SFA::SfA2Sf --
from SFA objects to SYMF objects
Call(s)
SFA::SfA2Sf(sf <,alist>)
Parameterssf | - | any valid expression in SYMF |
alist | - | a list of alphabets |
IntroductionThe SFA::SfA2Sf function transforms any symmetric function of
the SFA package into an object of
for a given list of alphabets
(by default all alphabets).
SFA
Valid bases for symmetric functions are e, h, p, s, m.
Allowed alphabet expressions are linear combinations of formal
alphabets A1, A2, A3, ..., for instance
3/2*A1 - A3 + 3/4 is valid.
The inverse function is Sf2SfA.
Example 1>> sfa := 7/5*s[2,2](2*A3) + s[3,1](A2)*p[2](A2) - q*e[2,1](A2);
7 s[2, 2](2 A3)
--------------- - q e[2, 1](A2) + p[2](A2) s[3, 1](A2)
5
>> muEC::SFA::SfA2Sf( sfa );
7 s[2, 2]
p[2] s[3, 1] - q e[2, 1] + ---------
5
>> muEC::SFA::SfA2Sf( sfa, [ A2, A3 ] );
7 s[2, 2](2 A3)
--------------- - q e[2, 1] + p[2] s[3, 1]
5
>> muEC::SFA::SfA2Sf( sfa, [ A2, 2*A3 ] );
7 s[2, 2]
p[2] s[3, 1] - q e[2, 1] + ---------
5
Related FunctionsMuPAD Combinat, an open source algebraic combinatorics package