
implementations, each with its own language extensions and additional reserved words, has been a barrier to
portability of COBOL software. However, when compilers implement the language support offered by the several
different COBOL compilers from the business industry leader, IBM, code portability is improved.

Beyond its standard reserved words, COBOL also recognizes more than 100 intrinsic function names that
programmers should avoid, with names like ABS, PI, SUM, and TRIM. Most have a fixed number (0 to 4) of arguments,
but several permit an unlimited number, such as CONCATENATE, MAX, and MIN. Intrinsic functions that take zero
arguments can be used with, or without, an empty parenthesized argument list.

COBOL was later extended with support for floating-point arithmetic in both binary and decimal formats.
Here are typical declarations of variables with those types:

WORKING-STORAGE SECTION.
01 D1 FLOAT-DECIMAL-16.
01 D2 FLOAT-DECIMAL-34.
01 X1 FLOAT-SHORT.

01 X2 COMPUTATIONAL-1.
01 Y1 FLOAT-LONG.

01 Y2 COMPUTATIONAL-2.
01 Y3 COMP-2.

The variables D1 and D2 have the types of the IEEE 754-2008 64-bit and 128-bit decimal formats, which hold 16 and
34 digits, respectively. Their types were introduced with the 2014 ISO COBOL Standard.

The variables X1 and X2 have the same type, corresponding to a single-word binary floating-point value. On
IBM mainframe systems, that is the System /360 32-bit hexadecimal format, but on most other systems designed
since the 1980s, it is the IEEE 754 32-bit binary format. However, compilers, including GnuCOBOL, on GNU/Linux
systems on the IBM mainframe architecture use only IEEE 754 floating-point formats.

The variables Y1, Y2, and Y3 also have the same type, corresponding to a platform-dependent double-word
64-bit format.

The existence of explicit digit counts in the PICTURE declarations of COBOL numeric variables means that the
language has to define what happens when a value is assigned to a variable declared with fewer digits. The rule is
that high-order digits are silently discarded (that is, arithmetic and assignment are modulo the target power of 10),
but there is provision with the OVERFLOW keyword to catch such errors, as in this fragment:

WORKING-STORAGE SECTION.
01 A-2 PICTURE 99.
01 A-3 PICTURE 999.

K-4 [9867987] Appendix K. COBOL interface

MOVE 123 to A-3
MOVE A-3 to A-2 ON OVERFLOW GO TO HANDLE-OVERFLOW

COBOL has a set of mathematical functions similar to those available in Fortran, but the calling sequence
requires an extra keyword:

COMPUTE A = FUNCTION SQRT(2.5)

Intrinsic function names in COBOL are fype generic: the compiler arranges to call type-specific versions in the
run-time library.

K.2 COBOL code layout

When COBOL, Fortran, and Lisp were first developed, the most common input source was 80-column punched
cards. Fortran chose columns 1-5 for statement labels, a nonblank nonzero column 6 for a statement continuation
indicator, columns 7-72 for program text, and columns 73-80 for an optional card sequence number. If sequence
numbers were consistently supplied, a dropped card deck could be correctly reassembled in up to 8 passes in a
punched-card sorter.

Fortran punched cards had vertical lines to indicate those boundaries, but when printing and video terminals
became a source of input, it was easy to make mistakes, especially from text flowing into the sequence number
columns. That was disastrous because Fortran does not require type declarations for variables, so a truncated
variable name is undiagnosed. Unlike Fortran, COBOL has no default typing, and all variables must be declared
before use.

Like Fortran, COBOL statements also have a fixed format, but with different boundaries: columns 1-6 are an
optional sequence number, a nonblank column 7 indicates statement continuation, columns 8-11 are called Area A,
where certain declarations must begin, and columns 12-72 are called Area B, where most statements reside. The
precise rules for use of columns 7-72 are complex. Although columns 73-80 exist on punched cards, they are not
defined in COBOL, and any text that extends beyond column 72 is lost.

K.3 Free-format source code

Our COBOL examples have shown only uppercase code and the fixed format of the punched-card era, but some
modern COBOL compilers ignore lettercase in identifiers, and allow free-format input, similar to the practice
of modern Fortran. In both languages, there are still compiler-dependent limits on the length of a line, and
compile-time options, or in-code directives, or source file naming, are required to indicate use of the free format.

The free format appears not to be supported by IBM’s mainframe COBOL compilers, so its use is likely to
compromise portability to other systems, and we consequently avoid it in this Appendix.

K.4 Control flow and modularization in COBOL

Although it has numerous intrinsic functions, COBOL lacks the concept of user-defined functions and procedures,
each with its own variables. Instead, it uses level numbers in variable declarations, and has PERFORM statements
that jump to a labeled code SECTION, and then return after the last statement in that SECTION. It also has the ability
to turn complete programs into subroutines that can be called with arguments.

The limited control structures of COBOL mean that GO TO statements are common, although the PERFORM verb
has extensions that allow creation of loops with termination tests at the beginning or end. Here is a code fragment
with PERFORM that determines and reports the machine epsilon in decimal floating-point arithmetic:

WORKING-STORAGE SECTION.

01 K PIC S9(2) VALUE IS 0.
01 X FLOAT-DECIMAL-16 VALUE IS 1.
01 Y FLOAT-DECIMAL-16 VALUE IS 2.

K.5. Formatted output and rounding in COBOL K-5 [9861987]

PROCEDURE DIVISION.

PERFORM WITH TEST AFTER UNTIL Y EQUALS 1
COMPUTE Y =1 + X / 10
IF Y IS GREATER THAN 1
COMPUTE X = X / 10
COMPUTE K = K - 1
END-IF
END - PERFORM

DISPLAY "FLOAT-DECIMAL-16 machine epsilon = ", X,
"= 10**(u’ K, ||)||

Notice that type declarations permit run-time initialization of variables with scalars following the VALUE IS
keywords, and the keyword IS can be omitted. The long relational phrase in the IF statement can be shortened to
the keyword GREATER, or to the operator <. The keyword EQUALS can be reduced to EQUAL or the operator =.

Using PERFORM with remote code blocks that themselves contain PERFORM statements is a serious source of
implementation-dependent issues, and has been called a mineﬁeldﬂ

As in Fortran, uninitialized variables in COBOL are usually not reported by the compiler, and have unpre-
dictable values at run time.

A counted loop, similar to what the Fortran D0 statement provides, looks like this example in COBOL that
prints a table of factorials using a standard intrinsic function:

PERFORM WITH TEST AFTER VARYING K FROM 1 BY 1 UNTIL K > 40
DISPLAY K, "! =", FUNCTION FACTORIAL(K)
END - PERFORM

Each DISPLAY statement produces a complete output line, but partial lines can be produced with code like this:

DISPLAY " X =", X WITH NO ADVANCING
DISPLAY " Y =", Y WITH NO ADVANCING
DISPLAY " Z =", Z WITH NO ADVANCING
DISPLAY " "

COBOL does not permit empty strings, so the last DISPLAY statement prints a single space. To avoid that, omit that
statement, and drop WITH NO ADVANCING from the preceding statement.

K.5 Formatted output and rounding in COBOL

The COBOL language has nothing like C’s printf() and scanf() family, or Fortran’s formatted input/output
statements, and the DISPLAY statement always outputs full precision for its numeric values, including leading
zeros if they are decimal integers.

If full output precision is not desired, programmers must construct any needed shortened numeric output with
intermediate variables, as in this example:

WORKING-STORAGE SECTION.
01 K1 PIC S9(1).
01 K2 PIC S9(2).
01 K3 PIC S9(3).
01 K4 PIC S9(4).
01 K5 PIC S9(5).

1See Niels Veerman and Ernst-Jan Verhoeven, Cobol minefield detection, Software — Practice and Experience, 36(14) 1605-1642, 25 November
2006. doi:10.1002/spe.745

K-6[9861987] Appendix K. COBOL interface

MOVE 12345 TO K1, K2, K3, K4, K5

DISPLAY " K1 = ", K1 WITH NO ADVANCING
DISPLAY " K2 = ", K2 WITH NO ADVANCING
DISPLAY " K3 = ", K3 WITH NO ADVANCING
DISPLAY " K4 = ", K4 WITH NO ADVANCING
DISPLAY " K5 =", K5

The output of a program with that code is
KL = +5 K2 = +45 K3 = +345 K4 = +2345 K5 = +12345

When fractional values are assigned to variables with fewer fractional digits, the default is silent truncation
(round towards zero) of the values. However, it is possible to request rounding in assignments, as illustrated by this
code block that shows both practices:

WORKING-STORAGE SECTION.
01 F1 PIC S9V9.

01 F2 PIC S9V99.

01 F3 PIC S9V999.

COMPUTE F1, F2, F3 = 1.255
DISPLAY "F1 =", F1, " F2 =", F2, " F3 ", F3

COMPUTE F1, F2, F3 = -1.255
DISPLAY "F1 =", F1, " F2 =", F2, " F3 ", F3

COMPUTE F1 ROUNDED, F2 ROUNDED, F3 = 1.255
DISPLAY "F1 =", F1, " F2 =", F2, " F3 =", F3

COMPUTE F1 ROUNDED, F2 ROUNDED, F3 = 1.240
DISPLAY "F1 = ", F1, " F2 =", F2, " F3 =", F3

COMPUTE F1 ROUNDED, F2 ROUNDED, F3 = 1.250
DISPLAY "F1 =", F1, " F2 =", F2, " F3 =", F3

COMPUTE F1 ROUNDED, F2 ROUNDED, F3 = 1.260
DISPLAY "F1 =", F1, " F2 =", F2, "F3 =", F3

COMPUTE F1 ROUNDED, F2 ROUNDED, F3 = -1.240
DISPLAY "F1 = ", F1, " F2 =", F2, " F3 = ", F3

COMPUTE F1 ROUNDED, F2 ROUNDED, F3 = -1.250
DISPLAY "F1 =", F1, " F2 =", F2, " F3 =", F3

COMPUTE F1 ROUNDED, F2 ROUNDED, F3 = -1.260
DISPLAY "F1 =", F1, " F2 =", F2, " F3 =", F3

The output of that code looks like this:

F1 = +1.2 F2 = +1.25 F3 = +1.255
F1 = -1.2 F2 = -1.25 F3 = -1.255
F1 = +1.3 F2 = +1.26 F3 = +1.255
F1 = +1.2 F2 = +1.24 F3 = +1.240
F1 = +1.3 F2 = +1.25 F3 = +1.250

K.6. IEEE 754 arithmetic deviations in COBOL K-7 [9861987]

F1 = +1.3 F2 = +1.26 F3 = +1.260
F1 = -1.2 F2 = -1.24 F3 = -1.240
F1 = -1.3 F2 = -1.25 F3 = -1.250
F1 = -1.3 F2 = -1.26 F3 = -1.260

The first two lines illustrate the default truncation toward zero, while the remaining lines demonstrate that COBOL
rounding follows the biased rule round to nearest, with ties away from zero.

The IBM Enterprise COBOL for z/OS Version 6.1 Language Reference manual of 29 December 2020 describes the
rounding operation like this:

When the size of the fractional result exceeds the number of places provided for its storage,
truncation occurs unless ROUNDED is specified. When ROUNDED is specified, the least significant digit of
the resultant identifier is increased by 1 whenever the most significant digit of the excess is greater
than or equal to 5.

If numeric values are computed as binary or decimal floating-point values, output precision control must be
done by assignment to intermediate variables declared with the traditional fixed-point decimal formats.

The COBOL Standard limit of 30 decimal digits in fixed-point numbers means that it is difficult to output large
and small floating-point numbers with fewer digits than the default.

The Matula rules for correct round-trip conversions call for 9 and 17 decimal digits in the IEEE 754 32-bit and
64-bit binary formats. The DISPLAY statement compiled by GnuCOBOL instead outputs 8 and 16 digits.

Output from the DISPLAY verb can be redirected from its default stream with the UPON qualifier, like this:

DISPLAY "This goes in a separate file" UPON SYSPUNCH

The name SYSPUNCH is one of a small number of standard names, and with GnuCOBOL, it corresponds to the
setting of an environment variable whose value is a pathname, used at run time like this:

% cobc -x myprog.cob
% env COB_DISPLAY_PUNCH_FILE=/path/to/punch/file ./myprog

K.6 1EEE 754 arithmetic deviations in COBOL

Test programs compiled with the GhuCOBOL compiler and run reveal surprises in the handling of computed IEEE
754 Infinity and NaN values: both are mapped to zero! A NaN can be returned from a C function, and printed
correctly by a DISPLAY statement.

The sign of zero is lost in both 32-bit and 64-bit binary, and 64-bit and 128-bit decimal, floating-point values.
However, tests show that a negative zero can be returned from a C function, and printed with the proper sign by a
DISPLAY statement, but any arithmetic in COBOL with that value quickly loses the sign.

Tests of underflow in the two binary formats, starting with a value 1.0 and repeatedly halving it until the result
is ({0% show that subnormals are supported, and the smallest nonzeros reached are the correct values 214 and
27,

Similar underflow tests with decimal arithmetic, however, show unexpected results: when the subnormal
underflow thresholds of 1073 and 106176 are reached, the next iteration that reduces the test value by 10 does
not underflow to zero, but instead to the smallest subnormal. The code then had an infinite loop until an additional
exit test on the power-of-ten loop counter was added.

The irregularities of floating-point arithmetic in COBOL suggest that use of floating-point variables should be
carefully restricted to working only with values that are known to be finite, and where all intermediate results are
also provably finite.

K.7 Interfacing COBOL to C

Documentation of several modern COBOL compilers shows that their designers have already responded to the
need to communicate with code written in other languages, including C, Fortran, and Java.

K-8 [9861987] Appendix K. COBOL interface

Issues that must be addressed include the mapping of fundamental character and numeric data types in the
languages, how character strings are passed, and what character sets are supported. The GhuCOBOL compiler
used for the interface illustrated in this Appendix makes this reasonably easy, although the COBOL language
makes the calling sequence unnecessarily verbose, and error prone.

The first issue is that most functions in the C mathematical library return their results as function values,
whereas COBOL expects results to be supplied via the argument list, with any function value either discarded, or
else expected to be a small integer indicating success or failure.

The second issue is that COBOL has nothing like C’s header files that can be used to define argument prototypes
that permit compile-time checking and, if needed, type coercion of argument types and return values.

A third issue is that, because of the lack of prototypes, C function names must be looked up dynamically.

Here is a short C function that makes error function computations accessible to COBOL programs, which lack
that function in the COBOL run-time library:

#include <math.h>
void
myerf (double * result, double x)
{
*result = erf(x);

}

A COBOL program that needs that function must call it with code similar to that in our only complete example
of a main program:

* Sample COBOL program to call erf() in C interface code

IDENTIFICATION DIVISION.
PROGRAM-1ID. erf-comp-2.

DATA DIVISION.

WORKING-STORAGE SECTION.
01 Y COMP-2.
01 RESULT COMP-2.

PROCEDURE DIVISION.
MOVE -1.5 TO Y

CALL "myerf" USING
BY REFERENCE RESULT
BY VALUE Y
RETURNING NOTHING

DISPLAY "erf(-1.5) = ", RESULT
DISPLAY "Expect: -0.96610514647531072706697626164594785"
STOP RUN.

The C function name myerf must be supplied as a character string and is found dynamically at run time. The BY
REFERENCE qualifier can be omitted, because it is the default in COBOL.

A sample compilation and run of the program looks like this:

% cobc -x erf-comp-2.cob myerf.c -lm && ./erf-comp-2
erf(-1.5) = -0.9661051464753108
Expect: -0.96610514647531072706697626164594785

K.7. Interfacing COBOL to C K-9 [9861987]

TO DO: Prepare an interface library with wrappers for binary and decimal formats that are recognized in
COBOL, using a library name like -lcobolmcw and function names like mcw_erf, with the result as the first
argument.

	COBOL interface
	COBOL history and language overview
	COBOL code layout
	Free-format source code
	Control flow and modularization in COBOL
	Formatted output and rounding in COBOL
	IEEE 754 arithmetic deviations in COBOL
	Interfacing COBOL to C

