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Modula-2 is a middle member of a family of similar programming languages designed by the late Swiss computer
scientist, Niklaus Wirth1 (15 February 1934–1 January 2024), who was honored with the ACM Turing Award in
1984 for his influential works.2

Five years after his first book about the Pascal language, which we treat in Appendix P on page 989, Niklaus
Wirth introduced a new language, Modula, in two journal articles in 1977.3 He developed Modula to address
some of the, by then, well-understood shortcomings of his Pascal language, but also to reduce the language size,
and importantly, to introduce features for multiprogramming: subprocesses running in parallel within a single
address space that can communicate via signals, as well as by the usual function and procedure calls. The design
of Modula was influenced by the important earlier work on Concurrent Pascal, and the SOLO operating system,
both created by the prominent Danish–American computer scientist, Per Brinch Hanson4 (13 November 1938–31
July 2007), starting about 1975.

This appendix would have appeared in this book at the location suggested by its page numbers, but was
necessarily written after book publication, when a portable compiler for Modula-2 made the language more widely
available.

M.1 Modula history

Modula preserves most of the syntax of Pascal, making it familiar to programmers, and introduces the ideas of
code modules, each of which is implemented in two separate parts: an implementation of constants, data, functions,
and types, normally stored in a private file with extension .mod, and an interface definition, stored in a public file
with extension .def. The two-part separation of library code allows the programmer to create a stable interface
for user programs, while being able to alter internal details of the implementation, without requiring changes to
user code. The public part is normally stored in a collection of such things in a filesystem location known to the

1See https://www.math.utah.edu/pub/bibnet/authors/w/.
2See https://amturing.acm.org/award_winners/wirth_1025774.cfm.
3Modula: a Language for Modular Multiprogramming, Software—Practice and Experience, 7(1) 3–35 January/February (1977), doi:10.1002/

spe.4380070102; Design and Implementation of Modula, Software—Practice and Experience, 7(1) 67–84 January/February (1977), doi:10.1002/
spe.4380070104.

4See https://www.math.utah.edu/pub/bibnet/authors/h/.
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compiler, so that no special action is needed by the programmer to compile code that uses the module interface
definition. Depending on the compiler, the .def file need not be compiled, but instead can be read directly by the
compiler, much like C/C++ header files named in #include preprocessor directives. Some Modula-2 compilers
convert .def files to faster loading equivalents, named with an extension such as .sy.

Among the Pascal features eliminated in Modula are the infamous goto statement, the SET type, and input/output
(I/O) statements. In addition, conditional and loop statements are simplified, with minor syntax changes. I/O
support is instead supplied by library modules that can be adapted for the needs of particular environments and
operating systems.

The first compiler for Modula was written in Pascal, running on the same CDC 6400 where Pascal was originally
developed. That allowed quick experimentation with proposed new language features.

Other systems that already had a Pascal compiler could soon have a working Modula compiler, provided that
the low-level signal-handler support for multiprogramming could be supplied.

Five years of experience with Modula led to further language changes, introduced in a new book, Programming
in Modula-2, that eventually appeared in four editions.5

Because Niklaus Wirth chose not to document it in a book, the original Modula language may have been used
primarily at his academic institution, the Eidgenössische Technische Hochschule in Zürich, Switzerland, widely known
by its initials, ETH, or in English, the Swiss Federal Institute of Technology.

The four editions of Programming in Modula-2 indicate a much stronger interest in the language, and some
computer science departments adopted it as their introductory programming language because it is clean, safe,
and much simpler than major internationally standardized languages, such as Ada (1983), C (1972), C++ (1985),
C# (2003), and the popular, but not standardized, Java (1991).

The ISO/IEC 10514-1:1996 Standard for the base language, and 10514-2:1998 for generics, recognize the
importance of Modula-2, and make it easier for industry to adopt it for software development, because it now has
a reliable definition that is independent of any particular compiler implementation.

Formalization of the language specification is not without problems, as recorded in Recollections about the
development of Pascal, from a 1993 conference exchange with Niklaus Wirth:

Q: “The current ISO draft of Modula-2 contains a full formal semantics. Do you consider this useful?”
A: “Not really. It makes the report too voluminous for the reader. The Modula-2 report is 45 pages and
the formal standardization document is about one thousand pages long. The definition of the empty
statement alone takes a full page. The difference is intolerable.”

As might be expected, Modula-2 underwent further major changes. Beginning in 1986, yet another language
descendant, Modula-3, was produced by a multi-industry team outside ETH.6 It adds support for exception
handling, garbage collection, generic programming (similar to C++ templates), marking of unsafe code, multithreading,
and object-oriented programming. However, despite the creation of several commercial compilers for Modula-3, the
language seems not to have been widely used in industry, and compilers for it are now difficult to find.

Niklaus Wirth approved of the Modula-3 effort, but focused his own academic research on the last general-
purpose programming language that he created: Oberon, first described in 1988.7 We treat that language in
Appendix O on page 989.

Some industrial projects continue to use Modula-2, and the lack of widely available and reasonably portable
compilers for it on modern systems led to incorporation of support in the popular GNU gcc compiler family. The
first stable release of gm28 was in gcc-12 in 2021, and the compiler can also be built with later major versions. Some,

5Published by Springer-Verlag. First edition 1982: ISBN 0-387-11674-5, doi:10.1007/978-3-642-96717-7. Second edition 1983: ISBN
0-387-12206-0, doi:10.1007/978-3-642-96757-3. Third edition 1985: ISBN 0-387-15078-1, doi:10.1007/978-3-642-96878-5. Fourth edition
1988: ISBN 0-387-50150-9, doi:10.1007/978-3-642-83565-0. The last is available in HTML form at http://freepages.modula2.org/report4/
modula-2.html.

6See https://en.wikipedia.org/wiki/Modula-3 and https://www.modula3.org/. Additional documentation is in the Modula-3 Report
at https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-52.html and in Some Useful Modula-3 Interfaces at https://www.hpl.hp.com/
techreports/Compaq-DEC/SRC-RR-113.html.

7From Modula to Oberon, Software—Practice and Experience, 18(7) 661–670 July (1988), doi:10.1002/spe.4380180706. The Programming
Language Oberon, Software—Practice and Experience, 18(7) 671–690 July (1988), doi:10.1002/spe.4380180707. Programming in Oberon: Steps
beyond Pascal and Modula, ACM Press (1992), ISBN 0-201-56543-9.

8See https://gcc.gnu.org/onlinedocs/gm2.pdf.
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but not yet all, operating system distributions that include the gcc compilers make gm2 available as a separate
package. Otherwise, it can be readily built from source code, as this author has done many times.

There is an ongoing effort with the LLVM compiler project to produce m2lang,9 as a companion to clang,
clang++, and flang, but in 2024, it is not yet in operating-system package distributions.

The gm2 compiler accepts command-line options to enable features from the four editions of Wirth’s books
on Modula-2, as well as the ISO Standard. A large portion of the compiler itself is written in Modula-2, and a
bootstrap compiler written in C and C++ translates that Modula-2 code to C++, which is then compiled to produce
a native Modula-2 compiler. This complexity is entirely hidden from the programmer, who can just use the
traditional recipe gm2 hello.mod && ./a.out to compile and run programs, as with other languages supported
by the gcc family.

Pascal was designed to be small (as little as 8KB of memory for some compilers on microcomputers), and fast to
compile. The language demanded that the entire program be present in a single source file, and that everything used
must first be defined, forcing the main() program to appear at the end of the source file. Pascal programmers have
to learn to read their code in the bottom-up direction. Both were important when computers were much slower
than modern ones, and had limited, and expensive, memory. However, it meant that large software projects often
simply could not be implemented in Pascal, unless nonstandard and nonportable extensions in some compilers for
separate compilation and linking were employed.

By contrast, Modula allows, and encourages, separate compilation, and has more flexible code placement,
such as alphabetical ordering of functions and procedures, so two or more passes are needed: the gm2 bootstrap
compiler has five passes, and the first Modula-2 compiler at ETH has seven, later reduced to five. On older systems
with limited memory, each pass would often require moving data between memory and physical storage devices.
Modern systems operate with much more memory, so the passes can generally be done without external storage
access.

With the approval of Niklaus Wirth, a significant revision has been defined for release R10 of Modula-2, but gm2
does not yet support that dialect. The frequently asked questions (FAQ) page at the project Web site10 describes the
extensions, and the reasons for basing the work on Modula-2, rather than on Modula-3 or Oberon. gm2 already has
additional support for a VOLATILE type qualifier, an interface to inline assembly code via an ASM() extension, and a
__BUILTIN__ attribute to allow convenient machine-independent access to features that might be provided by
native hardware on some systems, but by software library functions on others, just as can be done with extended
compilers for C and C++. Thus, specialized systems programming, device drivers, kernel modules, and so on can
be written in Modula-2 instead of in the less safe, and more complicated, C and C++ languages.

Translators from Modula-2 to C, C++, C#, and Java have been reported on the Internet, and might still be found
at their development sites.

Some compilers for the Modula and Oberon family produce C code as a high-level replacement for native
assembly code. As long as the compilers themselves are programmed portably, they can be quickly implemented
on many different operating systems.

M.2 Sample Modula-2 program

To give a flavor of Modula-2 programming, here is a program that does some numeric computation, reports sizes
of some of the basic data types, and prints some numbers:

% cat hello-with-pi.mod
MODULE HelloWithPi;

FROM LongIO IMPORT WriteFloat, WriteReal;
FROM NumberIO IMPORT WriteInt;
FROM StdChans IMPORT StdOutChan;
FROM StrIO IMPORT WriteLn, WriteString;
FROM SYSTEM IMPORT TSIZE;
9See https://github.com/redstar/m2lang.

10See http://modula-2.net/m2r10.
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CONST
PI = 3.14159265358979323846264338327950288;

VAR eps : LONGREAL;
k : INTEGER;

BEGIN
eps := 1.0;
k := 0;

WHILE ((1.0 + 0.5 * eps) > 1.0)
DO

DEC (k);
eps := 0.5 * eps

END;

WriteString (’TSIZE(LONGREAL) = ’);
WriteInt (TSIZE(LONGREAL), 2);
WriteLn;

WriteString (’TSIZE(REAL) = ’);
WriteInt (TSIZE(REAL), 2);
WriteLn;

WriteString (’TSIZE(SHORTREAL) = ’);
WriteInt (TSIZE(SHORTREAL), 2);
WriteLn;

WriteString (’TSIZE(LONGINT) = ’);
WriteInt (TSIZE(LONGINT), 2);
WriteLn;

WriteString (’TSIZE(INTEGER) = ’);
WriteInt (TSIZE(INTEGER), 2);
WriteLn;

WriteString (’TSIZE(SHORTINT) = ’);
WriteInt (TSIZE(SHORTINT), 2);
WriteLn;

WriteString (’TSIZE(BOOLEAN) = ’);
WriteInt (TSIZE(BOOLEAN), 2);
WriteLn;

WriteString (’TSIZE(CHAR) = ’);
WriteInt (TSIZE(CHAR), 2);
WriteLn;

WriteString (’Machine epsilon = 2**(’);
WriteInt (k, 0);
WriteString (’), or about ’);
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WriteFloat (StdOutChan(), eps, 4, 0);
WriteLn;

WriteString (’Hello from Modula-2: pi is about ’);
WriteFloat (StdOutChan(), PI, 36, 0);
WriteLn

END HelloWithPi.

Modula-2 is case sensitive, and language keywords must be spelled in uppercase. Underscores are permitted
in identifier names, but use of mixed case is traditional. As in Pascal, functions without arguments do not require
an empty parenthesized list. The module name is repeated on the final END statement, which is terminated by a
period, not a semicolon.

Following Pascal, semicolons in Modula-2 are statement separators, rather than terminators. However, Modula-2
has a null statement, so we could have used semicolons before the two END statements.

The BOOLEAN constants are FALSE and TRUE; on conversion to integers, they are 0 and 1.
Integer constants can be written in decimal, or as octal digits suffixed by B, or as uppercase hexadecimal digits

suffixed by H. In the latter case, if the first digit would be a letter, then a leading 0 is required. Character constants
can be written in decimal, or in octal with a suffix C. Examples are 0FACEH, 7070B, and 377C. The CHR() and ORD()
functions convert between small integers and characters.

String constants can be delimited either by apostrophes, as in this program, or by quotation marks, but there
is no way to include the delimiter character in the string constant, as one can by its doubling in Fortran, ‘Isn”t
this nice!’, or with backslash escapes in the C family: "A quotation mark is \", right?".

INC() and DEC() functions for adding ±1 to their arguments are conventional in Modula-2. The compiler
knows how the two functions behave, and expands them inline, usually to just one or two instructions, instead of
calling external functions.

Notice that the output functions are defined in several different modules, and that some default to using the
standard output channel, while others need a function to supply that channel as their first argument.

Calls to external functions do not require a module prefix if their names are explicitly imported; otherwise, we
would have to use the prefix, as in StrIO.WriteString(...).

The final argument in numeric output functions is the minimum field width, and for floating-point output, the
penultimate argument is the number of significant digits.

The test program intentionally uses the longest available floating-point type, which requires the LongIO module.
It is available only with ISO Modula-2, so we need an extra compiler option to run the program:

% gm2 -fiso hello-with-pi.mod && ./a.out
TSIZE(LONGREAL) = 16
TSIZE(REAL) = 8
TSIZE(SHORTREAL) = 4
TSIZE(LONGINT) = 8
TSIZE(INTEGER) = 4
TSIZE(SHORTINT) = 2
TSIZE(BOOLEAN) = 1
TSIZE(CHAR) = 1
Machine epsilon = 2**(-63), or about 1.084E-19
Hello from Modula-2: pi is about 3.14159265358979323851280895940618620

Besides the eight basic data types whose sizes in bytes are shown here, there are three unsigned integer
types (SHORTCARD, CARDINAL, and LONGCARD), and three complex floating-point types (SHORTCOMPLEX, COMPLEX, and
LONGCOMPLEX). In Modula-2, the BOOLEAN type is not an integer type, but it can be converted with the INTEGER8()
function.

The system-dependent module SYSTEM supplied with gm2 provides several additional numeric types, includ-
ing CARDINAL8, CARDINAL16, CARDINAL32, CARDINAL64, COMPLEX32, COMPLEX64, COMPLEX128, INTEGER8, INTEGER16,
INTEGER32, INTEGER64, REAL32, REAL64, and REAL128. However, the types suffixed 128 are not necessarily IEEE
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754 128-bit types — on common desktop platforms with the AMD64 processor family, they are instead the 80-bit
format, but stored in 16-byte fields.

The long value for π in the CONST part does not carry a suffix to indicate its desired precision. The program
output demonstrates that the constant was treated as an IEEE 754 80-bit value: comparison with a higher-precision
value shows that it is correct to the 64-bit significand size of that format.

M.3 Initialization in Modula-2

Modula-2 declarations of variables do not permit initial values; as in many languages, that must be done separately.
Although it is not evident from the complete programs in this appendix, modules provide a solution to the problem
of guaranteed initialization of data: the first time that any function or procedure in a module is called from another
module, code in the final top-level BEGIN block of the called module is executed.

A typical example of the need for one-time initialization is setting a default seed for a random number generator.
Here is an implementation of such a generator:

% cat RandomNumbers.mod
IMPLEMENTATION MODULE RandomNumbers;

FROM StrIO IMPORT WriteLn, WriteString;

CONST c = 5432109876;

VAR seed : INTEGER;

PROCEDURE NewSeed(newseed : INTEGER);
BEGIN

seed := newseed;
END NewSeed;

PROCEDURE OldSeed() : INTEGER;
BEGIN

RETURN seed
END OldSeed;

PROCEDURE RandomInteger() : INTEGER;
BEGIN

seed := (c + seed) MOD 987654321; (* some calculation involving seed *)
RETURN seed

END RandomInteger;

BEGIN
seed := 1234567890; (* module initialization: done exactly once *)
WriteLn;
WriteString(’MODULE RandomNumbers is now initialized!’);
WriteLn;
WriteLn

END RandomNumbers.

Procedures in such a module are automatically exported. We added output statements to the final block, so that
we can see how often it is executed.

Here is the interface definition file:

% cat RandomNumbers.def
DEFINITION MODULE RandomNumbers;
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PROCEDURE NewSeed(newseed : INTEGER);
PROCEDURE OldSeed() : INTEGER;
PROCEDURE RandomInteger() : INTEGER;

END RandomNumbers.

Here is the test program:

% cat TestRandomNumbers.mod
MODULE TestRandomNumbers;

FROM NumberIO IMPORT WriteInt;
FROM RandomNumbers IMPORT RandomInteger;
FROM StrIO IMPORT WriteLn, WriteString;

VAR k, r : INTEGER;
BEGIN

FOR k := 1 TO 10 DO
WriteString(’k = ’);
WriteInt(k, 2);
WriteString(’ RandomInteger = ’);
r := RandomInteger();
WriteInt(r, 9);
WriteLn

END;
END TestRandomNumbers.

To run the test, we have to compile the implementation separately, and then link its object file with the test
program:

% gm2 -c RandomNumbers.mod

% gm2 TestRandomNumbers.mod RandomNumbers.o && ./a.out

MODULE RandomNumbers is now initialized!

k = 1 RandomInteger = 52051816
k = 2 RandomInteger = 201540075
k = 3 RandomInteger = 351028334
k = 4 RandomInteger = 500516593
k = 5 RandomInteger = 650004852
k = 6 RandomInteger = 799493111
k = 7 RandomInteger = 948981370
k = 8 RandomInteger = 110815308
k = 9 RandomInteger = 260303567
k = 10 RandomInteger = 409791826

There is only a single announcement from the initialization block, after which the generator returns a different
number on each call.

Our simple linear congruential generator is a poor one; many better methods are known for updating the seed,
but we do not need them for this small test.
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M.4 Arrays and strings in Modula-2

Pascal and Modula-2 use slightly different syntax for declarations of arrays with more than one dimension:

VAR a : array [1 .. MX, 1 .. MY] of Real; (* Pascal *)
VAR a : ARRAY [1 .. MX], [1 .. MY] OF REAL; (* Modula-2 *)
VAR a : ARRAY [1 .. MX] OF ARRAY [1 .. MY] OF REAL; (* variant Modula-2 *)

The last declaration shows that, as in C, two-dimensional arrays are stored in row order, with the last subscript
increasing most rapidly. A reference to an element of that array can be written as a[i][j] or as a[i, j].

Character strings are one-dimensional arrays:

VAR s : array [1 .. MAXSTR] of Char; (* Pascal *)
VAR s : ARRAY [1 .. MAXSTR] OF CHAR; (* Modula-2 *)

In both languages, array lengths are part of their types, but unlike Pascal, in Modula-2 it is legal to assign a
shorter string to a longer one, but not the reverse:

MODULE StringAssignmentTest;
VAR s : ARRAY [1 .. 5] OF CHAR;

t: ARRAY [1 .. 10] OF CHAR;
BEGIN

s := ’a’; (* legal *)
s := ’abcde’; (* legal *)
t := ’abcdeghijk’; (* legal *)
t := s; (* legal *)
s := t (* SYNTAX ERROR *)

END StringAssignmentTest.

In Modula-2, when a shorter string is assigned to a longer one, the next unused character is set to a NUL,
represented by the character value 0C. The string length is therefore determinable, and can vary up to the declared
maximum during execution. However, implementation of the standard Strings module, which supplies functions
for assignment, comparison, concatenation, copying, deletion, insertion, and length, is complicated by the need to
check for a NUL, as well as a full array.

Functions in Modula-2 can be declared with dynamic array arguments, where the index ranges are omitted,
allowing the restriction on matching lengths to be relaxed. Here is an example from the gm2 library code that
shows the coding technique:

PROCEDURE Length (a: ARRAY OF CHAR) : CARDINAL;

FROM ASCII IMPORT nul;

VAR
l, h: CARDINAL;

BEGIN
l := 0;
h := HIGH (a);

WHILE (l <= h) AND (a[l] # nul) DO
INC (l)

END;

RETURN (l)
END Length;
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The compiler passes the array either via a descriptor that has a pointer to the first element, and a count, or
as an argument pair. The gm2 compiler does the latter, passing the element count as an unsigned default integer,
followed by a pointer to the first element of the array. The function then treats the array as if its subscript range is
0 to HIGH(name), where HIGH() is a built-in function that returns the count, less one.

Multidimensional arrays can be handled as in this fragment of a test program:

MODULE TestArrayDimensions;
...
VAR x4 : ARRAY [10 .. 20] OF

ARRAY [150 .. 170] OF
ARRAY [1500 .. 1530] OF
ARRAY [15000 .. 15040] OF CARDINAL32;

...
PROCEDURE show4(xx : ARRAY OF ARRAY OF ARRAY OF ARRAY OF CARDINAL32);
BEGIN

WriteString(’HIGH(xx) = ’);
WriteCard(HIGH(xx), 2);
WriteLn;

WriteString(’HIGH(xx[0]) = ’);
WriteCard(HIGH(xx[0]), 2);
WriteLn;

WriteString(’HIGH(xx[0, 0]) = ’);
WriteCard(HIGH(xx[0, 0]), 2);
WriteLn;

WriteString(’HIGH(xx[0, 0, 0]) = ’);
WriteCard(HIGH(xx[0, 0, 0]), 2);
WriteLn;
WriteLn

END show4;
...
BEGIN

...
show4(x4)

END TestArrayDimensions.

% gm2 TestArrayDimensions && ./a.out
...
HIGH(xx) = 10
HIGH(xx[0]) = 20
HIGH(xx[0, 0]) = 30
HIGH(xx[0, 0, 0]) = 40

The array indexes in calls to HIGH() do not refer to memory locations, and are not bounds checked: they are
merely placeholders. Replacing the 0 indexes by a big number, like -9999999, produces identical output.

The omission of a SET type in Modula-2 was based on the observation that there are two main applications of
sets in computer programs: groups of zero or more objects from a limited collection, such as characters, colors,
digits, letters, months, . . . , and sets of bits in a machine word. Regrettably, compilers for these languages generally
restrict the set size to the number of bits in a single word, making them useless for characters, and on small
machines, also for letters.

Modula-2 provides limited bit access via a subterfuge of system-dependent BITSETnn types. Here is a sample
program:
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% cat bittest.mod
MODULE BitTest;

FROM NumberIO IMPORT WriteInt;
FROM StrIO IMPORT WriteLn, WriteString;
FROM SYSTEM IMPORT BITSET16, CARDINAL16, INTEGER8, TSIZE;

CONST wordsize = 16;

VAR
bits : BITSET16;
k : CARDINAL;
n : CARDINAL16;

BEGIN
WriteString(’TSIZE(BITSET16) = ’);
WriteInt(TSIZE(BITSET16), 0);
WriteLn;

n := 64206; (* 0xface = 0o175316 = 0b001111101011001110 *)
bits := BITSET16(n);

FOR k := 0 TO wordsize + 4 DO
WriteString(’bits[’);
WriteInt(k, 2);
WriteString(’] = ’);
WriteInt(INTEGER8(k IN bits), 0);
WriteLn;

END

END BitTest.

Execution of that program looks like this:

% gm2 bittest.mod && ./a.out
TSIZE(BITSET16) = 2
bits[ 0] = 0
bits[ 1] = 1
bits[ 2] = 1
bits[ 3] = 1
bits[ 4] = 0
bits[ 5] = 0
bits[ 6] = 1
bits[ 7] = 1
bits[ 8] = 0
bits[ 9] = 1
bits[10] = 0
bits[11] = 1
bits[12] = 1
bits[13] = 1
bits[14] = 1
bits[15] = 1
bits[16] = 0
bits[17] = 0
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bits[18] = 0
bits[19] = 0
bits[20] = 0

The index of a BITSET is required to be an unsigned number, and our code intentionally queried outside the range.
The program comment on the assignment to n shows the expected 16-bit string, and the output demonstrates that
on this system, bits are numbered from the right; other platforms might number bits from the left.

M.5 Calling practice in Modula-2

As in Pascal, Modula-2 has two types of procedure parameters: variable, and default. The first type is qualified by
the keyword VAR, which tells the compiler that changes in the argument inside the procedure must be reflected
in the caller. That can be implemented quickly with call-by-reference, where the address of the caller’s variable is
passed to the callee: any changes to it are immediately visible in both. Alternatively, it can be implemented by
copy-in, copy-out: the callee makes a local copy of the argument, and then on return, overwrites the variable in the
caller.

Without the VAR keyword, the caller passes a copy of the argument: that is termed call-by-value. Any changes in
the callee affect that copy, but not the original argument. For scalar arguments, this carries low overhead. However,
for large arrays and records, the allocation and freeing of argument copies involves substantial run-time overhead.
For that reason, programmers of Pascal and Modula-2 might intentionally add a VAR qualifier, even when they
know that the callee does not modify the argument.

By contrast, in the C family, a function declaration can prefix a structure or array argument with the const
attribute, and the compiler then prevents any changes to the argument. No large argument copying is ever needed.
The language behavior is then call-by-value for scalars, and call-by-reference for composite objects.

M.6 Type transfers in Modula-2

A numeric type must sometimes be converted to another type while preserving the value, such as with the C
typecast (double)n. The Modula-2 equivalent looks like this: VAL(REAL, n). The first argument is the result type,
and the second is the value to be converted.

However, we sometimes just want to reinterpret the bit patterns of a value, without doing any data conversion.
For example, in order to access the bits of a floating-point number, we need a way to view it as a different type.
Modula-2 makes this possible by using a type name as a pseudo-function call:

% cat ShortRealToInteger.mod
MODULE ShortRealToInteger;

FROM NumberIO IMPORT WriteBin, WriteHex, WriteInt, WriteOct;
FROM RealIO IMPORT WriteFloat;
FROM StdChans IMPORT StdOutChan;
FROM StrIO IMPORT WriteLn, WriteString;
FROM SYSTEM IMPORT INTEGER32;

VAR x : SHORTREAL;
n : INTEGER32;

BEGIN
x := 1.25;
WriteString (’x = ’);
WriteFloat (StdOutChan(), x, 9, 0);
WriteLn;
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n := INTEGER32(x); (* <== here is the type transfer *)

WriteString (’n = ’);
WriteInt(n, 0);
WriteString (’ = 0x’);
WriteHex(n, 0);
WriteString (’ = 0o’);
WriteOct(n, 0);
WriteString (’ = 0b’);
WriteBin(n, 0);
WriteLn

END ShortRealToInteger.

We can run that program like this:

% gm2 ShortRealToInteger.mod && ./a.out
x = 1.25000000
n = 1067450368 = 0x3FA00000 = 0o7750000000 = 0b111111101000000000000000000000

A similar program handles the type REAL using the INTEGER64 type, but it cannot output octal and binary strings
because WriteLongOct() and WriteLongHex() are not in the standard modules — another example of the lack of
orthogonality in the Modula-2 library.

We cannot use this technique to inspect the bits of a LONGREAL value because Modula-2 lacks support for an
INTEGER128 type. The next section provides a solution.

M.7 Bit field access in Modula-2

Pascal and Modula-2 both have a variant RECORD type that is an analogue of the union type in the C language
family. We can use it to access the fields of a floating-point number in memory.

The details are hidden from the programmer who need only IMPORT the definition module to access the sign,
exponent, and significand of the IEEE 754 80-bit format used for the LONGREAL data type, as well as to get and set
the payload of a NaN. We prefix function names with F80 to emphasize the restriction to that format:

% cat F80Fields.def
DEFINITION MODULE F80Fields;

FROM SYSTEM IMPORT CARDINAL64;

PROCEDURE F80GetSignBit (x : LONGREAL) : INTEGER;
PROCEDURE F80GetBiasedExponent (x : LONGREAL) : INTEGER;
PROCEDURE F80GetUnbiasedExponent (x : LONGREAL) : INTEGER;
PROCEDURE F80GetExponentBias (x : LONGREAL) : INTEGER;
PROCEDURE F80GetPayload (x : LONGREAL) : CARDINAL64;
PROCEDURE F80GetSignificand (x : LONGREAL) : CARDINAL64;

PROCEDURE F80SetPayload (x : LONGREAL; payload : CARDINAL64) : LONGREAL;

END F80Fields.

The implementation module is lengthy, and it illustrates several features of the Modula-2 language that we
have not yet encountered. We exhibit it here in code fragments, each preceded by commentary.

The module begins with the keyword IMPLEMENTATION, indicating its purpose. It is followed by IMPORT
statements that identify the needed library functions, and three constants that we use later.
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% cat F80Fields.mod
IMPLEMENTATION MODULE F80Fields;

FROM BitWordOps IMPORT WordAnd, WordOr, WordShl;
FROM SYSTEM IMPORT CARDINAL32, CARDINAL64;

CONST F80EMAX = 7FFFH; (* 32767 *)
F80ExponentBias = 3FFFH; (* 16383 *)
NF80Words = 4; (* 80-bit format stored in 4 32-bit words on AMD64 *)

To clarify the bit operations that we need to perform, we first document the floating-point storage layout in
this comment block:

(*
** Layout of IEEE 754 80-bit LONGREAL in little-endian 128-bit field:
** bit num = 3322 2222 2222 1111 1111 1100 0000 0000
** 1098 7654 3210 9876 5432 1098 7654 3210
** word[0] = bbbb_bbbb_bbbb_bbbb_bbbb_bbbb_bbbb_bbbb -- low significand 0..31
** word[1] = bbbb_bbbb_bbbb_bbbb_bbbb_bbbb_bbbb_bbbb -- high significand 32..63
** word[2] = ????_????_????_????_seee_eeee_eeee_eeee -- unset 80..95, sign 79, exponent 64..78
** word[3] = ????_????_????_????_????_????_????_???? -- unset 96..127
*)

The first two 32-bit words contain the significand, and the bottom half of the third word contains the sign and the
biased exponent. There is no hidden bit in the 80-bit format, and the implicit binary point follows the first stored
significand bit. The remaining bits of the 128-bit field are unused, but are zero during execution. The layout and
bit numbering are architecture dependent. Our code assumes the common AMD64 family, which uses little-endian
addressing and bit numbering.

The storage layout is mapped onto a variant RECORD whose views are defined by enumeration constants in
the definition of the F80Choice type. Notice the peculiar vertical bars that separate members of a Modula-2 CASE
statement:

TYPE F80Choice = ( Flt, UInt32, UInt64 );

TYPE F80Type =
RECORD

CASE which : F80Choice OF
UInt32 :

w32 : ARRAY [0 .. NF80Words - 1] OF CARDINAL32
| UInt64 :

w64 : ARRAY [0 .. (NF80Words DIV 2) - 1] OF CARDINAL64
| Flt:

f : LONGREAL
END (* case *)

END; (* record *)

We also need to be able to view a 64-bit unsigned integer as a pair of 32-bit values, so two more TYPE definitions
are needed:

TYPE U64Choice = ( Card32, Card64 );

TYPE U64Type =
RECORD

CASE which : U64Choice OF
Card32:
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w32 : ARRAY [0 .. 1] OF CARDINAL32;
| Card64:

v : CARDINAL64;
END (* case *)

END; (* record *)

The Modula-2 library has functions for bitwise operations on 32-bit words, but regrettably, not on 64-bit
words, so our first two functions, BitAnd64() and BitOr64(), supply them. There are several assignments to
the which member of the U64Type RECORD that clutter the code, but they are actually not needed, and could be
removed. However, Modula-2 documentation recommends that they be used to identify the variant currently in
use. Compile-time optimization removes them from the assembly code, so they have no run-time overhead.

PROCEDURE BitAnd64 (a, b : CARDINAL64) : CARDINAL64;
VAR aa, bb, cc : U64Type;
BEGIN

aa.which := Card64;
aa.v := a;
bb.which := Card64;
bb.v := b;
aa.which := Card32;
bb.which := Card32;
cc.which := Card32;
cc.w32[0] := WordAnd(aa.w32[0], bb.w32[0]);
cc.w32[1] := WordAnd(aa.w32[1], bb.w32[1]);
cc.which := Card64;
RETURN cc.v

END BitAnd64;

PROCEDURE BitOr64 (a, b : CARDINAL64) : CARDINAL64;
VAR aa, bb, cc : U64Type;
BEGIN

aa.which := Card64;
aa.v := a;
bb.which := Card64;
bb.v := b;
aa.which := Card32;
bb.which := Card32;
cc.which := Card32;
cc.w32[0] := WordOr(aa.w32[0], bb.w32[0]);
cc.w32[1] := WordOr(aa.w32[1], bb.w32[1]);
cc.which := Card64;
RETURN cc.v

END BitOr64;

We now have the internal functions that are needed to implement the user-visible functions of the module.
The first task is to extract the sign bit, which is found in middle of the third word of the field. We declared our

integer arrays with ranges that start at 0, so the required index is 2. The surprise here is that the left- and right-shift
functions in the gm2 module BitWordOps do the opposite of what their documentation says, so to shift the word
right by 15 bits, we have to call WordShl(), not the expected WordShr()! Before doing that, we have to mask off all
of the unwanted bits in the word by a call to WordAnd():

PROCEDURE F80GetSignBit (x : LONGREAL) : INTEGER;
VAR u : F80Type;
BEGIN
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u.which := Flt;
u.f := x;
u.which := UInt32;
RETURN WordShl(WordAnd(u.w32[2], 8000H), 15) (* NB: RIGHT shift here! *)

END F80GetSignBit;

The 15-bit biased exponent is found in the same 32-bit word as the sign, so all that is needed is to clear the top
17 bits:

PROCEDURE F80GetBiasedExponent (x : LONGREAL) : INTEGER;
VAR u : F80Type;
BEGIN

u.which := Flt;
u.f := x;
u.which := UInt32;
RETURN WordAnd(u.w32[2], 7FFFH)

END F80GetBiasedExponent;

Programmers should not have to remember the size of the exponent bias, so we supply two functions to report
the true exponent, and to return the bias:

PROCEDURE F80GetUnbiasedExponent (x : LONGREAL) : INTEGER;
BEGIN

RETURN F80GetBiasedExponent(x) - F80ExponentBias
END F80GetUnbiasedExponent;

PROCEDURE F80GetExponentBias (x : LONGREAL) : INTEGER;
BEGIN

RETURN F80ExponentBias
END F80GetExponentBias;

The last component of the 80-bit floating-point value is the 64-bit significand, stored in the first 64-bit word:

PROCEDURE F80GetSignificand (x : LONGREAL) : CARDINAL64;
VAR u : F80Type;
BEGIN

u.which := Flt;
u.f := x;
u.which := UInt64;
RETURN u.w64[0]

END F80GetSignificand;

IEEE 754 NaN and Infinity values share the highest biased exponent, EMAX. They are distinguished by a zero
fraction for Infinity, and a nonzero fraction for a NaN. On many machines, there are two types of NaNs: quiet and
signaling. The IEEE 754 Standard forbids the use of the sign bit for that identification, and all CPU vendors seem
to have adopted the convention that the highest-order fraction bit has that job, but they disagree on its meaning. In
the AMD64 family, a 0-bit there means a signaling NaN, and a 1-bit, a quiet NaN. Thus, on that family, an all-bits-1
pattern is a negative quiet NaN, and could be a useful storage initializer in the C family with a call to memset(&x,
0xff, sizeof(x)).

The sign of a NaN is never significant, and NaNs have the distinguishing property that they never compare
equal to anything, including themselves. By contrast, Infinity values of the same sign compare equal. The conditional
test x <> x is true only if x is a NaN, provided that the compiler does not incorrectly optimize it away.

In the 32-, 64-, and 128-bit IEEE 754 formats, the significand has a hidden integer bit before the stored fraction.
However, in the 80-bit format, the integer bit is explicitly stored at the left of the 64-bit significand, and is a 1-bit
for both Infinity and NaN. Thus, only the rightmost 62 bits of the significand are available to hold a user-defined
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payload. Hardware never generates a nonzero payload for a NaN, but tends to preserve the payload of a NaN
operand. The recent RISC-V architecture, however, always zeros the payload of a computed NaN.

To recover the payload from a floating-point number, we adopt the convention that the payload is zero for
everything but a NaN, and otherwise is the rightmost 62 bits of a NaN. Our code therefore has to identify a NaN,
and then mask off the payload bits:

PROCEDURE F80GetPayload(x : LONGREAL) : CARDINAL64;
VAR e : CARDINAL32;

s : CARDINAL64;
BEGIN

e := F80GetBiasedExponent(x);
s := F80GetSignificand(x);

IF e <> F80EMAX THEN
s := 0 (* x is finite *)

ELSIF s = 8000000000000000H THEN
s := 0 (* x = Infinity *)

ELSE (* x is QNaN or SNaN *)
s := BitAnd64(s, 3FFFFFFFFFFFFFFFH) (* clear top 2 bits *)

END;

RETURN s
END F80GetPayload;

To allow the user to set a payload in a floating-point number, our function simply returns the input value when
it is not a NaN. Otherwise, it clears all but the top two bits of the input significand, and then ORs in the bottom 62
bits of the user-supplied payload, taking care to ensure that it is nonzero:

PROCEDURE F80SetPayload(x : LONGREAL; payload : CARDINAL64) : LONGREAL;
VAR e : CARDINAL32;

p : CARDINAL64;
s : CARDINAL64;
xx : F80Type;

BEGIN
e := F80GetBiasedExponent(x);
s := F80GetSignificand(x);
xx.which := Flt;
xx.f := x;

IF (e = F80EMAX) AND (s <> 8000000000000000H) THEN (* x is QNaN or SNaN *)
(* top integer significand bit: 1 (NaN or Inf);

highest fraction bit: 1 (QNaN), 0 (SNaN); rest: at least one 1-bit *)
xx.which := UInt64;
xx.w64[0] := BitAnd64(xx.w64[0], 0C000000000000000H); (* keep original top 2 bits *)
p := BitAnd64(payload, 3FFFFFFFFFFFFFFFH); (* clear top 2 bits *);

IF xx.w64[0] = 0C000000000000000H THEN
; (* canonical quiet NaN *)

ELSIF p = 0 THEN
p := 1 (* payload must be nonzero *)

END;

xx.w64[0] := BitOr64(xx.w64[0], p);
xx.which := Flt
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END;

RETURN xx.f
END F80SetPayload;

END F80Fields.

That completes our presentation of the module F80Fields. Examination of the compiler-generated optimized
assembly code shows that the function bodies are generally short, except that the bitwise operations, which would
be single inline instructions in the C family, result in calls to external functions.

M.8 Programming the Modula-2 MathCW interface

Modula-2 code can use the MathCW library via an interface definition, fragments of which look like this:

% cat MathCW.def
DEFINITION MODULE FOR "C" MathCW;

EXPORT UNQUALIFIED
acosdegf, acosdeg, acosdegl,
acosf, acos, acosl,
acoshf, acosh, acoshl,
...
zetam1f, zetam1, zetam1l,
zetnm1f, zetnm1, zetnm1l,
zetnumf, zetnum, zetnuml;

PROCEDURE acosdegf (x : SHORTREAL) : SHORTREAL;
PROCEDURE acosf (x : SHORTREAL) : SHORTREAL;
PROCEDURE acoshf (x : SHORTREAL) : SHORTREAL;
...
PROCEDURE acosdeg (x : REAL) : REAL;
PROCEDURE acos (x : REAL) : REAL;
PROCEDURE acosh (x : REAL) : REAL;
...
PROCEDURE acosdegl (x : LONGREAL) : LONGREAL;
PROCEDURE acosl (x : LONGREAL) : LONGREAL;
PROCEDURE acoshl (x : LONGREAL) : LONGREAL;
...
PROCEDURE zetam1l (x : LONGREAL) : LONGREAL;
PROCEDURE zetnm1l (n : INTEGER) : LONGREAL;
PROCEDURE zetnuml (n : INTEGER) : LONGREAL;
...
END MathCW.

The EXPORT statement lists the function names that are to be externally accessible, and the UNQUALIFIED keyword
suppresses name mangling that would normally occur to incorporate module names, and possibly argument types,
into the function names.

Here is a small test program that calls one of the MathCW functions and reports its value:

MODULE Terfl;

FROM FpuIO IMPORT WriteLongReal;
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FROM MathCW IMPORT erfl;
FROM StrIO IMPORT WriteLn, WriteString;

VAR x, y : LONGREAL;

BEGIN
x := 0.5;
y := erfl(x);

WriteString(’erfl(’);
WriteLongReal(x, 0, 1);
WriteString(’) = ’);
WriteLongReal(y, 0, 19);
WriteLn

END Terfl.

We can compile, link, and execute it like this:

% gm2 terfl.mod -lmcw && ./a.out
erfl(0.5) = 0.5204998778130465377

Comparison with a higher precision value shows that the result is correct to its 64-bit significand.
The Modula-2 handling of array arguments means that functions in the MathCW library that take character

string arguments cannot be called directly: they need an interface function, such as in this code fragment:

(* Modula-2 portion *)
PROCEDURE gm2_qnanf (s : ARRAY OF CHAR) : SHORTREAL;

FROM MathCW IMPORT gm2_qnanf;

VAR x : REAL;
...
x := gm2_qnanf(’0FEEDCAFEH’);

(* C portion *)
#include <mathcw.h>
...
float gm2_qnanf(unsigned int n, const char * s) { return qnanf(s); }

It is regrettable that gm2 does not provide a cleaner way of defining interlanguage communication, to avoid the
need for naming the C function differently in Modula-2. Some Fortran implementations pass character string
lengths as additional arguments at the end of the declared argument list, allowing a direct interlanguage call.

M.9 Limitations of Modula-2 and its math library

The gm2 implementation of Modula-2 provides additional modules Builtins, ComplexMath, LongComplexMath,
ShortComplexMath, RealMath, LongRealMath, and libm that provide access to some, but not all, of the C mathe-
matical function repertoire. The expected module ShortRealMath is curiously absent. While functions from the
higher-precision companions can be used, that introduces the problem of double rounding.

The modules LowShort, LowReal, and LowLong provide functions for getting the sign, exponent, and significand
of floating-point numbers, and for doing exact scaling. However, there are no property test functions, such
as isinf(), isnan(), isnegzero(), and issubnormal(), nor are there predefined constants for many special
floating-point values, as provided by the Standard C header file, <float.h>.
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There are no native Modula-2 operators for bitwise operations on integers, but the modules BitBlockOps,
BitWordOps, and BitByteOps supply some of the needed functions. Bit field access can be programmed with those
functions, but seems to be absent from standard modules.

There is no support for hexadecimal floating-point constants, but that can be worked around with suitable
library module support with run-time conversions of numeric strings, as in this snippet for getting a correctly
rounded value of π:

FROM FpuIO IMPORT WriteLongReal;
FROM RealConversions IMPORT StringToLongReal;
FROM StrIO IMPORT WriteLn, WriteString;

VAR ok : BOOLEAN;
xxx : LONGREAL;

...
StringToLongReal(’+0x1.921fb54442d18469898cc51701b839a2p+1’, xxx, ok);

IF ok THEN
WriteString (’LONGREAL xxx = ’);
WriteLongReal (xxx, 0, 36)

ELSE
WriteString (’ERROR: LONGREAL: no conversion’)

END;

WriteLn;

Test programs that contain assignments, and printing, of the Matula-mandated decimal representations of the
largest floating-point numbers in the IEEE 754 32-, 64-, and 80-bit formats produced the expected values in the first
two cases, but Infinity for the LONGREAL case. That result persisted even when the constant was reduced to just four
leading digits, calling into question the precision of the compiler’s decimal-to-binary conversion. A test program
that assigns the value 0.1 to a LONGREAL variable, and then prints it, shows that the constant was first converted
with a 53-bit significand, then extended to the longer format. If the assignment is written in two steps, x := 10.0;
x := 1.0 / x;, then the conversion is correct for a 64-bit significand. That defect makes it impossible to code
LONGREAL constants that are out of the range of REAL values, unless they are wrapped in a call to an accurate string
conversion function.

The only exponent letter permitted in floating-point constants is E: a lowercase letter is rejected. This is a minor
nuisance when importing numerical data from other programming languages, most of which ignore lettercase of
exponent letters, and some use additional exponent letters, such as D, Q, W, and X, that identify the precision of the
constants.

The lack of any escape representation of nonprintable characters in strings forces messy use of functions for
string and character concatenation. If \n could represent a newline in strings, most of the WriteLn() calls in
Modula-2 software could be eliminated.

Further tests with negative zero constants, subnormals, compile-time generation of Infinity from 1.0 / 0.0,
NaN from 0.0 / 0.0, and comparison of NaNs, show that are all handled correctly by gm2.

The output functions for floating-point types are incomplete, inconsistent, and irregularly supplied by different
modules. The alert reader may have noticed the different argument order in WriteLongReal() compared to
WriteFloat(). Indeed, the single function WriteFloat() has different argument counts and types, depending on
the module that it is defined in!

As with almost all strongly typed programming languages, producing output in Modula-2 requires tedious and
verbose coding, and gives considerably less control over formatting than is possible with the printf() functions
in the C family. The more recent languages Go and Rust solve that problem: see Appendix G on page 946 and
Appendix R on page 994. The University of Ulm Modula-2 compiler provides several library module functions
that are modeled on printf(), but those extensions are not in the ISO Standard, or in the gm2 implementation.
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M.10 Summary

The preceding section identified several problems with using Modula-2 for numeric programming. Because of the
uncertain precision of numeric constants, programmers need to take special care if they expect to produce code
versions for all three supported floating-point types.

The requirement of different library functions for different data types, and the lack of any reliable way to
specify the precision of numeric constants, as we do in the MathCW library code with FP() wrappers, substantially
increase the maintenance work of Modula-2 code that uses different floating-point types.

The presence of digit-count arguments in many output functions could be repaired by adopting the convention
that a zero count means the minimal number of digits for exact round-trip conversion, using the Matula formula. At
present, programmers with little experience in floating-point arithmetic and numerical software are likely to get
those counts wrong!

The modest function repertoire offered by standard modules for access to the mathematical library strongly
suggests that the future library developers must consult experts in numerical programming for help in enhancing
those facilities: the Modula-2 language itself need not be changed at all. Similar problems afflict almost all
programming languages, but numerical experts have known better for decades.

The interface to the MathCW library described in this appendix is a substantial enhancement for writing
numerical software in Modula-2. That interface is accompanied by others that fill in some of the gaps in the
standard library, such as WriteLongBin() and WriteLongOct() in module MoreLongIO, and more bit operations
supplied by the BitOps32 and BitOps64 modules.
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