
AN IMPLEMENTATION OF THE C PROGRAMMING LANGUAGE

FOR THE HARRIS 16 MINICOMPUTER

by

SAMUEL JACOB LEFFLER

Submitted in partial fulfillment of the requirements

for the Degree of Master of Science

Thesis Advisor: Charles W. Rose

Department of Computer Engineering and Science

CASE WESTERN RESERVE UNIVERSITY

January 7, 1981

CASE WESTERN RESERVE UNIVERSITY

GRADUATE STUDIES

We hereby approve the thesis of

Samuel Leffler

candidate for the Master of Science

degree.

Signed:
(Chairman)

Date 10 September 1980

AN IMPLEMENTATION OF THE C PROGRAMMING LANGUAGE
FOR THE HARRIS 16 MINICOMPUTER

Abstract

by

SAMUEL JACOB LEFFLER

As part of a project to port the UNIX operating system
to a Harris /6 minicomputer, a programming environment
for the C programming language has been developed. A C
compiler based on the portable C compiler has been con­
structed, along with the necessary support utilities -­
assembler, link-editor, etc. The architecture of the
Harris /6 posed numerous problems to the porting ef­
fort, necessitating modifications to the machine in­
dependent portions of the portable compiler. This
document describes the porting effort and modifications
to the compiler. An evaluation of the code quality
produced and the efficiency of the compiler are inclu­
ded. Finally, experiences gained from the porting pro­
ject are employed in lending observations about the
generality of the portable compiler, and the portabili­
ty of the C language and progr ams written in the C
language.

- i i -

To my parents, Amos and Florence.

- iii -

ACKNOWLEDGEMENTS

I would like to thank William Shannon who was my
partner on the UNIX/24V project. With his porting of
the UNIX operating system this project became a signi­
ficant contribution to the UNIX community. I must also
acknowledge his efforts in helping test the compiler.
Our endless discussions were important to the success
of the project.

The efforts of
nowledged. He was
UNIX/24V project and
moving the Release 7

Robert Gingell must be
instrumental in initiating

played an important role in it
shell.

ack­
the
by

I would like to thank my advisor, Professor Char­
les Rose, for his guidance in preparing this document,
and Professors George Ernst and Raymond Hookway for
serving on my committee.

C and UNIX exist because of the efforts of Dennis
Ritchie and Ken Thompson. Also, Steve Johnson and
Allan Synder were the originators of the portable C
compiler. This project was possible because of the
previous work of these people.

Finally, the A. R. Jennings Computing Center must
be acknowledged for their support in this venture.

- iv -

TABLE OF CONTENTS

LIST OF FIGURES ••.•.••.••.•..••..••...••..•...•.•.•..... .• V 11

CHAPTER I INTRODUCTION •••••••.•.•••••..••.•••.•.•••.. 1

CHAPTER II A DESCRIPTION OF THE PORTABLE C
COMPILER .••••..•••..•.••••.•....•.•••..•.•• 6

1. Overview .. 6
2. Expr ess ion Tr ees 7
3 • Th e Fir 5 t Pas s . • . • • . . • • • . • . • • . • . . • • . 1 2
4. The Second Pass lS

III THE HARRIS /6 MINICOMPUTER ..•.•.•.••••.• • •• 26 CHAPTER
1.
2.
2.1.
2.2.
2.3.
2.4.
3.
4.

CHAPTER IV

CHAPTER V

1.
2.
3.
4.
5.
6.
7.

CHAPTER VI
1.
2.
3.

4 .
4.l.
4.2.
4. 3.

The Reg ister Set 26
Addressing Modes•........•....•........ 29

Direct Addressing ••••..•••..•...........•..... 29
Indirect Addressing ••...•••......•.•.•..•..•.. 31
Indexing 32
Byte Addressing •...••......••...••.•..•.•..•.. 33

Da ta Types••...•.......•....•.••.•.••..•. 34
Stack Management .•..•......•....•..•......••...• 35

THE PORTING PROCESS ...•.••......•....•••..• 39

MOVING THE PORTABLE C COMPILER TO
THE /6•..... 47

The Machine Model .•. •. ... • .•. .• . . •.•.....••••.•• 47
Address Arithmetic •...•.•.....•..•. •.•....•....• 50
Sethi-Ullman Number Computations . . . ••..••• 60
Register Al location Strategies • •....•.•.•••• 70
Machine Dependent Rewriting Rules •.• .•..•....••• 76
Machine Independent Modules .••••.•.••• 84
The 64K Word Boundary•..•..•......• 85

AN EVALUATION OF CODE EFFICIENCY ••.•.•.•... 88
Overview 89
Optimization of Address Calculations .••.•.•.•..• 93
Machine Independent Local

Op tim i z at ion s 94
Machine Dependent Local Optimizations ••••.•••••• 100

Switch Statements
o

••• •••••••••••• 100
Parameter Passing •..•.•••.••...•... ...••.•.••• 100
Structure Assignments and Structure
Par am e t e r 5 • • • • . • • • • • • . . • . • • • • • • • • • • . • • • . • • • • • • 1 01

4.4. Byte Pointer Additions and
Subtractions 101

4.5. PACONVand PSCONV Calculations •••• •.•..•••••.• 102
4.6. Special Instructions ••••.....•••.•. .•.•...•••. 102

- v -

5. Statistics 102
6. Further Optimization for the Portable

Compiler 106

CHAPTER VII THE INTERACTION BETWEEN COMPILER,
ASSEMBLER, AND LOADER •••••••••••••••••••••. 112

1. An Overview of the Assembler and
Lo ad e r .•...................................... 112

2. Incompatabilities with VULCAN ..•..•..•..••..•... 115

CHAPTER VIII DEFICIENCIES AND FEATURES OF THE

1.
2.
3 •
4.

CHAPTER IX
1.
2.

3.

CHAP'rER X
1.
2.

3.

COMPILER 120
Compiling Efficiency .••••••.•.•...•...••.•...••. 120
User Feedback ••....•.............•••..••........ 122
Expandabil i ty 124
Current Status 126

C ON A WORD-ADDRESSABLE MACHINE•...•. l31
Handling Data Types •..... . •....••.••......•.•.•. l31
The Impact of the /6 on Programming in

c .. . 136
The C Programming Environment .•..•.............. l39

CONe r us IONS ..••.•••.•.•.......••.....•...•• 142
The Portable C Compiler ...••..•.•...••.•.•...•.. l42
The C Language As a Portable

Implementation Language •...•....•••.•.••••..•. l46
Portability Between Widely Different

Ar ch i tectur es 152

REFERENCES ••.••••.•••••• ••••.••••••••••••• ..•.••••••••••• 156

APPENDIX A UNIXj24V UTILITIES ...••........••....• 159

- vi -

11-1

111-1

111-2
111-3
111-4
IV-l

V-l

V1-l

VI-2

V1-3

VI-4

V11-1

V1I1-1
1X-1

LIST OF TABLES AND FIGURES

Selected Portable Compiler
Intermediate Language Node Types .•...•.••. 10

The /6 Register Set (used by the
campi ler) 28

/6 Memory Reference Formats ..•..••.••.••..•. 30
Data Type Representations .•..•....• • •.••..•. 36
Stack Management in C •..•.••.•.•••.....•.••. 39
Expected and Actual Schedules for the .

Development UNIX/24V•........••.••••. 44
Original and Final Register Classes

in the /6 Machine Model•...........••. 49
Definition of PACONV and PSCONV Nodes

for the Intermediate Language .•..•.....•.. 95
Representative Program Sizes For

Various C Compilers · ..•.•..•...•..•..•. 105
Execution Times For the / 6, PDP-11,

Interdata 8/32, and VAX-l1/780
Compilers 107

Detailed Execution Profile For the /6
C Compiler 108

Program Segment Layout Under UNIX/24V
· 118

Loader File Formats for UN1X/24V •......•.. • . 130
C Pointer Conversion Rules for the /6

· 13 3
1X-2 C Storage Co nversion Rules for the /6

· 135

- vii -

CHAPTER I

INTRODUCTION

In 1976 Case Western Reserve University entered

into a project to construct a campus-wide resource

sharing network which would tie together exis t ing

minicomputers and allow for additional hardware to be

supported at minimal conn~ction cost. The machines

chosen for this venture were Harris /6 minicomputers.

By the summer of 1979 the propose d network plans had

been reevaluated due to unforseen circumstances

involving the development of networking software by the

Harris corporation.

During the initi al phase of the network

development, the native /6 operating system , VULCAN,

was found to have a number of weaknesses tha t made

software development difficult. Consequently, o ne part

of the reevaluation process involved the select ion of

an alternate operating system on which to base future

work. The operating system chosen to replace VULCAN

was the UNIX operating system. The choice "of UNIX was

due mainly to its proven ability as a base for software

development

portability.

and text processing, and for it s known

The latter point was a major factor in

- 1 -

- 2 -

establishing credibility of the selection, for at that

time UNIX was not available for a Harris 16.

The UNIX system and its central software were

originally written in assembly language, before the C

language was invented, and have since been rewritten in

C. Previous portability projects have involved moving

the UNIX kernel to the Interdata 7/32 [19], the

Interdata 8/32 [12], and the VAX-ll/780 [18]. These

efforts have had a major impact on the UNIX kernel,

both in pointing out weaknesses in the C language, and

in isolating nonportable sections of the kernel. The

PDP-II version of the kernel, on which the porting

effort was based, consisted of approximately 10,000

lines of C code and about 1,000 lines of assembly code.

Thus, a prerequisite to the porting of the UNIX kernel

was a C compiler for the 16.

While it was clear that porting the UNIX

operating system required a C compiler for the target

machine, it was not clear exactly what route to take to

create this compiler. At the initiation of the project

there were three choices for creating a C compiler:

write one from scratch, port the Ritchie C compiler

[24] which runs on all PDP-II's, or use the portable C

compiler written by S. C. Johnson [11]. Recent C

compiler efforts had followed all of these routes : the

- 3 -

Interdata

compiler,

7/32

the

C compiler

VAX-Il/780

W3S based on the Ritchie

compiler used Johnson's

portable C compiler, and the University of Wisconsin's

Harris /6 C compiler was written from scratch (in

assembly language) .

For the purposes of this project, the Wisconsin C

compiler was unsuitable. The compiler supported an

early version of C (version 6) an~ was known to have a

significant number of bugs. The Ritchie compiler, a

production compiler tuned to the PDP-II, was too firmly

entrenched in the PDP-II architecture to hope for

reliable conversion to such a radically different

architecture. Since the /6 C compiler would be needed

before UNIX could be ported , and writing a compiler

from

only

sc ratch would

the po r tab 1 e

ta ke considerable time , this left

compiler to consider . Previous

efforts involving the compiler had shown excellent

results, both in ease of movement and reliabi lity of

operation. The VAX-Il/780 compiler, bas ed on the

portable compiler, required about one month of effort

to create a first cut compiler, and more than two years

after it was used to bootstrap a UNIX system onto the

machine, it remains as the production compiler . Thus,

it was decided that the C compiler for the /6 would be

based on the portable compiler.

- 4 -

This research involved the movement of the

portable C compiler to the /6 and creation/movement of

related software necessary to support a programming

environment compatible with that found on other

machines supporting UNIX. The /6 architecture contains

many features that made the porting effort very

difficult and impacted the C language environment in a

negative way. The solution of these problems will be

discussed in somewhat general terms, in the hopes that

they might

architectures .

includes

language.

some

be applied to machines with similar

Ne cessary background for this document

familiarity with the C programming

The organization of the remainder of this

document follows the dev elopment of the compil er, then

steps back to consider the resultant programming

environment create1. Chapters II and III provide

background material on the portable C compiler and the

Harris /6 minicomputer, respectively. Later chapters

presume a knowledge of these two topics commensurate

with that presented in chapters II and III. Chapter IV

gives an overview of the porting process, while chapter

V covers the compiler modifications that were

necessitated by the /6 architecture. Chapter VI

discusses the quality of code presently generated by

- 5 -

the compiler, and offers observations about possible

future optimizations. Chapter VII considers the

interaction between the compiler and its support tools,

the assembler and link-editor. Chapters VIII evaluates

some of the compiler's good and bad points, while

chapter IX looks at the impact of the /6's word

addressable architecture on the C programming

environment. Finally, chapter X summarizes the results

of this research.

R

CHAPTER II

A DESCRIPTION OF THE PORTABLE C COMPILER

1. Overview

This chapter discusses the structure and

organization of the portable compiler. Rather than

reiterate all that has been presented in previous

descriptions of the portable compiler, [11], this

chapter will introduce only those notions necessary for

an understanding of the design issues involving the /6

version of the compiler. Some of the theoretical work

on which the compiler is based, and its application to

the compiler, is discussed elsewhere , [9] , while a

deta i led analysis of the /6 adaptation of the portable

compiler may be found in [15].

The compiler consists of two passes that t ogether

turn C source code into assembler code for the target

machine. The two passes are preceded by a prepr ocessor

which is highly portable in its own right.

Although the compiler is divided into two passes,

this represents historical accident more than deep

necessity. In fact, the compiler can optionall y be

loaded so that both passes operate in the same pr ogram.

- 6 -

- 7 -

This "one pass" operation eliminates the overhead of

reading and writing an intermediate file, so the

compiler operates about 30% faster in this mode. In

this form the compiler also occupies about 30% more

space than the larger of the two component passes.

Because the compiler is fundamentally structured as two

passes, even when loaded as one, this chapter primarily

describes the two pass version.

2. Expression Trees

While there are a large numbe r of important data

structures involved in the operation of the compiler,

the focus of interest in this document will be on the

parse trees formed in the first pass, and used in the

second pass by the code generation scheme. These parse

trees are used to represent C expressions; almost all

flow control constructs have code generated for them

immediately in the first pass. The use of trees for an

intermediate representation has simplified many of the

complicated operations performed during code

generation.

The definition of the nodes that compri se an

expression tree differs from the first pass of the

compiler to the second. The first pass must be

concerned with a variety of symbol table related

- 8 -

issues, while the second pass doesn't use the symbol

table, but must maintain information used in the

register allocation and expression compilation schemes.

The expression trees, along with other information, are

communicated between the two passes by an ascii

intermediate file. When the two passes are merged to

form a single pass compiler this file is eliminated,

and the trees are simply "handed off" to the

appropriate second pass "routine. Since the node

definitions differ in each pass, the combination of

passes requires node definitions to be made large

enough to hold the union of the information needed in

each pass.

Each node contains two members used in both

passes: ~E' used to specify the "node number", and

type. A node number identifies either a C language

operator, or an operator internal to the compiler. The

collection of node numbers defines the intermediate

language used to communicate with the code generator.

The internal operators defined are primarily used to

process declarations in the first pass. The bottom-up

construction of the parser and top down nature of C

declarations requires declarations be used to build a

"declaration tree", which is then processed in a top

down fashion. Most C operators have a corresponding

- 9 -

node number. For example, + is represented by PLUS, %

by MOD, etc. A token such as MINUS may be seen in the

lexical analyzer before it is known whether it is a

unary or binary operator; clearly, it is necessary to

know this by the time the parse tree is constructed.

Thus, an operator (really 3 macro) called UNARY is

provided, so that MINUS and UNARY MINUS are both

distinct node numbers. Similarly, many binary

operators exist in an assignment form -- for example -=

and the operator ASG may be applied to such node

names to generate new ones, e.g. ASG MINUS. Table 11-1

shows some of the most common op values which will be

used in further discussions.

C has a rich typing structure, with a potentially

infinite number of types. To begin with there are the

basic types: CHAR, SHORT, INT, LONG, the unsigned

versions known as UCHAR, USHORT, UNSIGNED, ULONG, and

FLOAT, DOUBLE, and finally STRTY (a structure) ,

UNIONTY, and ENUMTY. Three operators may be applied to

types to construct others: if t is a type, one may

potentially have types po!nter

to t, function returning t, and array of t's generated

from t. Thus, an arbitrary type in C consist s of a

basic type, and zero or more of these operators . The

!yp~ member of each node contains a C type, as outlined

- 10 -

lName--1 De sc rlptlon I
WM"E""===lnamecfmemor y40ca t lon--============= I
IICON linteger constant, possibly a symbolic address I
~LUS 1+ operator I
~INUS 1-, U- has UNARY prefix I
~UL 1*, U* <=) UNARY MUL I
~ND 1&, U& <=) UNARY AND I
bR II, inclusive-or I
IER I , exclusive-or I
~NDAND 1&&, logical connective I
bROR II I, logical connective I
ICOMOP I' " operator I
IDIV 1/ . I
IMOD 1%, rema inder I
ILS I < <, 1 eft s h i f t I
IRS I», rig h t sh if t I
~ALL Ifunction call, UNARY CALL has no param's
~OMPL 1-, one's complementation
IINCR 1++, postfix and prefix
IoECR 1-- -
~Q 1==, logical connective
INE, I! =
ILE 1<=, ULE is
ILT 1<, ULT is
IGE 1)=, UGE is
IGT I) , UGT is

unsigned
unsigned
unsigned
unsigned

version
version
version
version

IREG I reg ister
bREG loffset from register (U* REG + ICON)
~TASG Istructure assignment
ISTARG Istructure argument to a CALL
~TCALL ICALL returning a structure, UNARY STCALL
IFLD Ib it fie Id
ISCONV Istorage conversion (e.g. pointer =) int)
~CONV Ipointer conversion (e.g. int =) pointer)
~MCONV Ipointer multiplication conversion , e.g.
I Ipointer + offset =) pointer + offset*wid th
IpVCONV Ipointer division conversion, e.g. pointe r
I Ipointer =) (pointer-pointer)/width
IPACONV Ipointer addition conversion, see Figure VI-l
~SCONV Ipointer subtraction conversion, ·see Figure
I IVI-l
~ORCE Imust have left tree in specific registe r
ICBRANCH Iconditional branch to label on right,
I laccording to comparison on left
IINIT linitialize memory location with value on left

Figure II-I. Portable Compiler Node Types

- 11 -

here, describing the type of the expression rooted at

that node.

Remaining members of the node structure contain

dimension table pointers, size table pointers, constant

values, symbol table pointers, label numbers, register

allocation information, Sethi-Ullman numbers {see

section 4 of this chapter) ,etc. The exact application

of each element of a node will be described where

needed. For a complete description of all the data

structures used in the portable compiler consult [15].

The formalism chosen in this document to

represent the expression trees has been tailored to

simplify their inclusion in the text, so it will be

introduced here. Express ion trees will be di splayed

"on their side", with each level of the tree marked by

an extra level of indentation. To avoid ambiguit y, the

left son at each level will be displayed first . All

unary operators therefore will have their single

descendant on the left. Consider the expression a += b

- c, the corresponding tree would be:

+=, <type>, •..
NAME, _a, <type>,

<type>, •.•
NAME, b, <type>,
NAME, -c, <type>,

- 12 -

Each node in the tree contains a leading node number

(displayed symbolically), the C type of the node, and

any further information that might be appropriate to

the example. For the purposes of discussion, many of

the details which would be present in the actual node

representation (e.g. dimension table indices, sizes,

etc.) may be omitted. Note that the NAME nodes, used

to indicate that the variables, a, b, and care

statically allocated, have "the symbol's name present,

pr epend ed wi th an und er score (" 1\). The convent ion

chosen for the /6 is that all C symbols will be

constructed in this fashion to avoid name conflicts

with assembly language defined symbols.

3. The First Pass

The firs t pass

parsing, and symbol

performs lexical

table maintenance.

analysis,

It also

constructs parse trees for expressions and keeps track

of the types of the nodes in these trees. Addi tional

code is devoted to initialization of stati c data

structures. Machine dependent portions of the first

pass serve to generate subroutine prologs and epilogs,

code for switch statements, code for branches , label

definitions, alignment operations, changes of location

counter, etc.

- 13 -

The porter of the portable compiler has

relatively few jobs to perform in the first pass. The

work of lexical analysis, parsing, symbol table

maintenance, semantic checking, and initialization of

static data structures are, for the most part,

completely handled by the machine independent portions

of the compiler; the porter is left with only minor

tasks.

For each machine, the express i on trees built by

the first pass will need specific ma ssaging. There are

two major areas where this is important -- NAME nodes

and conversion operations. In the case of NAME nodes,

the machine dependent portion of the compiler must

rewrite the node to ref lect t he physical location of

the name in the machine. In effect, the NAME node must

be examined, the symbol table entry found (th rough a

field in the node), and base1 on the storage cl ass of

the node, the tree must be transformed. Au tomatic

variables and

treating the

parameters are usually rewrit ten by

reference to the variable as a str ucture

reference off the register which holds the stack or

argument pointer. In the case of LABEL and in ternal

static nodes, the node will be transformed to place the

negative of the internal label number in the node.

Finally, a name of class REGISTER must be conv erted

- 14 -

into a REG node, and the encoded register number must

be placed in the appropriate field of the node for use

by the second pass. For machines with addressability

problems (for instance the IBM 370) the work here may

become fairly involved.

The conversion operator treatment is rather

tricky. It is necessary to hand le application of

conversion operators to constants in machine dependent

routines in order that all constant expressions can

have their values known at compil e time. In extreme

cases, this may mean tha t some simulation of the

arithmetic of the target machin e might have to be done

in a cross-compiler. In the most common case,

conversions from pointer to po i nt e r do nothing. For

some machines , however, conversions from byte pointer

to short or long pointer might require a sh i ft or

rotate operation which would have to be generated here.

The other machine specific issue involves the

subroutine prolog and epilog generation. The har d part

here is the design of the stack frame and calling

sequence. While code for these jobs may be emit ted in

part in the first pass, the final stack size and the

number of register variables is not known unt il the

second pass, so these values must be referred to by

assembler constants.

- 15 -

C has a finite, but fairly extensive, number of

storage classes available. One of the compiler design

decisions was to process the storage class information

totally in the first pass -- the second pass has no

access to the symbol table. This means that all of the

storage allocation must take place in the first pass,

so that references to automatics and paremeters can be

turned into references to cells lying a certain number

of bytes offset from certafn machine registers. The

first pass of the compiler d e als with all address

information internally in bits. It is the compiler

writer's responsibility to convert these values to

bytes or words, as appropriate.

4. The Second Pass

It is difficult to organize a code g ene rator to

be flexible enough to generate c ode for a large number

of machines and still be e fficient for anyone of them.

Flexibility is also important when it comes t ime to

tune the code generator to improve the output code

quality. On the other hand, too much flexibil ity can

lead to semantically incorrect code, and potenti ally a

combinatorial explosion in the number of cases to be

considered in the compiler.

- 16 -

One goal of the code generator is to have a high

degree of correctness. It is very desirable to have the

compiler detect its own inability to generate correct

code. This goal is achieved by having a simple model

of the job to be done (e.g. an expression tree) and a

simple model of the machine state (e.g. which registers

are free). The act of generating an instruction

performs a transformation on the tree and the machine

state. If each of these instruction/transformation

pairs is correct, and if the machine state model really

represents the actual machine, and if the

transformations reduce the input tree to the desired

single node, then the output code will be correct.

For most real machines, there is no definitive

theory of code generation that encompasses all of the C

operators. Thus, the selection of which

instruction/transformations to generate, and in what

order, is necessarily heur istic in flavor. If, for

some expression tree, no transformation applies, or

more seriously, if the heuristics select a seque nce of

instruction/transformations that do not, in fact,

reduce the tree, the compiler will report its i nability

to generate code and abort.

A major part of the code generator is concerned

with the model and the transformations, most of which

- 17 -

is machine dependent or depends on simple code tables.

The flexibility comes from the heuristics that guide

the transformations of the tree, the selection of

subgoals and the ordering of the computation.

The remainder of this section involves a

description of the scheme used by the code generator.

It is based heavily on the machine model imposed by the

portable compiler, so before the details are discussed,

this model must be introduced.

The machine is assumed to have a number of

registers, of at most

Within each register

(temporary) registers

two different types: A and B.

class, there ' may be scratch

and dedicated registers (e.g.

register variables, the stack pointer, etc.).

to allocate and free registers involve

temporary registers.

Requests

only the

Each of the registers in the machine is given a

name and a number: the numbers are used as indice s into

various tables that describe the registers, so they

should be kept small. One such table describes the

status of each register. The status of each register

is an expression formed from manifest constants

describing the type of the register: SAREG for

dedicated AREG's, SAREGISTAREG for scratch AREG's , and,

- 18 -

similarly SBREG and SBREGISTBREG for BREG's.

The actual code generation is done by a hierarchy

of routines. Each tree to be processed is first

scanned for any delayable operations, such as postfix

++ and ope rat ion s • Also, an attempt is made to

handle comma operators by computing the left side

expression first, and then rewriting .the tree to

eliminate the operator. This is not always possible;

for example, parameter lists involve the comma

operator, but their evaluation order may not be

altered. The code generation process takes as

arguments a pointer to an expression tree, and a second

argument that, for socio-historical reasons, is called

a cookie. The cookie describes a set of goals that

would be acceptable for the code generation. These are

assigned to individual bits, so they may be logically

or'ed together to form a number of possible goals.

~~ong the possible goals are

FOREFF

INTEMP

Compute for side effects only; don' t worry
about the value.

Compute and store the value into a temporary
location in memory.

INAREG (INBREG)
Compute the value into an A (B) register.

INTAREG (INTBREG)

FORCC

Compute the value into a scratch A (B)
reg ister •

Compute the expression for the condition

a

FORARG

- 19 -

codes it produces.

compute the expression as a function
argument: e.g. stack it if appropriate.

The first step in the code generation process is

canonicalization of the expression tree.

Canonicalization involves searching the tree for

certain transformations that might be applicable. One,

which is very common and very powerful, is to fold

together an indirection 'operator (UNARY MUL) and a

register (REG): in most machines, this combination is

addressable directly, and so is similar to a NAME in

its behavior. The UNARY MUL and REG are folded

together to make another node type called OREG. In

fact, in many machines, it is possible to directly

address not just the cell pointed to by a register, but

also cells differing by a constant offset from the cell

pointed to by the register: such cases are also sought.

Another transformation is to replace bit field

operations by shifts and masks if the operation

involves extracting the field. Finally , a machine

dependent routine is called to calculate Sethi-Ullman

numbers for the tree. A Sethi-Ullrean number, [25], is

an estimate of the number of registers requi red to

evaluate an expression. These numbers are calculated

in a bottom-up fashion. Each node in the tree has a

number which is intended to reflect the number of

- 20 -

registers required to evaluate the expression rooted at

that node.

After the tree has been canonicalized, it is

perused for subtrees that may be computed and (usually)

stored before beginning the computation of the full

tree. The selection of these subtrees is usually a

result of the full tree requiring more registers

(according to the Sethi-Ullman numbers calculated) than

the machine has available. The trees handled in this

manner must be computable without need for temporary

storage locations. In effect, the only store

operations generated while processing the subtree must

be in response to explicit assignment operators in the

tree. This division of the job marks one of the more

significant, and successful, departures from most other

compilers. It means that the code generator may

operate under the assumption that there are enough

registers to do its job, without worrying about

temporary storage.

One consequence of this organization is that code

is not generated by a treewalk. There are theoretical

results that support this decision [1], [2], [25] . It

may be desirable to compute several subtrees and store

them before tackling the whole tree~ if a subtree is to

be stored, this is known before the code generation for

- 21 -

the subtree is begun, and the subtree is computed when

all scratch registers are available.

When a tree is ready to be evaluated (i.e. it has

been stripped of all subtrees that need to be stored)

it is passed to a routine which handles the evaluation

of expression trees that do not require tempotary

locations. This routine may make recursive calls on

itself, and, in some cases, on routines higher up in

the hierarchy. For example, when processing the

operators &&, II, and comma, that have a left to right

evaluation, it is incorrect to examine the right

operand for subtrees to be stored. In these cases, a

recursive call to a higher level routine must be made

when it is permissible to work on the right operand. A

similar situation arises with the ?: operator.

The evaluation of expression trees works by

matching the current tree with a set of code templates.

If a template is discoverd that will match the current

tree and cookie, the associated assembly code is

generated. The tree is then rewritten, as specified by

the template, to represent the effect of the output

instruction(s). If no template match is found, first

an attempt is made to match with a different cookie:

for example, to compute an expression with cookie

INTEMP, it is usually necessary to compute the

- 22 -

expression into a scratch register first. If all

attempts to match the tree fail, the heuristic part of

the algorithm becomes dominant. Control is_ typically

given to one of a number of machine-dependent routines

that may in turn recursively calIon the evaluation

process to achieve a subgoal of the computation (for

example, one of the arguments may be computed into a

temporary register). After this subgoal has been

achieved, the process begins again with the modified

tree. If the machine-dependent heuristics are unable

to reduce the tree further, a number of default

rewriting rules may be considered appropriate.

To close this introduction, we will consider the

steps in compiling the code for the expression

a += b

where a and b are static variables .

The canonicalization and Sethi-Ullman number

computation are machine dependent, so assume they do

not alter the tree noticeably. Then, to begin with,

the whole expression tree is examined with the cookie

FOREFF, and no match is found. Search with other

cookies is equally fruitless, so an attempt at

rewriting is made. Suppose we are dealing with the

- 23 -

Interdata 8/32 for the moment (it bears some

resemblance to the /6 in many of its rewriting rules).

It is recognized that the left and right hand sides of

the += operator are addressable, and in pa rticul a r the

left hand side has no side effects, so it is

permissible to rewrite the tree as

a = a + b

and this is done. No match is found on this tree

either, so a machine dependent rewrite is done; it

recognizes tha the left hand side of the assignment is

addressable, but the right hand side is not in a

register, so a request is made to place the right hand

side of the assignment operator into a register. This

invocation of the code generation scheme searches the

tree for a match, and fails. The machine dependent

rule for + notices that the right han~ operand is

addressable; it decides to put the left o pe r a nd into a

scratch register. Another recursive call is mad e to

the code generator, with the tree consisting sol ely of

the leaf ~, and the cookie asking that the val ue be

placed into a scratch register. This now matches a

template, and a load instruction is emitted, and this

third call to the code generator returns. The s econd

call now finds that it has the tree

- 24 -

reg + b

to consider. Once again, there is no match, but the

default rewriting rule rewrites the + as a += operator,

since the left operand is a scratch register. When

this is done, there is a match: in fact,

reg += b

simply describes the effect of the add instruction on a

typical machine. After the add is emitted, the tree is

rewritten to consist merely of the register node, since

the result of the add is now in the register. This

agrees with the cookie passed to the second invocation

of the code generator, so this invocation terminates,

returning to the first level. The original tree has now

become

a = reg

which matches the template for the store instr uction.

The store is output, and the tree is rewritten to

become a single register node. At this point, since the

top level call to the code generator was interested

only in side effects, the call returns, and code

generation for the expression tree is completed: we

have generated a load, add, and store as might have

- 25 -

been expected.

The effect of machine architecture on this scheme

is considerable. For example, on the Honeywell 6000,

the machine dependent heuristics recognize that there

is an "add to storage" instruction, so the strategy is

quite different: ~ is loaded into a register, and then

an add to storage instruction is generated to add this

register to a. The transformations, involving as they

do the semantics of C, are largely machine dependent.

The decisions as to when to use them, however, are

almost totally machine independent.

Chapter V will consider much of the code

generation scheme for the Harris /6. The design of the

machine dependent tree rewriting rules and Sethi-Ullman

number computations is extremely difficult; an analysis

of a specific example should prove useful to future

porters of the portable C compiler.

CHAPTER III

THE HARRIS /6 MINICOMPUTER

Since many of the design issues involved in the

writing of a compiler are driven by the target

machine's architecture, this chapter introduces the

basics of the /6 machine, and describes their use

within the implementation of the C language. The

material in this chapter describing the architecture of

the Harris /6 is mostly from the /6 reference manual,

[6].

1. The Register Set

The Harris /6 has no general purpose registers in

the sense of the PDP-II or VAX-II architectures. There

are five 24-bit registers available to a user in the

main cpu and additional registe rs ma y be add ed with

extra features (such as the Scientific Arithmet ic Unit

SAU, bi t processor, external timer, etc .). The

register set is composed of three index registe rs and

two arithmetic accumulators, as illustrated i n Figure

III-I. The two arithmetic accumulators may al so be

referenced as a pair, the D register, for double

precision integer arithmetic; a byte register, the B

- 26 -

- 27 -

register, is the lower byte of the A register.

In the scheme chosen for C, certain registers are

either dedicated, or heavily used for a specific

purpose. The K register is used as the frame pointer

in the stack management scheme (i.e. it is equivalent

to R5 on the PDP-II, or FP on the VAX-II). The A

register is used when items must be forced into a

specific register, as in

function call. Within

returning a value from a

the compiler's machine model,

the B register is never explicitly referenced, rather a

need for the B register is effected by a request for

the A register.

Two add-on registers are used by the compiler,

the X register from the SAU, and the V register from

the bit processor. The X register is the only register

in which floating point arithmetic may be performed,

while the V register is used for a temporary storage

place for the K register while perfo rming structure

assignments.

The /6 instruction set forces many re s tr ictions

on the use of registers. Virtually all complex

arithmetic operations and all character manipu lations

must be performed in a fixed register. This problem

has similarities to the even-odd register pairing

- 28 -

A Register

I- I
2l r>

B ReC) i ster

.. I
b

~

I
LiJ..

23

I
a3

I

i?- ¢

E Register

I
¢

D Register

E I A

2.3

I Register

IT>

J Register
Index
Registers

¢

K Register

Figure III-I. The 16 Register Set
(used by the compiler)

I
q;

- 29 -

problem of the PDP-II, but · forces a much more

restrictive approach to code generation. For example,

multiplication, division, shifting, remaindering, and

extraction of arbitrary bytes from memory all must be

performed using the A register. While this may seem

attractive for overlapping operations without register

to register transfers, in practice it results in just

the opposite; the A register tends to become a

bottleneck during expression calculations.

2. Addressing Modes

Total memory available to a /6 cpu is 2S6K 24-bit

words. Because of the cpu's basic architecture and the

corresponding addressing technique, executable code is

confined to the lower 64K words of memory. However,

memory above 64K may be addressed by means of indirect

references. Figure 111-2 illustrates the memory

referencing formats available.

2 .1 . Di rec t Addressing

The standard memory reference instruction format

allows the direct addressing of 32K words . The value

of 32K words is a constraint imposed by the IS-bit

a~dress field of the instruction word. The add ressing

logic divides the lower 64K words of memory i nto two

areas: 0-32K; and 32K-64K. Under this method, t he most

- 30 -

op code "* X ""'- IS-bit address

I
23 18 14 0

Direct Addressing

op code H+ 16-bit -address

·1
23 18 15 0

Long Branch Instructions

H ~ I~" 1 6 - bit ad d res s l
19 16 15 0

Standard Indirect Format (DAC)

H ~ li~ IS-bit address l
17 0

Long Address Format (LAC)

~--------lS-bit address--------~

21 IS 17 o
Byte Address Constant (BAC)

Figure III-2. /6 Memory Reference Formats

- 31 -

significant bit of the program counter is used to bias

all direct address references. By performing a

logical-or function between the immediate address

reference and bit 15 of the program counter,

instructions may directly address up to 32K words

within their respective sections of memory.

Modification of a IS-bit direct address by means

of indirection (*) and/or indexing (X) can permit an

instruction to address any memory location up to 256K

words.

and 2.3.

A

permits

These provisions are discussed in sections 2.2

special

direct

group of long branch

addressing up to 64K

instructions

words. The

instruction word format for this group is shown in

Figure

mod i fied

III-2.

by

Note

indirect

that these

references

instructions may be

(*), but have no

provision for indexing. Long branch instructions are

not biased by bit 15 of the program counter .

2.2. Indirect Addressing

Indirect address references permit the cpu to

access up to 256K words of memory. When a memory

reference instruction is decoded, bit 17 (*) of the

instruction word is examined. If bit 17 is s e t, an

indirect address reference is indicated. The word

- 32 -

retrieved from memory when the effective address is

calculated is treated as an indirect address word.

Consequently, indirect addressing references may be

chained together. The /6 imposes no restriction on the

depth of chaining; however, the stall alarm feature may

be enabled, limiting the total effective memory address

calculation to 128 machine cycles.

The standard indirect format, with its l6-bit

address field, permits access up to 64K words. Up to

256K words can be accessed by the l8-bit field in the

long address word. Neither type of indirect address is

affected by the program counter's address bias.

Bit 23 (*) of either format may be set to specify

another level of indirect addressing. Each level of

indirect reference may be individually indexed to

provide further a~dress modification.

2.3. Indexing

A direct or indirect address reference may be

modified by indexing. This operation adds the contents

of a specific index register (I, J, or K) to the

address in the current instruction or indirect

reference to determine an effective address. A two bit

field (X) in the instruction or indirect reference

specifies which register will be employed in each

- 33 -

indexing operation.

In the lower 32K memory section, direct address

references may be indexed to access up to 64K words.

However, instructions in the 32K-64K section of memory

may not reference the lower section by indexing, since

all immediate references will be biased by bit IS ' of

the pc.

2.4. Byte Addressing

The byte processing group of instructions permits

program manipulation of all three bytes within a memory

location. These instructions are divided into two

classes: those that operate on a standard address

format and always reference byte 3 (the right most

byte), and those that work with a special byte address

format (see Figure 111-2) to access arbitrary bytes in

memory.

Th e set of instructio ns that work with standard

address formats includes operations t o add a byte to

the B register, subtract a byte from the B r egister,

compare a byte to the B register, and transfer a byte

in memory to/from the B register. The instr uction

formats permit both indirect address references and

indexing.

- 34 -

The collection of instructions that operate on

the byte address format is very restricted. They

consist entirely of instructions to transfer bytes in

memory to and from the B register, and instructions to

increment a byte pointer residing in the 1 or J

register. All arithmetic operations performed on bytes

inaccessible by a standard address format must be

carrie~ out in registers. The instruction to fetch a

byte from memory (emb) uses a byte address constant

placed in the J register to locate the desired memory

location, while the replacement of a byte in memory

(the rbm instruction) employs an address found in the I

reg i ster •

3. Data Types

The /6 architecture supports data types for

single word integer arithmetic and floating point

arithmetic. In addition, a double word, double

precis i on i nteger data type is supported by a small set

o f instructions. within C, this double wo rd data type

is used for longs, while the standard data type is used

for integer types (i.e. unsigned, int, and short).

Floating point arithmetic is supported by the hardware

only in double precision. The double word data type,

shown in Figure 111-3, has a particularly ugly property

to it: the sign bit in the low word must be ze ro, or

- 35 -

unpredictable results may occur.

conversions and arithmetic operations

require extensive cleaning up.

4. Stack Management

As a result, many

involving longs

The /6 instruction set provides no direct support

for a stack. The architecture is very much FORTRAN

oriented, unlike most of the previous machines to which

C has been moved.

Because of the architecture of the 16, it was

decide~ that no registers offered to a user process

were suitable for dedication to a stack pointer.

Instea~, a memory location was allocated for it. Since

the stack pointer must reside in data space, to allow

creation of a pure text segment, the memory location

can not be fixed, and must be referenced symbolically.

Also, as a result of the limitations of the direct

addressing mode, all references to this memory location

must be indirect to allow its placement anywhere in the

256K word address space. The cost of adding an extra

level of indirection for each reference to the stack

pointer was considered at length. However, to allow

for the eventual creation of programs of maximum size,

one must simply pay the price.

- 36 -

INTEGER

BYTE INTEGER

\S \ (byte 11 Is I (byte 21 lsi t' byte 3 2."1
2.3 2Z ((., IS' l'f i l' " rp

DOUBLE INTEGER

Is Iz~ 7l..-C ~l ~tl ~z~)(~ _2 ----It'l
~ ~ ~ ~
~ 47-bit word--------------~1

DOUBLE PRECISION FLOATING POINT
word 1 word 2

u\L------Ji'1 fJl ~lH· _t41
Z3 1; ~T 0
w~~--- 39-bi t mantissa ------"IIPl~ .. exponent ~

Figure 111-3. Data Type Representations

- 37 -

The C language, as developed on the PDP-II under

UNIX, has the stack managed by the hardware and the

operating system. The stack is initialized to the top

of the user's logical address space and allowed to grow

downward as needed. A fixed size segment is allocated

for an initial stack segment, with memory faults

interpreted by UNIX as an indication of the stack

needing expansion. This uniform treatment of memory

faults implies that inadveitant traps, caused by faulty

user programs, expand the stack need lessly. Under

UNIX/24V (the official name for the UNIX implementation

on a 6024/6 cpu) a similar approach was selected. A

users' stack is treated as on the PDP-II, but the

maximum stack size is set by the loader and is integral

to each executable program. The heuristic used by the

loader to set the stack size is based on the program

size. The user may override the heuristic and specify

the stack size. The reason for having the stack size

va ry i s related to the / 6 virtual memory h a rdwa re; it

suffices to say that uniformly starti ng the stack at

the top of the 256K word address space is t oo costly in

terms of operating system resources. For a complete

discussion of the UNIX/24V handling of the stack the

reader is referred to [26].

- 38 -

The implementation of C on the PDP-ll employs two

general purpose registers to man age the stack. RS is

used as the frame pointer, and the norm a l hardware

stack pointer R6 (SP) points to the loc a tion on the

"top" of the stack. The stack grows down from high

memory, with local variables being referenced via

negative offsets from the frame pointer, and function

arguments, placed on the stack prior to the register

save area, referenced via positive offsets from the

frame pointer (see Figur e 111-4). Th e management of

this stack arrangement is h a n~le1 by a pair of linkag e

routines, csv (for saving live r egisters on procedure

entrance) and cret (for cleaning things up on procedure

ex it) . For the /6, the manag ement scheme is virtually

identical to tha t used for the PDP-ll. The register

save area differs in size (the re are no ~gister

variables on the /6, so only the frame po in ter and

stack pointer need be s aved) , and the stac k pointer

points to the next open location on the top of the

stack (to minimize the number of pushes required when

passing parameters for procedure calls). At one point

there was some thought to expanding the ~outine s csv

and cret in-line, however the eventual coding of these

routines showed this to be too costly. For a more

detailed discussion of the C calling sequence c onsult

[I 7] •

Frame
Point

Stack
Point

- 39 -

.--- .---

arq,

arg 2 . .
argn

Reg is ter Save
Area

~

Local
Variables

~

er

Stack
Growth

FigureIII-4. Stack Management in C
(on PDP-Il, VAX-II, and / 6)

CHAPTER IV

THE PORTING PROCESS

The porting process basically consisted of three

steps:

1) Create a version of the compiler on a PDP-11/45
running UNIX, which generated symbolic assembly
code for the /6.

2) Cross-compile the compiler to create a compiler
running on the /6 under the native /6 operating
system, VULCAN.

3) Re-fit the compiler for UNIX/24V.

While there may appear to be no re ason for step 2), a

number of major stumbling blocks required the

intermediate step of going to VULCAN. Some of the

problems encountered were:

1) The 11/45 had no compatible physical medium with
which to communicate with the /6. All files
transfere~ from the 11/45 to the /6, and vice
versa, had to be se n t ove r terminal lines at
300 baud (/6 =) 11/45) and 1200 baud (11/45 =)

/6) • With such an inefficient method for
communication it became imperative t o minimize
the amount of work carried out on the 11/45.
Consequently, little UNIX/24V devel opment was
carried out on the 11/45.

2) There were only two people involved in the
majority of the project, and moving directly to
a UNIX system would have required a /6 as sembler
and link-editor running on the 11/4 5, plus
binary conversion programs to be able t o boot a
system directly off of tape or disk. By moving
to VULCAN first we were able to take adv antage
of the existing assembler, link-editor , and
debugger.

- 40 -

- 41 -

3) The existing VULCAN environment, augmented by
the C compiler and standard I/O library, allowed
parallel conversion of user programs such as the
shell and editor.

Expanding the first list then, a more detailed list of

the steps taken in the porting effort would be:

1) A C compiler was developed on the 11/45.

2a) A standard I/O library was tailored to · the
VULCAN operating system.

2b) UNIX/24V development work was carried out on the
16.

2c) The C compiler was cross-compiled and moved
(numerous iterations) via the terminal link.

2d) The C compiler was modified to eliminate PDP-II
dependencies. This mostly involved alterations
to data structures that required a long on the
PDP-II, but only an int on the /6.

3a) A swapping version of UNIX/24V was brought up.

3b) YACC was moved to VULCAN to make the compiler
completely self-sufficient under VULCAN.

3c) A version 7 shell was brought over to UNIX/24V,
while a UNIX/24V assembler and link-editor were
being written.

3d) The C compiler on VULCAN was modified to run
with the UNIX/24V assembler, then compiled into
.0 files and moved to UNIX/24V where it was
linked.

4) All other necessary user programs, not already
on UNIX/24V, were moved.

5) The UNIX/24V kernel development was moved to
UNIX/24V.

After the last step, UNIX/24V was completely self

sufficient. The current programming envir onment

includes all essential programs, such as the shell,

- 42 -

editor, assembler, link-editor, yacc, and compiler,

plus numerous other tools such as make, sed, etc.

Because the compiler had to run under the VULCAN

operating system for a long period of time (during

kernel development), some compromises in the cross­

compiler had to be selected. The VULCAN assembler' and

loader were not to be the eventual assembler and loader

under UNIX, so little effort was put forth to make the

compiler compatible with these programs. Rather a

program external to the compiler was constructed to

massage the assembly language output generated by the

compiler into a format suitable for input to the VULCAN

utilities. This post processing program, called cpop,

was developed by the A. R. Jennings Computing Center in

accordance with a previous agreement. The decision to

handle the stay on VULCAN in this manner was caused by

certain deficiencies in the assembler and loader (see

chapte r VII for a more detailed discuss i on) •

The actual process of moving the portable

compiler from the 11/45 to UNX/24V was fairly painful.

The step between the 11/45 and VULSAN, over . a 30 0 baud

terminal line, took a number of weeks. This process

was complicated by the involvement of cpop. Ea rly on,

bugs were traced as often to cpop as to the compiler,

though very quickly the compiler became the standard

- 43 -

culprit. Once the compiler initially reached the /6,

very few trips back to the 11/45 were made. About one

week after the compiler was deemed "usable" on the /6,

it began to be fully used for kernel development. The

trip from VULCAN to UNIX/24V was e asier, but no less

painful. While files could be moved by magnetic tape,

the variable here was the assembler. The ass embler was

initially tested by use of a "mini-loader" (a simple-

minded loader which relocated only a single file into

the executable a.out format), but many instruction

table typos and a few misunderstandings of the

architecure resulted in a numbe r of weeks worth of

debugging. Once the assembler was stable, it was

straightforward to move the compiler, and the UNIX/24V

kernel soon followed. Since it is always interesting

to look back on the work spent in such a project,

Figure IV-l has been includ ed to allow compa rison of

t he ac t ua l time spent on each phase of the porting

effort to that which was originally expected . This

figure should be taken lightly, as division of certain

steps is nearly impossible.

The initial testing of the compiler involved the

creation of a "validation suite". This collect ion of

test cases was used extensively during the early

debugging phases that took place on the 11/45 . Once

- 44 -

t

.a::.--- ---------
~

Figure IV-I. Development Schdeule for UNIX/24V

- 45 -

the compiler was moved to the VULCAN operating system,

however, regression testing using the test cases was

virtually abandoned, since the size of the test suite

(approximately 200 files) required an extraordinary

amount of compile time. Later testing usually

consisted of specific test cases, followed by a

complete recompilation of the compiler and operating

system. While abandonment of the validation suite is

not a recommended practice, most bugs encountered at

this stage were usually as a result of "edge effects"

in the Sethi-Ullman number calculations, and fixes had

virtually no affect on unrelated constructs. If the

compiler had been an order of magnitude more efficient

(see chapter VIII), the use of the validation suite

would have been possible. However, due to the large

number of changes being made to the compiler during its

stay on VULCAN, lengthy testing of this sort was not

feasible.

In addition to the . basic compiler being moved to

VULCAN, a prerequisite was the creation of a standard

I/O library to interface to the VULCAN ope rating

system. The C language provides no I/O support within

the language. Thus, in order to move the compile r from

one machine to another, a friendly I/O environment must

be provided. The standard I/O library was broug ht up

- 46 -

in two stages. First, a version of the library was

implemented under the Wisconsin C compiler. This

allowed for testing of many of the algorithms involved,

as well as the development of a small number of useful

utility programs. When the cross-compiler was ready

for use, the library was then recompiled on the 11/45

and moved along with the compiler. The stack design of

the Wisconsin compiler precluded any possible mixing of

compiled code.

CHAPTER V

MOVING THE PORTABLE C COMPILER TO THE /6

1. The Machine Model

As described in chapter II, the portable compiler

has an abstract machine model to which a target machine

must be mapped. Unfortunately, the /6 failed to fit

into this model. The first probl em involved the index

registers. with only two register classes available in

the original model, the /6 register set was divided

such that index registers and arithmetic accumulators

were in the same class, while the flo a ting point

register was kept in a class by itself (see

1). This caused considerable problems,

Figure V­

the most

difficult being the allocation of an index register.

Since the machine model as sumed a ll r egiste rs placed in

the same class were identical, it was not po ssible to

guarantee allocation of an index register whe n needed.

For this reason, and because of problems encountered in

handling the allocation of the D register , it was

decided that more than two register classe s were

necessary. Since the abstract machine model wa s to be

altered, it was decided to tailor it specifical ly to

the needs of the /6 (to minimize the work that had to

- 47 -

- 48 -

be done in other machine dependent portions of the

compiler) • The register classes shown in Figure V-I

were the result of these modifications to the machine

model. Note that many of the register classes overlap,

and that the class SDREG contains only the D register.

The choice of placing the D register in a separate

class implied that the register allocation scheme no

longer needed to be concerned with register pairing.

However, this decision also i mplied that the allocation

routines were now required to handle the problem of

physically overlapping registers. Certain of the

register classes (SIREG and SJREG, in particular) were

added soley to allow recognition of specific shapes in

the code tables~ these classes are never requested for

allocation.

The modifications that were necessary to

implement the new machine model were simple. The

register allocat ion routines were alte r ed t o be aware

of the new register classes. The low leve l al location

routines no longer needed to be concerned with register

pairing, but instead had to handle the physical

overlapping of the D register. Finally, the shape

matching routine used in the template ma tching

algorithm were made aware of the new shapes associated

with the new register classes.

A Class
(AREG)

A Class
(AREG)

X Class
(XREG)

{
A
E
I
J

- 49 -

K (not temporary)

B Class
(BREG)

Original /6 Register Classes

A ACcumulator
(ACREG)

E

D D Class
(DREG)
I Class
(I REG)
J Class
(JREG)

X

Final /6 Register Classes

[x

Class

Figure V-l. Original and Final Register Classes
in the /6 Machine Model

- 50 -

2. Address Arithmetic

By far the most difficult problem in moving the

compiler involved the handling of address arithmetic.

The difficulty stemmed from the /6's basic word

addressable architecture, and the format of the

pointers used to retrieve bytes from memory.

To understand some of the difficulties

encoun ter ed, one must consider how the compiler

normally forms addresses. Consider the following code

sample,

int foo [20] ;

•• = foo [... 1 ;

On the PDP-II and VAX-II, a portion of the expression

tree to be passed to the second pass of the compiler

appears as

U*, int,
+, PTR int,

ICON, foo, PTR int, .•.
<expression>, int,

where the expression contains the index i n bytes.

However, on the /6, the appropriate index should be in

words, not bytes. The index is formed, in a machine

dependent manner, by converting the i nternal

- 51 -

representation of the offset, maintained in bits, to

the numeric value it should have for tr a nsmission to

the code generator. By interpreting the type of the

node to which an offset is to be added, in most cases

the conversion from bits to bytes/words is obvious.

However, not all cases are so obvious. For example,

consider another sequence of code,

struct foo {
int a;
char b;

bar[10];

= bar[•.].a;
= bar[..].b;

This example hits at the core of the probl em. The

structure contains two members, one a character, the

other an integer. The natural addressing structure on

the /6 for each of these items is very different; one

may be accessed by indexing, while the other requires a

byte pointer. Consequently, all offset s const ructed in

addressing the integer member must be in wo rd s, while

offsets for the character should be in byte s (in order

to optimize the address calculations) • If one

considers the address formation as the trees are built,

both have the common base

- 52 -

+, PTR strty, ••.
ICON, bar, PTR strty, •..
PMCONV-;- int, •••

<index expression), int,
ICON, <width of structure>, int,

The PMCONV none refects the semantics of addition to a

pointer in C. The addition results in the index

expression being multiplied by the width of . the

structure, so that one may point to the appropriate

element of the aggregate. At this point in the address

formation, the tree building routines do not know which

element of the structure will be accessed (if, indeed,

an element will be adrlressed at all). Thus, a decision

as to which type of calculation (byte or word) should

be performed for the offset is impossible.

The problem of rleciding between byte and word

offsets permeates much of the machine dependent portion

of the first pass of the compiler. As shown above,

t he r e are cases whe r e the compi ler c a n not, in a

straightforward manner, decide whether t o c reate an

address offset in bytes or words. This r a ises the

possibil ity of leav ing all offsets i n bytes.

Unfortunately, this is far too expensive to be a viable

solution. Assume all address offsets are mai n t ained in

bytes. If one now considers the first example of this

section, the original tree used to form the array index

would appear as

- 53 -

U*, int, ..•
+, PTR int,

ICON, foo, PTR int, •..
PMCONV~ int, ...

<expression), int,
ICON, 3, int,

The 3 in the last line indicates th a t each e l ement of

the array is 3 bytes wide (since the /6 ha s a 24-bit

word). Because the offset is ma inta ined in byte s, the

PMCONV node can not be collapsed to the previous form

for the tree. Without intervention be fore the s e cond

pass of the compiler to convert the byte count to a

word count, this expression tree will have incorrect

code generated for it. Th e probl em of intervening in

instances such as this is very difficult, thus one may

conclude that maintaining all add r e ss offse ts in bytes

is impractical.

Since it has been shown that both byte and word

offsets are required, a logical question to ask is how

they might be distinquished? within the original

scheme of the compiler it was not possible. In most

cases, offsets are merely integer constants ICON

nodes. However, the only distinguishing characteristic

of an ICON node is its type . To handle the

id entif ication problem , a new characteris t ic wa s added

to all ICON nodes describing their "offset- t ype ". That

is, a new node element, sym x, was added t o all ICON

- 54 -

nodes. Sym! has one of the values BYTES, WORDS, or

NOTYPE to indicate that the ICON is an offset in bytes,

an offset in words, or a constant introduced outside of

the compiler (e.g. a program constant).

By using this added information, the problem of

forming the appropriate offset type (bytes or wo"rds)

may be delayed, in the most difficult cases, until

information is available to make a decision. When a

decision is formed, a pass is made through the

expression tree to convert appropriate expressions.

For instance, if we reconsider the structure reference,

we find that the partial tree from before takes the

form,

+, PTR strty, ...
ICON, bar, PTR strty, •..
PMCONV~ int, ••.

<index expression>, int,
ICON, 2 (WORDS), int, ...

The size of the structure is maintained in words, as

all structures are aligned to word boundaries according

to the semantics of C. Now, if the expression refers

to the integer member of the structure, the resultant

expression tree is,

- 55 -

U*, int, .•.
+, PTR int,

ICON, bar, PTR int, ..•
* . -, lnt, .•.

<index expression), int,
ICON, 2 (WORDS), int, .••

While the "intermediate" tree for the characte r member

is,

U*, char, •••
+, PTR char,

PCONV, PTR char,
+ , PT R s t r t y, •..

ICON, bar, PTR strty, ..•
PMCONV-; in t , .•.

<index expression), int,
ICON, 2 (WORDS), in t, •..

ICON, 1 (BYTES), int, ...

This tree is intermediate because the word offset has

yet to be converted to a byte offset. To create the

final tree we must consider first what ha ppens to the

PMCONV node. For the /6, this is always transformed to

straight multiplication:

U*, char, ..•
+, PTR char,

PCONV, PTR char,
+, PTR s t r t y, .•.

ICON, bar, PTR strty, ••.
* int-; •••

<index expression), int,
ICON, 2 (WORDS), int, ...

ICON, 1 (BYTES), int , • • •

However, a machine independent local optimi zation will

normally convert this to a left shift (see sec t i on 3 of

- 56 -

this chapter), since one of the operands is a constant

and a power of two. Thus, the true form of the

intermediate tree is,

U*, char, ••.
+, PTR char,

PCONV, PTR ch ar,
+, PTR s t r t y, ...

ICON, bar, PTR str ty, •..
«, int, ...

<ind ex expr ession), int,
ICON, 1 (WORDS), int, ...

ICON, 1 (BYTES), int, •..

Now, to convert this to a suitab le byte ad dr e ss, a pass

is made through the tree, converting all word offsets

to byte offsets. The construct involving the « node

is recognized as the result o f an optimization, and

converted to the appropriate byte c a lculation. The

result of the transformations is,

U*, char, .•.
+, PTR char,

PCONV, PTR char,
+, PTR strty, ...

I CON, bar, PT R s t r t y, .•.
* int-; ...

<index expression), int,
ICON, 3 (BYTES), in t, .•.

ICON, 1 (BYTES), int, •.•

The following list summarizes the reasoning

behind the design of the eventual scheme for handling

- 57 -

address calculations:

1) The first pass of the compiler must handle the
machine dependent translation of all offsets from
bits to bytes/words; the second pass of the
compiler expects all this work to be previously
performed.

2) Since the /6 has two distinct techniques for
addressing memory, one for word-oriented items,
the other for bytes, offsets must necessarily be
maintained in both bytes and words.

3) The simple cases are handled with little trouble
by interrogating the type of the expression to
which an offset is to be a~d ed; the only
difficulty exists in the formation of add resses
for structures.

4) The interme~iate address calculations involving
structures are always performed in words since
the constants involved will all be offsets to a
word-aligned memory location, and because the
resultant address calculation may not be used for
the addressing of an element of basic type (e.g.
bar[3], for the above example, is a perfectly
legal construction).

5) All references to items of ch a racter type (char
and unsigned char) that involve address offsets
have these offsets maintained in bytes (with the
exception of NAME nodes, which will be described
shortly) .

The result is that the second pass of the compiler may

assume any address construction involving a word-

oriented item will involve only word offsets, while

offsets for byte items are almost always in bytes.

The r eade r ma y be a s king why a ll offse ts involved

in byte address calculations must be ma intained in

byte s ? In the previous example dealing with the

structure, it appears that a more viable approach to

- 58 -

the calculation of the byte pointer i s to form the word

address, convert to a byte pointe r, then add the byte

offset left over. Clearly this approach woul d result

in the same address as the approach tak e n. There are

two problems with such an attack. First, the cost in

manipulating byte pointers, both in conv e rsion and

calculation, is enormous: this approach t ends to

increase the number of such c a lcul a tions. Second, the

compiler attempts to minimize the numb er of byte

pointer calculations by combining constants wh e rever

possible: by maintaining offsets in both words and

bytes in the same expression subtree, such

optimizations are greatly complicated. In g e ne ral, the

resulting code for byte point e r calcul a tions has been

found to be very good. This i s d ue ma inly to the

approach taken in handling addr ess offsets.

In the previous discussion, it was a ssumed that

the character item the compiler was a ttempting to

address was in an arbitrary memory location. In many

instances this is not the case, and the compiler may

use an alternate form of addressing which is far

c he a pe r t han crea ting a byte pointer . For t hose items

located in the third byte of a word, the character may

be retrieved by supplying only the word addres s of the

word it is contained in. In addition, while arbitrary

- 59 -

bytes may only be brought to or from memory when byte

pointers are used, bytes addressable in this special

case may be used in limited arithmetic calculations

(add it ion and subtr act ion). As a resul t, the compil er

trys, whenever possible, to establish the feasability

of this word addressable format. Cases where bytes may

be retrieved in this manner include those bytes at

constant offsets within aggregate structures (both on

the stack and in "main" memory) . When such an

addressable byte is recognized, if possible, the

address offset is folded to form a NAME node. The

second pass understands that all NAME nodes of

character type are examples of this special addressing

form.

Further candidates for the above addressing

format are single characters allocated static storage.

However, some problems arise in performing address

calculations in this manner. The portable compiler has

a simple notion of the way bytes are laid out in a

machine word. One may specify only that bytes are

always placed left to right, or right to left. Since

the /6 is word addressable, the a ttachment of a label

to a memor y l oc ation (in the assembl e r) allocates a

wo rd o f storage, not a byte as the portable compiler

likes to believe. Consequently, the c omp il e r assumes

- 60 -

that a statically allocated character is a llocated a

memory cell (on the /6 a word) and placed in the first

byte of a word (on the /6 the left most one). Thus, if

one is to arbitrarily assume th a t statically a llocated

bytes are situated in the third byte (to aid in

addressing), inconsistencies may appear.

if the user attempts to inittalize

allocated character or take the addr e ss

For example,

a sta tically

of such a

variable (using the & oper a tor),

reflect the notion that the v alue is

first, rather th an th i rd , byte

the r e sul t will

loca ted in the

of the word.

Consequently, to optimize addressing of static

character items, some modifications (speci a l case s)

were necessary to bypass the compiler's id ea of byte

layout in statically allocated characters.

3. Sethi-Ullman Number Computations

The movement of the portable C compiler to a new

machine requires the creation of a number of machine

dependent modules which are hooked into the machine

independent portions of the compiler. Examples of

these modules include those used to hand le tree

conve r s ions, the transformations in processing type

generation of code for subroutine

switch statements, etc., and

expressions. In the process of

prologs , epilogs,

the compila tion of

compiling expr essions

- 61 -

one of the most important routines calculates Sethi-

Ullman numbers for parse trees. As described in .

chapter II, Seth i-Ullman numbers are intended to

reflect the minimal number of registers needed to

evaluate an expression. The numbers are calculated

when a tree is initially handed to the second pass of

the compiler (be it from an interme~iate file or

directly), and after every transformation is performed

on the tree (e.g. after a code sequence has been

emitted) Each node of an expression tree has a

Sethi-Ullman number stored in it to reflect the

relative difficulty of evaluating the tree rooted at

that node. This section will describe the algorithms

employed in the /6 compiler for calculating Sethi­

Ullman numbers. It should be noted that the problem of

cal c u 1 at in g " pe r f e c t" Sethi-Ullman numbers (i. e.

estimating the minimal number of registers required to

ev al ua te an expr ess ion tree) for any but the simplest

machines is NP-complete [3]. Thus, the algorithms found

in almost all versions of the portable compiler are

swamped in heuristics, and the creation of such

algorithms should be considered at best an art.

The Sethi-Ullman computations nor mally create a

numb e r for a node dependent on the numbe rs of each

descendent, and the operator of the nod e under

- 62 -

consideration.

op, <type>, su, .•.
left, <typel>, suI,
right, <typer>, sur,

That is, the calculation of ~~ i s de pe nde nt on £E , suI,

and sur. In ad d ition, in mos t cases, the type of 'e ach

node involved may corne into the calcul a tion. For a

leaf node, the values for suI and sur ar e a s sumed to be

zero. For machines with an orthogona l a rchi tecture,

computations may normally be grouped accord ing to

operator classes or by the ope rand type s. For instance,

for the PDP-II and VAX-II virtual ly a ll simpl e

arithmetic operations have id en t ic al add r e ssing mod e s

and allowable source and destina tion locations,

allowing computations to be id entic al. Howev e r, the /6

instruction set has numerous speci a l case restrictions

and supports a highly iregular collection of operand

addressing modes. Thus, the Sethi-Ullma n computa tions

for the /6 tend to be extermely complex, with almost

every operator having separate calculation rules.

Further, the many restrictions on register usage often

requires computation for an operator be overes timated,

to guarantee the availability of a necessary r egister.

For instance, all operations involving longs must have

the 0 register available for use. If the Sethi -Ullman

- 63 -

number computed for that node were to specify it needed

only two registers (the size of the D register), the

code generation scheme could conceivably be l e ft with

the I and J register which would s a tisfy its

requirements, but prevent it from g ene rating code.

Therefore, in many instances, ope rations involving a

long must

registers

specify

to insur e

a requirem ent

that the D

for all of the

r egiste r wil l be

available for allocation. Thi s a iff i culty in r e s e rving

registers required the handling of flo at ing point

operations, and operations involving longs to tr eat the

16 almost as if it were a single accumulato r machine .

All directly address abl e items con s t ants,

static memory locations, indirect refe r enc e s, etc. -­

are assigned a value of zero. I nd irection ope rators

(U*) normally require one extra register to hold the

address. Certain indirect references, such a s those

requiring character extractions, will always require a

register. Assignment operations are manipulated to

insure that the right hand side is placed in a register

when the expression is not addressable. Care must be

taken in handling assignmen t sta tements to ma ke sure

that the right hand side isn't placed in a register

before the right hana side is addressable . For example,

the construct

- 64 -

*f(a) = b

if handled as previously specified, would r e sult in the

right hand side being placed in a regist e r be fore the

function call was made, but function calls r equire all

the registers to insure all scratch r eg iste rs will be

free.

Logical operations (Le. compari s ons) ha ve the

most compact calculation rules of any cl as s of C

operators. Depending on the size of the object

involved in the comparison, the follow i ng c a lcul a tion

is used:

su = min (max (suI, sur+size),
max (sur, sul+size))

The size is the number of r egis te rs requ i red to hold an

item to be compared: 1 for an integer or character, 2

for a long or float. The calculation rule r e flects an

attempt to evaluate the more difficult side first.

Storage conversion operations are spe cial-cased

to recognize certain of the more difficult

possibilit ies. The conver s i on of a poi n t e r to an

integer type is a no-operation, with the except ion of a

byte pointer. This conversion is very ex pensive,

requiring all but one of the scratch registers . Since

- 65 -

the resource requirements are so great, and certain

specific registers are needed to perform the operation

(the A and E registers), an SCONV node involving a byte

pointer is reserved all the registers. The handling of

conversions to a long format requires the D register.

However, as described at the beginning of this section,

the allocation of the 0 register proved to be a

difficult problem, so storage conversions to a long

also require all the registers.

Assignment operators (i.e. +=, -=, etc.) are very

difficult to evaluate, beca~se the /6 has virtually no

instruction support for them. Consequently, the machin~

dependent rewriting routines almost always transform

these operations to their equivalen t form,

el op= e2 =) el = el op e2

after any side effects in the left hand side have been

"weeded out". Thus, the calculations for assignment

operators are used mainly in guiding Sethi-Ullman

calculations higher up in the tree. In general, the

handling of these operators is broken into two classes:

those involving single word items, and all others. The

la t t e r c ategory encompa sse s character item s and double

word items (longs and floats). If the assignment

operator involves word-addressable items, the

- 66 -

calculation is identical to a simple assignment

operation (=). This allows the 16 instructions to add

a register to memory, add a constant to memory, etc. to

be used without penalty. Those operations that will

require rewriting, as discussed previously, will be

transformed and recalculated to reflect the true nature

of the work which must be performed. All other cases

fall into the difficult category tha t must be handled

very carefully, and thus are specified to require all

registers. One should note tha t the condition implied

by the latter decision, while appearing to be costly,

exists for only a "short period of time", since the

operator is almost immed iately rewritten. Thus, the

difficulty in performing the operation is merely for

the benefit of calculation at a higher level in the

expression tree.

The handling of normal arithme tic operations (+,

I, %, * etc.) involves the most complexity since

the quality of code generated for these operators has a

heavy impact on the quality of code generated for many

other operators (due to the way assignment operators

are handled). The operations *, I, %, «, and » all

r e quire the A and E regi ste r , D r egi ster, or just the A

register . After a number of months of tryi ng various

heuristics to optimize usage for these opera t i ons, it

- 67 -

was decided to reserve all of the registers when

hand ling the se operators. This causes complex

expressions involving one or more of the operators to

invariably require a s~ore into memory, but guarantees

that compilation of expressions involving the operators

will be successful (i.e. won't result in an inability

to allocate the needed register). The d ifficulty in

approximating register needs for these operators

indicates that expressions involv i ng the operators are

good targets for future optimization (see chapter VI).

The remaining operators, + and require close

scrutiny of the types involved. This is because, for

instance, the addition of two integers requires far

less wc:k than the addition of an integer to a byte

pointer. A myriad of heuristics are involved in

computing estimates for operations involving byte

pointers; the actual code is the definitive source for

an exact description of what goes on. The overall

approach to handling these operators, when word-

addressable items are involved, closely resembles that

used for logical operations. The rule applied to

expressions where the left hand operand is directly

address able is

su = max (size+size,
min (max (suI, size+sur) ,

max (sur, size+sul)))

- 68 -

This calculation, as for logical operators, reflects an

intent to place the more difficult expression in a

register first, then the easier. The possibility of

both operands having to be placed in registers is

reflected in size+size. For expressions whose right

hand operand is addressable, the simple estimate

su = max (size, suI)

suffices. This usually causes th e left hand

(unaddressable) side to be plac ed in a register before

the operation takes place.

The remaining calculations of interest handle

PACONV and PSCONV nodes. The work here involves

checking to see wh~ther the oper ands will require a

full calculation, or whether an optimization may be

performed (see chapter VI). If th e offset operand is a

constant, the code emitted will not require all the

registers to perform the calculation, so fewer

registers are needed, and fewer stores into memory will

be generated.

The rules described comprise the majority of the

Se th i -U llman calculation procedure . However, certain

side effects may also take place a s a result of

calculations. An attempt is made to place the tree in

- 69 -

a canonical form, to insure consistent tree shapes may

be expected in the rewriting routines. These canonical

shapes normally are meaningful only when dealing with

commutative operators, such as +. The rules employed

in canonicalizing the trees are:

if a float and double are involved, place the
double on the right

if a character and a word item are involved,
place the character on the left

if a long and something other than a long are
involved, place the long on the right

if two longs are involved, place the more complex
one on the right

if the right hand side has a larger Sethi-Ullman
number than the right, swap the operands

The code should be consulted for further elaboration on

this simplified description. The result of these

transformations is to place the more difficult operand

on the left of an operator. Rewriting routines may

then assume this without checking the Sethi-Ullman

numbers. (One shold note that once a quantity has been

placed in a register it is never moved about in the

tree by a canonicalizing transformation; this avoids

destructive interference between the Sethi-Ullman

computations and the machine dependent rewriting

rules.)

- 70 -

4 . Register Allocation Strategies

The register allocation str a tegy in t he portable

compiler is divided into two sect i ons - - a machine

independent portion and a

The machine independent

machine

port ion

depend ent

of the

por t ion.

str ateg y

involves keeping track of those r egisters which are

busy, allocating registers within a certa in class, and

other bookkeeping-type chores. The machine dependent

portion allows a designer to spec i fy, in a more exact

manner, register needs or pr e ferences. Each node in an

expression tree has a member, ra Il , which is used by

the machine dependent allocation strategy to indicate

if a specific register is needed or pr e ferr ed in the

calculation of the expression rooted a t that node.

Thus, if an expression must be calculated into, say,

the A register, the designer may communicate this need

to the machine indep(:ndent allocation routines by

placing the code for the A register in raIl and or-ing

in a flag that specifies the result of the calculation

must be placed there (a MUSTOO flag). When code is

generated for the tree rooted at the node, the machine

independent routine which allocates regi s ter s will take

this information into account. If the re sult of

compiling the expression is not the required register,

a transfer will automatically be generated to satisfy

- 71 -

the MUSTDO condition. Should this t r ansfer fa i l due to

the register being busy, the compi ler will abort. The

specification of a register preference a llows the

designer to "steer" expression calculations away from

needed registers, or allow possible optim i zat ions to

take place (e.g. keeping things in the A r egi ste r on

the /6 for an &, I, or operation). This section will

describe the strategies invol ved in ha nd ling the

machine dependent portion of the registe r al loc a tion

scheme. As in the Se thi-Ul l man com puta tions,

algorithms provide~ here are tota lly heuristic, driv en

by an attempt to minimize the cost of compiling each

expression.

The A and E registers, alte rnatively the D

reg ister , have al ready been mentioned as ma jor

bottlenecks in code generation. Consequently, a large

portion of the register allocation strategy is involved

in steering operands away from these registers. For

instance, calculation of the expression ~+~, where a is

a character pointer and b is a byte offset, may best be

done by placi ng ~ i n t he A regi s ter a nd b in the I or J

register before performing the actual c a lculation.

Should b end up in the A or E register, it wo uld have

to be moved before ~ could be placed in the A register

and manipulated (shifted and divided). Hence, the

- 72 -

register allocation routine tries to steer ~ away from

the A register, though it is not always possible

(suppose ~ were actually !1l, then the value returned

from the function call would necessarily reside in the

A register). Further work involves the requirements of

the emb and rbm instructions. These instructions, for

extracting and replacing bytes in memory, respectively,

require one of their operands, the byte pointer, be

placed in the J and I registers (J for an ~mb, I for an

rbm) •

Requirements of floating point operations are

fairly simple, because of the simple structure of the

floating point unit. Division requires that the left

side be placed in the X register, while the right

resides in the 0 register. Negation (U-) operations

act on values only in the X register. All other

requirements are handled in the code tables by explicit

cases that perform register interchanges when the

operands are incorrectly situated.

Function calls, where the function is not

directly addressable (i.e. a pointer to a function is

involved) , must have the address placed in an index

register. Arbitrarily, the I register was selected.

- 73 -

are

Exclusive-or, bit-or, bit- and, and multiplication

most efficiently performed when one of the operands

is placed in the A register. Therefore, both operands

of these operators show f a pre erence to be placed

there .

Division and remaindering must have the left

operand in the A register and the right not in either

the A or E registers. Thus, the left operand is

MUSTDO'd into the A register and the right into the I

register. Most of the time the right operand will not

have to be placed in a register, but in case it

requires evaluation prior to the right hand side (a

function call, for instance), this requirement will

keep the A and E registers free for allocation.

Variable left and right shifts cause some

problems on the /6 because the instruction set supports

only shifts of a constant number of bits. To handle

this weakness and insure reentrancy, tables of shift

instructions are available in the C run-time library.

A variable shift, then, performs an "execute memory",

exm instruction, after placing the value to be shifted

in the A or D register. To execute the correct shift

instruction out of the tables, the amount to be shifted

must be placed in an index register and then used to

index into the shift tables. Thus, register allocation

- 74 -

requires the left operand be placed in the A or D

register (MUSTDO'd in) and the right operand plac ed in

an index register.

Assignments involving characters require tha t the

character to be manipulated be place~ in the B register

and that the pointer to the memory location resid ~ in

the I register. Since the B register is never

allocated by the allocation routines, the A register is

requested instead. To steer intermediate calculations

away from the I register, assignment operators force

the left hand side's address to always be placed in the

I register and the right hand sid e's address in the J

register. The specification of I and J registers for

addresses involved in character pointer manipul a tions

often results in extraneous register transfers. This is

because the decision to place an address in the I or J

register is made at the assignment operator level in an

expression tree, and forcing this decision on lower

level calculations in the same tree often results in

previous allocation decisions being reversed.

Addition, subtraction, PACONV, and PSCONV

ope rations are primar il y concer ned with steering

express ions into the most cost efficient configuration.

The handling of character pointers i s best done by

placing the byte pointer (word address f o r PACONV and

- 75 -

PSCONV nodes) in an index register and the byte offset

in the A register. If one 0 f r more 0 the operands

fails to be situated correctly special cases in the

code tables will have to gener ate register transfers or

interchanges to set the operands up correctly before a

calculation is performed. Usually, something of this

sort occurs only when an operand is tied to a register

by a previous register allocation (for instance a

function call) •

Storage and pointer conversions require the left

operand be placed in the A or D register when a byte

pointer or long is involved. These are MUSTDO

situations.

The overall scheme of register allocations can

best be seen in the handling of the assig nment

operators. The compiler attempts to maintain address

type operands lying to the left of an assignment

operator in the I register and those lying on the right

in the J register. Much of the reasoning behind this

scheme is due to the handling of characters, but it

also is applicable to word oriented items (in forming

OREG nodes by indexing off the I or J regi sters).

Register transfers or stores into a compiler-ge nerated

temporary may arise when expressions cross the

"borders" imposed by the assignment operators. This may

- 76 -

be seen in expressions like

*(p = q + n) -= a * b

Where nested assignment statements are involved,

incorrect placement of the operands is often observed.

The resultant register transfers are very difficult to

optimize out, since they reflect a belief, on the part

of the compiler, that an expression should go in a

specific register, and it doesn't recognize its error

until deep into the calculation. Thus, to eliminate

the register transfer, it is usually required to rework

many previous calculations to insure the final result

will reside in the correct register, thus eliminating

the register transfer.

5. Machine Dependent Rewriting Rules

Whenever a search of the code tables for a match

of the current expression tree fails, the tree is

handed to a machine dependent rewriting routine. The

routine is expected to manipulate the tree in such a

way that another search of the code tables may result

in a match. Manipulations usually take the form of

evaluating a portion of the tree into a register or

compiler

of these

temporary, though it is not required that one

actions take place. Further, the

- 77 -

transformation on the t d ' ree ne e n t be of a "global"

nature. Rather, only a small portion of the tree may

be manipulated. Should further rewriting be r equired,

the same routine, or a similar one may be call ed again.

The process of rewriting tre e s involves close

cooperation between all the rewriting rules a s we ll as

cooperation with the Sethi-Ullman calculation routine

and the register allocation strategy. Since the

rewriting of trees may not b e suc c e ssful, t he compiler

maintains a count of the number of recursive calls it

make s to the rewriting rules to avoid infinite

recursion.

The rewriting routines are divided acc?rding to

the class of operators on which they act. For

instance, routines must be supplied to rewrite binary

operators, assignment operators (both =, and op=

types), increment and decrement operators (++ and --),

structure assignment operations, etc. This section

will consider the work performed by the rewriting

routines used in the /6 compiler. The focus will be on

the general "attack" used in handling an expression

tree: each rewriting rout i ne will be considered

s eparately .

The routine offstar -- is called whe never an

indirection (U*) operator is to be rewritten. Offstar

- 78 -

tries to form an OREG node whenever possible. This may

be done if a tree of the form

U *, < type), •.•
+/-, <type>,

<expression1),
ICON, •••.

is present. The subtree labeled eXE£e ssionl must be

placed in an index register to allow ind e xing to be

used with the constant offset. The types involved are

important, as a character pointer may not be used in an

indexed addressing format. Howev er, should a PACONV or

PSCONV node lie under the U* operator, indexing is

possible if a constant offset is present and the offset

is "well formed" (the constant must be a number, say n,

with n+1 mod 3 = 0). If it is not possible to form an

OREG node (i.e. no +, PACONV, or PSCONV is a

descendent), the subtree is forced into a reg ister to

allow a straight indirection to be performed.

The routine setasop is used to handle op=

constructs. In most instances, the /6 instruction set

is not equipped to efficiently handle these operators,

so rewriting transforms the tree to an equivalent form:

e1 op= e2 =) e1 = el op e2

after any side effects have been removed fr om the left

hand side. As one

effects is a nontrivial

recognize them relies

- 79 -

might expect,

chore. The

heavily on

recognizing side

scheme used to

the Sethi-Ullman

calculations. The routine assume s that a Se thi-Ullman

number greater than zero ind icate s some c alculation

must be performed on the left hand s ide . Co nseque ntly,

it tries to "evaluate out" any side effects before

transforming the tree. Unfortun a tely this is not

always possible. Consider the expression

*(p+3) op= f()

Should the left hand side be par t i a lly evalua ted into a

register before rewriting, the function calIon the

right may be executed with one or more scratch

registers occupied with temporary calculations. The

choice here is to hold off evaluating the left hand

side, causing

place it in a

it to be evaluated twice, or to try to

temporary memory location. The code

generator won't place the expression in memory on its

own, since it can't possibly have a Sethi-Ullman number

greater than the number of free registers (the

requirement to form a store operation), so setasop

would have to make a decision for itse lf . Since most

instances do not require a store, arbitraril y storing

everything would be very costly. However , the work

- 80 -

involved in optimizing store selection is also very

costly. Thus, the routine chooses the first approach

described: when a complex calculation is being

performed on the right hand side that might possibly be

a function call, the left hand side is not evaluated

until after the tree has been rewritten. This approach

leads to instances where poor code will be generated ,

but avoids adding a great deal of complexity to the

rewriting process.

The remainder of setasop deals with optimizing

those operations which may be performed with the add

register to memory and add operand to memory

instructions. To allow use of these instructions the

right hand side is scrutinized for constants,

registers, etc. If use of one of these instructions is

possible, setasop delays forcing full evaluation of the

right hand side, attempting instead to make the left

hand side addressable, in the hopes that one of the

instructions described may be applied.

Straight assignment operations are handled by the

routine setasg. This routine, and the routine to handle

binary operators, plays an important role in the

overall rewriting scheme since most ass ignment

operators are rewritten to form a binary operator and a

simple assignment. Therefore, this routine is fairly

- 81 -

complex. The /6 has no memory to memory transfer

instructions, so the right hand side of an a ssignment

operator must always be placed in a r egiste r (wi t h the

exception of an assignment of zero or -1). While

placing the right hand side in a register is the main

priority of the routine, it must be careful no t to tie

up a register needed for an add r ess calculation on the

left hand side. For instance, the expr ess i on

foo[a*b] .bar = c

will probably require the A, and possibly the E,

register to perform an address c a lculation for the

structure reference. Th e refor e , seta sg can not

immediately place the right hand side in a register.

Fortunately the Sethi-Ullman numbe rs may be used to

decide when the left hand side is complicated enough to

require an approach different th an simply placing the

right hand side in a register. The result is that the

left and right hand sides are scanned for indirection

operations and the like, with calculation priority

going to the one with highest Sethi-Ullman number.

This approach is clearly not infallible and has led to

a fe w c ase s where a partial evaluation o f one side has

resulted in the other being untenable (the compiler

reacts to such a situation by aborting) •

- 82 -

The other difficulty in hand ling assigment

operations stems from the poss ibility of cascaded

assignment operators, i.e.

a = b = c = d = = expression

In this case one must be careful not to move too

quickly to place the left hand side in a reg ister ,

because too many registers may be tied up in

calculating addresses for the memory locations

associated with ~, £, etc. Since the right hand side

will occupy at most 2 registers room must always be

left for its placement in a register. To avoid filling

up registers a check is always made on the right hand

side, to insure it requires no extra registers to be

made available before acquiring new registers for the

left hand side.

The final routine that will be considered is

setbin. Setbin handles rewriting of binary operators.

As mention previously, setbin plays a major role in

producing quality code because other rewriting rules

often introduce new binary operators.

Setbin must handle two classes of operations:

log ical and arithmetic. The handling of logical

t t a "compare memory to operators attempts 0 genera e

- 83 -

addressable "a little at a time". That is, the routine

tries to bounce back and forth between the operands,

evaluating each side piece by piece, until eventually

both are addressable. When this occurs, one of the two

is selected to be placed in a register, and a

comparison is performed with the other in memory. This

scheme can be very dangerous, since the partial

evaluation of the component expressions, if done in the

wrong order, may result in both sides holding registers

which are needed for the completion of the calculation

of the other side (a deadlock of sorts). Consequently,

checks are present to recognize cases where it is clear

which side should be placed in a register first (e.g. a

function call must be performed before a

multiplication). In addition to the "rocking" scheme

described, setbin may also reverse the sense of a

comparison when one side is placed in a register. This

is beca use the code tables were only made aware of

comparisons where the left hand side h~s been placed in

a register. Thus, when the right hand side is the

first to make it into a register, setbin must reverse

. and flip the tree to allow the sense of the comparlso n ,

a match in the code tables.

The handling of arithmetic binary operator s is

guided mainly by the Sethi-Ullman numbers . As

- 84 -

described in section 3 of this chapter, a by product of

the Sethi-Ullman number calculations is that the left

hand operand almost always has a higher Sethi-Ullman

number than the right (i.e. it is "harder" to evaluate

than the right). Setbin uses this to good effect, by

usually working on the left hand side, going to the

right only if the left hand side is addressable. This

work is complicated by longs, since the routine assumes

it can, in the worst case, place both operands in

registers. Longs may be placed only in the D register,

so simultaneous placement of long operands in registers

is not feasible; setbin must handle this case

specially.

6. Machine Independent Modules

The compiler, as distributed with release 7 of

UNIX, had two "bugs" in it. One, more a machine

dependency than a bug, involved the lexical scanner.

Within the routine that hand led recognition and

conversion of numeric cons tants, a PDP-II depe ndency

had crept in. The C language specifies that those

fl't l'n a single wo rd are constants too large to

automatically typed long. In the original routi ne, the

test per formed to check overflOW was based on a

constant fitting in a 16-bit number.

resulted in the machine dependency being

A trivi al fix

removed from

- 85 -

this supposed machine independent module.

A second bug was more serious in nature. The

machine independent routine which handles the building

of expression trees performs constant collapsing

whenever both operands of the expression are suitably

formed. However, in collapsing the tree the rou'tine

failed to correctly coerce type s. This resulted in

expressions such as lL+l being turned into (integer)2.

The fix for this problem required a fair amount of code

to be added. The problem appears to be basic to all

versions of the compiler, since it was present in both

PDP-ll and VAX-ll/780 versions of the portable

compiler.

7. The 64K Word Boundary

As discussed in chapter III, the only way for a

program to address memory abo ve 64K words is via an

indirect reference through a memory location which has

bit 20 set (a lac in the /6 terminology). Since this

the has a major impact on the code generation scheme ,

current version of the compiler supports only programs

less than or equal to 64K words in total size. Because

this appears to be a detraction from the compiler, a

b h ' d the restriction discussion of the reasoning e ln

seems in order.

- 86 -

Since a lac is requl"red to a ccess memory, this

implies that code can not be generated which performs

any indirect references through user defined pointers

stored in memory. That is, if one considers the

construct *p in C, in order to insure the memory cell

pointed to by E is addressable, the contents of E must

first be placed in an index register, then an indirect

reference must be made through a lac. For programs

restricted to at most 64K words this is not required.

Indirect references through a memory location of any

type allow addressing memory in the lower 64K words of

the address space, so the retrieval of *p is possible

by an indirect reference through the memory location

where E is stored. In terms of /6 assembly language the

two code sequences that would be required to retrieve

*p, assuming E is a pointer to an integer, are

64K words

tma

256K words

t mj
tma

! p
!I,j

It i s not feasible to maintain all pointer s i n a lac

f h " would l"mply that addres s ar ithmetic, ormat, since t IS

comparisons, etc. would require special

To handle programs of maximum size,

necessary that the compiler always place

cal culations.

then , it is

user -defined

pointers in an index register before pe r f orming an

- 87 -

indirection. Having to place all pointers in an index

register has a significant impact on the code

generation scheme. Whereas before, certain expressions

might have been addressable without any registers, to

handle the expression under the restriction of a full

address space requires at least one register. Thus, to

handle a full 256K word address space the Sethi-Ullman

number computations must be reworked. This portion of

the compiler is by far the most difficult to construct

and tune; any major modifications such as this,

requires extensive work. In addition to adding

complexity to the code generation scheme, code size and

efficiency suffer when the address space is expanded.

For these reasons the decision to limit program size to

64K words appears to be sound.

CHAPTER VI

AN EVALUATION OF CODE EFFICIENCY

This chapter furnishes qua lita tiv e and

quantitative observations concerning the code gene rated

by the /6 C compiler. One must remember th a t the

current version of the compiler has had very little

tuning performed on it. In add ition, almost all C

compilers running on other mach i nes have a later pass

which performs peephole optimizations. Later sections

of this chapter contain observat i ons concerning the

impact a peephole optimizer will have on code qua lity.

The feasability of a mach i ne i ndepe ndent global

optimizer is also considered , something along the lines

of the optimizer built into the BLISS-II compiler [32].

When considering code qua lity produced by the

portable compiler, one mus t take i nto cons ide ration the

delicate b a l ance between generation of eff i cient code

and the reliability of the compiler. As men t i oned in

chapter II, the code generation scheme used by the

compiler is very simple and takes great care t o insure

the compiler is consistent. When squeezing eff icient

code out of such a scheme, one must be careful not to

cause the compiler to lose the ability to generate code

- 88 -

- 89 -

for expressions it was previously able to handle. The

tuning of the Sethi-Ullman computation routine tends to

have a major impact both on code quality and compiler

reliability. Thoughtless alterations to this routine to

generate better code for a class of expressions may

cause the resource calculations for related expressions

to be underestimat~d.

Finally, since the co~piler views ind ividual

expressions as disjoint objects, the generation of code

is inherently limited to optimization within a single

expression. The notion of cross-statement

optimizations, or even cross expression optimizations,

are out of the realm of the basic code generation

scheme. Consequently, when vi ewing the qu ality of code

generated by the portable compiler, one must localize

it to individual expressions. At this level, the most

notable item is the number of unnecessary stores that

are generated.

1. Overview

At the highest level, the code gene rated by the

compiler leaves a lot to be desired. This i s d ue almost

encountered with redundant entirely to the problems

loads and stores that appear when indiv i dual code

~ However, with r espect to sequences are juxtapose~ .

- 90 -

individual expression trees, the code appears to be

very good. This opinion is based on nearly 6 months of

viewing assembly code generated by the compiler for the

UNIX/24V operating system and its utilities.

The manipulation of mUltiple characters appears

to be the most difficult area for the compiler to

handle. This is true because nearly all character

arithmetic must be perform~d in registers, and there is

normally a great deal of pressure placed on the

compiler to simultaneously stuff multiple characters in

registers. Unfortunately, the complexity of this

problem tends to overwhelm the compiler's simple-minded

notion of the 16 architecture. The result is that

stock code sequences must be used to insure multiple

characters are placed in registers. When this is

combined with the bottleneck imposed by the I and J

registers for operations dealing with byte pointers,

d tends to be Of a "worst case" the code generate

variety. For example, the construct

char *p, *qi

while (*p++ 1= *q++)

is very common in C programs. The code the compiler

generate, assuming the characte r pointers
will normally

- 91 -

are statically allocated, is

bbj . +1
imj 1_p

emb 10
esb

bbj • +1
imj ! q

tae
emb !0
esb
iae

cae
bnz Lnnn

The dotted lines serve to separate individual code

sequences generated. Th e code created for the

expression is fairly good. Th e d ifficult task of

getting both characters into registers is handlej

nicely by the register interchange. With the exception

of the interchange near the bottom, this code is nearly

optimal when only local information is taken into

account. Clearly, the looping nature of the construct

would warrant the pointer E being maintained in a

register througout the loop. However, enhanced register

allocation strategies such as this are not possible

within the scheme used by the portable compile r.

- 92 -

A more difficult situatl"on f or the compiler is an

assignment operator dealing with characters. Consider

char *p, c;

*p++ 1= Ci

the resultant code would be

bbi • +1
imi !_p

tij
emb !0
esb

tae
tmb ! c
esb
iae

oea

rbm ! 0

Once again, this code is fairly good , aside from the

register shuffling that must inevitably occur when two

characters are brought from memory. The most notable

step in the evaluation of the expression is that the

pointer E was brought from memory only once. and the ++

operation was performed early on, t hus minimizing the

numbe r of memory-register transfers that had to take

place. With more context availabl e t o the code

generation scheme it is possible to expect the code

- 93 -

might be improved to the following.

tmi ! P
bbi .+1
imi ! p
tij -
emb ! 13
tae
tmb ! c
oea
rbm ! 0

To generate code of this q~ality, the cod e gene rator

would have to know that the result of the bitwise-or

was to be used for assignment to a character data type.

This would allow deletion of the conversions from 8-bit

quantities to 24-bit quantities (the es~ instructions) •

Rearranging the values in the A and E registers would

be not be necessary if the cod e generator knew their

values would be discarded after the bitwise-or was

performed.

2. Optimization of Address Calculations

The original scheme for generation of code

optimized word address calculations fairly well.

However, the handling of addresses for character items

left quite a bit to be desired. To improve the code

that was generated f or byte manipulations,

mod if i c atio ns were made to the intermediate language;

two ne w node types were added, specifically for

- 94 -

character pointer manipulations. These nodes, new
PACONV and PSCONV, are formed by squashing trees as
shown in Figure VI-I. This collapsing process must

perform the appropriate coersions to word quantities

wher e need ed • The form of the node corresponds to

converting the expression

(char *)word address+byte offset

to a single operation.

The result of adding the se new nodes is a

compaction in the height of a tree which is passed to

the code generator. With more information stored in a

single node, code sequences may be tailored to handle

operations in a more efficient manner. The

introduction of these new nodes had a major impact on

the complexity of the code generator; a number of

machine independent modules had to be modified to be

aware of their existence. However, the ben e fits, in

terms of code quality, far outweighed the difficulties

encountered in aug~enting the intermediate language.

3. Machine Independent Local optimizations

Th e compiler performs a small number of machine

indepe ndent local optimizations on t he expression trees

in the first pass. These optimi za t ions primarily

PCONV, PTR char
+, -PTR char

<base-address>
<word offset>

PCONV, PTR char
, -PTR char

<base-address>
<word offset>

+, PTR char
PCONV, PTR char

<subtree>
<byte offset>

PTR char
PCONV, . PTR char

<subtree>
<byte offset>

- 95 -

PACONV, PTR char
<base-address>

=> <byte offset>

PSCONV, PTR char
=> <base-address>

<byte offset>

PACONV, PTR char
<subtree>

~> <byte offset>

PSCONV, PTR char
<subtree>

=> <byte offset>

Figure VI-I. Definition of PACONV and PSCONV Nodes
for the Intermediate Language

- 96 -

involve constant folding and variations on this theme.

Some of the optimizations which were assumed to be

machine independent turned out not to be applicable to

the /6, while certain optimizations, inspired by the

addition of the PACONV and PSCONV nodes, were added

especially for the /6. Rather than give elaborate

detail of the optimizations performed, a tree

transformation will be shown, followed by an

explanation of any fine points.

U*, <type>, .•• =) NAME, < type>, .••
ICON, PTR <type),

This sort of cOllapsing reflects the addressability of

arbitrary memory locations on a machine. For the /6,

word this optimization may be performed for any

addressable item, but only in special instances for

character items.

U&, =) ICON, PTR (type),
NAME, (type),

This optimization is t he inverse t o t be previous

tran sformation .

*, < type>, •.•
<expression>,
ICON, n, •••

- 97 -

=>
< <, < type>, •..

<expression>,
ICON, log2 n,

This standard transformation requires the constant n be

a power of two, as is easily verified by the condition,

n >= 0 and n&(n-l) = 0 =>'s a power of 2

This transformation also checks for mUltiplication by

one.

+1-1* 1\, ...
<expression>,
ICON, 0, •••

Operations with zero are tra nsformed or eliminated.

Since these transformations ar e applied only to integer

expressions, one needn't worry about eliminating

operations with 0 that mig ht be performed for their

side effects, e.g. normalization of a floating point

number by adding 0.0.

I, < type), •••
<e xpr ession),
I CON, 1, • ••

<expressi on>,
=)

Division by the constant one is removed.

- 98 -

The previous optimizations are very simple. The
remaining optimizations involve tree

tr ansformations to
combine constants.

+,
,

<expression),
ICON, n1, •.•

ICON, n2, ..•

This corresponds to

=)

+ , •••
<expression),
ICON, n2-nl,

(e1-e2) + e3 =) e1 + (e3- e 2)

when e2 and e3 are constants.

+, PTR char, •.•
PSCONV, PTR char,

<word add ress), .•.
ICON, n1 (BYTES),

ICON, n2 (BYTES),

PSCONV, PTR char, .•.
<word ad d ress), .•.

=) ICON, n2-nl (BYTES),

This optimization is similar to the previous one,

except it deals with collapsing address calculations

for character pointers. The optimization corresponds

to

«char *) (el-e2) + e3) =) (char *) (el - (e2 -e3»

For the /6, this optimization and others like it are

very powerful. The result of this transformation may be

- 99 -

a halving of the code generated for the tree. Note

that there is no need to check that the constants

involved are byte quantities because the PSCONV node

always has a byte offset as its right son, and, since

the PSCONV node appears below the addition, one knows

the type must be "PTR char." A similar transformation

is performed for trees with PACONV nodes.

PACONV, PTR char, •.•
+/-, <type>, •.•

<expression>,
ICON, nl,

ICON, n2, ...

PACONV, PTR char, ...
<expression>, ..•

=) ICON,? (BYTES), ...

This is the first optimization in which the offset-type

of a constant must be checked. Since a PACONV node is

formed by collapsing a PCONV node into a PLUS node, the

operations performed underneath it may be perf0rmed

with word offsets (e.g. in structures). Hence, when

calculating the new ICON node one must coerce byte and

word quantities. without the offset-type attribute

added, this would not be possible. A similar

transformation is performed for PSCONV nodes.

<op>, •••
<op> ,

<expression), •• •
ICON, n1, •• •

ICON , n2, .• •

<op), . . .
<exp r es sion),

=) ICON , n1 <op> n2,

- 100 -

This transformation may be carried out only for

commutative operators.

4. Machine Dependent Local Optimizations

While the previous section described

optimizations that would normally be carried out for

any machine at the intermediate language level (by

transformations to expression trees), this section

concerns itself with varLous optimizations performed

just before generating code. As such, these

optimizations should properly be considered machine

dependent.

4.1. Switch Statements

The code generated for switch statements attempts

to optimize the operation based on the range of case

values. Two different types of switch statements are

generated: a direct switch through a table of

addresses, and a test and branch sequence. It would be

simple to add further variations such as hashed

switches, looped table lookup, etc.

4.2. Parameter Passing

A by-product of the stack design is t ha t a free

mal'ntal'ned at the top of t he stack. location is always

This implies that function calls with a sing Ie

- 101 -

parameter (of one word) may be performed without a

"push" of the stack pOl"nter. h" T lS was taken from the

Ritchie compiler for the PDP-II [24].

4 . 3. Structure Assignments and Structure Parameters

Depending on the size of the structure to be

moved, either a series of moves is emitted, or a loop

is built. Currently, all structures of six words or

less are moved without a loop. In certa in cases the

building of a loop requires three index registers (to

use a bwk, bwi, or bwi instr uc t ion). When th i sis

necessary, the K register is saved in the bit

processor's V register, and reused for the loop.

4.4. Byte Pointer Additions and Subtractions

Checks are performed to de termine whether the

byte offset involved in the calcula t ion is a constant.

In this case, two possibilities arise. If the constant

is a multiple of three, the operation may be performed

without placing the pointer in a register. Otherwise,

the operation may be performed by an add ition and a

(using bb i or b __ b_j seri es o f byte pointer increments

instructions) . Should the offset be unk nown at

" " "full" calculation must be per formed. complle-tlme, a

- 102 -

4.5. PACONV and PSCONV Calculations

These opti~izations are similar to those used for

byte pointer arithmetic. In the case of PACONV and

PSCONV, nodes the word address must always be placed in

a register. However, if the offset is a constant, the

operation may be performed using an addition ' and

sequence of byte pointer increments.

4.6. Special Instructions'

The code tables special case certain expressions

to allow use of many low cost special purpose 16

instructions. For example, the assignme nt of the

constants -1 and o may pe rformed by a single

instruction. The placement of constants in a register

may often be performed by instructions using an

immediate addressing mode, e.g. toi, tna, etc.

instructions.

5. Statistics

Up to this point, the claims made co ncerning the

compiler ' s effectiveness have been o f a qualitative

nature.

have been

To substantiate them, a number of s t atistics

collected on the performance of the compiler.

. lt t pinpoint weaknesses While it is somewhat difflcu 0

with simple
. h s program size and execution thlngs suc a

- 103 -

time (the latter being somewhat dependent on the

operating system, and the former being inconclusive

when compar ing widely differ ent arch i tec tur es), they

still merit some thought and explanation.

Figure VI-2 shows relative size, in words, of

certain programs found on the 16, PDP-II, and VAX-

11/780. The numbers for the VAX come from London and

Reiser [18] and represent the state of the VAX compiler

early in its development. The figures are fairly

misleading. While the compilers are based on the same

program, internally they are vastly different. The

fairest comparison is the C preprocessor, since it is

virtually identical at the source code level across all

machines; however, figures for the C preprocessor were

not available. Worjs were chosen for comparison

(ins tead 0 f bytes) since it tend s to even out the

differences in instruction sets and word sizes. One

should note that output for the PDP-II and VAX-Il/780

were produced using a peephole optimizer, while the 16

compiler is s ans optimize r. The editor s considered are

id ent i c a l for the PD P-II , VAX-II, and Inte r da ta 8/32.

The 16 editor, em, is a superset of the ed editor, and

as such would be expected to be somewhat l arger. The

d t ' d'ff l'n sl'ze of the second pass of the 16 ras IC 1 erence

C compiler can be attributed to the extra work that

- 104 -

must be carried out in handling the irregular

instruction set. That is, a large portion of the extra

size is due to the code tables. Since the /6 requires

many special cases in the code tables, their size grows

significantly. It has been estimated that a peephole

optimizer, equivalent to that found on the PDP-ll or

V~X-ll, may result in a 10-20% savings in code size.

However, even if this estimate is applied to the

figures collected, the text sizes presented for the /6

will still be larger that those for othe r machines.

This is due mainly to the other machines being byte

addressable. C is a heavily byte oriented language,

word addressable architectures such as the /6 make

implementation of C difficult and costly.

Figure VI-3 shows execution t i mes for the

compilers. The numbers for the /6 were collected on a

swapping system with three other large compilations in

progress and a compute-bound artificial intelligence

program running. The file pftn.c contains the symbol

table management routines for the first pass of the

·1 The secon~ table shows execution portable compl er. ~

times for other portions of the portable compiler.

h ·s poor since Once again the black box appr oac 1 ,

externa l factor s play an important r ol e in the numbers

co l l ected . Figure VI - 4 shows a more detai led timing of

- 105 -

I l ~ Size (words) I I Progr am I System , -, I
Tex t I Da ta I Bss '-Total­

t--------~~~~=rr- =~~~[j~~-,~~JrJ~,--~~_,-j7r~~~1
I I VAX-II I 9380 I 7373 I 5378 I 22631 I
IC ' passl I Interdata 8/32 115152 18048 I 6230 129430 I
I I Harris /6 122096 16102 110463 I 38661 I
t ~PDP-l1 I 10624 Ii3rrr-1--2623-~374-1
I I VAX-II I 5852 12273 I 1888 I 10013 I
IC, pass2 I Interdata 3/32 : 8913 12258 I 1890 113061 :

t ~ Harris /6 -+~~~~_§.~~~~-4~~§.~~96~-1
I I PDP-II I 5376 I 151 I 2195 I 7722 I

/ I VAX-II I 2888 I 53 I 1139 I 4080 I
I ed em Interdata 8/32. I 5471 11144 I 6735 I I ! _____ ! Harris /6 8549 341 2945 11835 i I PDP-II ~-2368-1-204-+--953--I-25251
I I VAX-II : 1216 I 119 I 484 : 1819 :

grep I Interdata 3/32 I 2987 : 290 : 484 I 3761 I L --.J Ha r r is /6 ~_.22. 61 ---l--~~~-_l-!.~~~_l-~~~~ I
I -- I PDP-II I 3552 I 384 I 1928 I 5864 I
I I VAX-II I 1721 I 285 I 1441 I 3447 I
lIS I In t e r d a t a 8/3 2 I 3915 I 480 I 1442 I 5837 I
I I Harris /6 I 4713 389 _2~~~ __ ~~~~_1 -------------------------------

Figure VI-2. Representative Program Sizes

- 106 -

selected compilations on the 16. The values were

calculated without the benefit of floating point

arithmetic, so roundoff errors are significant. The

figures for the assembler seem to indicate that an

inordinately large part of the compilation process is

spent here. The C preprocessor appears to be very

efficient, while the first and second passes of the

compiler are heavily compute-bound (a result of

extensive table searching and a heavy use of

recursion). Since the C preprocessor deals almost

entirely with characters, it appears the added effort

devoted to optimizing code for character manipulations

has paij off.

6. Further Optimization for the Portable Compiler

It has become very clear that the use of the

portable compiler as a production compiler is possible

only with some sort of optimizer. The major reason for

this statement is that the code generation scheme does

not consider possible cross-statement optimizations or

local common subexpression eliminations. As a result,

while isolated expressions are ~ormally . of a high

quality, the juxtaposition of code sequences often

results in poor code.

- 107 -

T Machine IExecutlooTTme (secon7.fs)1
, t--Rea-r~user-r-sys-I trn1T=rr7711-------·--..-------t--S'b:-'Cf-'---4"'.r~-_r_ .. I'r:r-1
I (Ri tchie Compiler) I I I I
IVAX-11/780 , 82 0 I I I
I • 64.0 10.5 (portable compiler) I I I I

I'PDP-11 /70 1153.0 I 114.6 I 16.6 I
(portable compiler I I I I

I for Interdata 8/32) I I I I
IHarris /6 1975.0 I 318.3 I 51..9 I
I (portable compiler I I I I
I without optimization) I I I I -----_._-
Figure VI-3a. Execution Times For the Compilation of the

Fi Ie pftn.c (cc -c -0 pftn .c)

I
Command 1 Execution-Tlme-(seconas)-I

I "I Rear""-T User I Sys I
tcc -c t'6'cal.c -1-Z~'--~--r-~17~-1
Icc -c opt im.c I 497.0 , 99.8 I 26.4 I
Icc -c scan .c I 324.0 I 158.4 I 33.2 I
Icc -c trees.c 1740.0 I 291. 6 I 48.3 I
Icc -c xdefs.c I 72.0 I 14.4 I 16.7 I
Icc -c address.c 1176.0 I 41.4 I 19.3 I
Icc -c aIlo.c , 314.0 I 107.8 I 27.5 I
Icc -c comm2.c I 94.0 I 27.1 I 20.0 I

Figure VI-3b. Execution Times For Selected Compilations By
the Harris /6 C Compiler

- 108 -

T Command i Phase h ExecutlonTlme---1
+===,..--=~~====:o==' Real I User I Sys I
I I cPP-'==rb~~'--r~g-1-~7g-1
, I c0 , 471.0 1104.4 '14.5 I
, c c - c c gram. c ,C 1 , 678 • 0 '167. 1 I 14. 8 ,
, , as '510.0' 109.8 '17 6 ,
, ,(total) '1828.0 1397.2 182:7 I
, I cPP : 61. 0---1 8.5 TI2:"g-'
Icc -c clocal.c ,c0 I 105.0 ,I 27.3 I 5.5 I
I ,c1 I 186.0 47.5 I 5.7 ,
I I as 132.0 I 30.9 I 7.2 ,
I I (total) J_~84.! '114.3 131.4 I
, I cPP . I 81. 0iT 0 -l-12 . 5-:
I I cel I 95.0 20.8 I 4.8
ICC -c code.c I c1 I 106.0 , 29.5 I 3.6 I
I I as ,159.0' 33.0 , 6.8 '
L- I (total_) -!-~~~~-J--~~.:.~-J 27.8 :
I , cPP , 64. 0 I 7.4 ,10T I
, ,c0 I 80.0 I 15.7 4.4
'CC -c comm1.c ,c1 I 86.0 17.7' 2.6 I
, ,as, 104.0 ' 19.6 ' 5.7 I
1 , (to ta 1) I 334 . 0 J-~.:..§.-l~~.:.!_l
I , cPP I 63. 0 , 6. 3 I 9. 8 I
I I c0 I 52. 0 I 8. 5 I 4 . 6 I
ICC -c local.c I c1 I 60.0 I 12.0 I 2.4 I
, I as I 63.0 I 11.2 I 4.9 I
1-- I (to tal) I 2 3 ~.:.!~ 38. 1 I 21. 9 I
, I c PP I 74 • 0 I 8 . 1 I 11. 3 I
I I c0 I 121.0 I 25.4 , 4.6 I
Icc -c optim.c I c1 I 201.0 I 44.1 I 4.8 I
I I as I 101.0 I 22.0 1 5.5 I
I I (total) I 497. 0 I 99.8.-J 26.4 I
I I cpp l 199. 0 I 15:-J 124-:0 I
I I c0 I 206.0 I 77.6 I 8.4 I
Icc -c pftn.c I c1 I 287.0 1 120 . 1 I 7.1 I
I I as I 283.0 1165.3 1 12 • 2 I
I I (total) I 975.0 I 318.3 1 51.9 ,
r- I cpp -r--i9:0-l 12.8 I 14.9 I
I I c0 - I 47.0 I 38.6 I 5.2 I
Icc -c scan.c , c1 I 124.0 I 56:5 I 5.9 I
I I as I 124 . 0 I 50 .4 , 7.0 I
I I (total) I 324 . 0 1158 .4 133.2 I

Figure VI-4. Detailed Execution Profile For the /6 C Compiler

- 109 -

To enhance the quality of code generated, there

are two alternatives. The t l' . mos appea lng is the

development of a machine independent global optimizer

that could be incorporated somewhere in the first pass,

or between the two present passes. For such an

optimizer to be implemented, the first pass of the

compiler would have to undergo major modifications.

The modifications would be nec essary to ma intain global

context for the expression' trees constructed during the

first pass of the compiler. In the current code

generation scheme, each expression is treated as a

separate entity. For a global flow analysis to be

performed on a program, expression trees would have to

be maintained within context, implying a significantly

different treatment of the expression tree as a data

structure. A second problem with the scheme used in

the portable compiler, assuming a global optimizer is

to be added, is that the first pass generates certain

portions of code. For a flow analysis to take place,

an entire "block" of context would have to be formed

and analyzed before any code cou l d be emitted. This

sort of treatment impl i e s that cons t r uc t s presently

pr oc e ssed in the first pass would have t o be handled in

a significantly different manner.

- 110 -

The second al ternat l' ve, ..:l th an'J e one presently

found in many C compilers, l' h s a separate peep ole

optimizer that processes the assembly code produced by

the compiler. For most appl i cations, this approach

appears to be the most vi able. As mentioned

previously, the portable compil e r can prod uce high

quality code for individual expr e ssions. The ins t ance s

where it breaks down are gener al ly due to a l ack of

context with which to make ~ecision s . Th i s lack of

context normally results in red undant l oads and stor e s

being generated. By performing a backwa rd s pass

through the assembly code to cal cu la t e regis t er usage

information, problems such as r ed undant opera tions may

be easily recognized (the VAX-ll/780 pee phol e optimizer

presently works this way). Even ""i thout a backwards

register pass through the code , an opt i mize r of this

sort may employ a fairly smal l "window" into the

assembly code to locate red un :'lancies of the sort

mentioned.

To choose between the alterna tiv es presented, one

must consider the appl ications for which the compiler

is to be used, as well as the target machine on which

the compiler is to be run. The cost of performing a

global flow analysis on a program can be very high,

both in compiling speed and in memory overhead . The

- III -

fact that context must be maintained to perform a

global flow analysis normally implies those expression

trees involved must be maintained "tied together" in

core until the en~ of a block is reached, at which time

the full analysis may be performed. For machines with

a small address space this is probably not feasible.

Further, the results of performing global analysis, as

opposed to a li~ited local analysis, quite often are

not significant. Since c was developed for

minicomputers, and presently is found mostly on

minicomputers, the problem of a limited address space

appears to have been a determining factor in the

selection of peephole optimizers. ~ similar analysis

tends to indicate that further optimization for the /6

minicomputer might best be done in a peephole fashion.

Previous chapters have alluded to possible candidates

for optimization on the /6 (see sections 3, 4, and 5 of

chapter V).

CHAPTER VIr

THE INTERACTION BETWEEN COMPILER, ASSEMBLER, AND LOADER

The C programming environment provided under

UNIX/24V is dependent on the facilities provided by the

utilities supporting the compiler -- in particular, the

assembler and loader. The major impact of the

assembler and loader is in the treatment of statically

allocated global data structures. This chapter will

discuss the interaction between the /6 C compiler and

its assembler and loader. The problems encountered in

developing a si ng Ie compiler for mUltiple

assembler/loader combinations will also be discussed.

1. An Overview of the Assembler and Loader

The UNIX/24V assembler, as, bears some

resemblance to the PDP-II UNIX assembler of the same

name. re total ly different However, the two programs a

internally. The assembler fo r t he /6 is totally

written in C a n1 use s t he parser generator ya~~, [8],

to ha ndle syntax analysis, while the PDP-I I assembler

is written in assembly language . The UNIX/24V

assembler is two passes, and generates only r el ocatable

the
output. That is, ' k the POP-II as sembler, unll e

- 112 -

- 113 -

output produced by as must b ______ e processed by the loader,

l~ , t o create an executable program. This departure

from the normal convention of producing executable

output when possible was due to the addressing

structure of the /6. S' 1 h 1mp y, t e necessity to support

literal constructions in the assembler would have

required a third pass to cre ate executable output.

Since the third pass would have simulated the loader's

actions, there was little reason to include this

ability in the assembler.

The UNIX/24V assembler syntax is very compatible

with the VULCAN assembler. The instruction mnemonics

remain the same, and all of the addressing ~odes may be

expressed identically. The major a~d itions to the

UNIX/24V assembler, which the compiler uses, are:

1) A uniform handling of numeric constants as
operands. The VULCAN assembler had a limited
notion of what values could be used as an
operand. In particular, negative numbers were
not allowed where the operand was intended to be
an unsigned (positive) value. This precluded the
use of negative numbers as offsets in forming an
i nd ex ed add r ess i ng mode. All va lues tha t
overflow an operand fi eld are t r unc a ted to fit by
as: an option on the assembler all ows t he user to
be noti fied of t h i s action.

2) A nicer handling of externally defined symbols.
In the VULCAN assembler all refer e nces to
external symbols requires the symbol be prefaced
by a "$" (to distinguish the symbol from a c<;>mmon
symbol). This is impractical for th: complIer,
as it is impossible to have t~ls sort of
information at the time the complIer outputs
symbolic names.

- 114 -

3) Temporary labels as introduced by Knuth [14].
Temporary labels were found most useful in
simplifying the logic needed to construct loops
for structure assignments and passing structures
as parameters.

4) A more complete set of storage allocation
directives. In particular, the ability to
initialize memory locations by bytes.

5) An additional literal construct to handle byte
address constants as operands.

As discussed in chapter IV, before the UNIX/24V

assembler was written, so~e of the deficiencies in the

VULCAN assembler were so difficult to work with that a

post-processing program was required to massage the

assembly language output. If one counts the time spent

in this program as time spent assembling, the assembly

process was more than halved by moving from the VULCAN

assembler to as. Further information concerning the

assembler may be found in (16].

The UNIX/24V loader was created by partially

rewriting the PDP-II UNIX loader, ld. As such, the

semantics of the loading process are nearly identical

to that found on the PDP- I !. For the most part, the

e f fort i nvo l ved in moving the loader wa s in converting

byt e -o r i e n ted portions to be word -ori en ted. For

th PDP-ll wa s done in a example , I/O buffering on e

byte-oriented which was most ineffi c ien t on the
manner

/6, converted to be performed in word
so it was

porting of the loader turned out to be
quantities. The

- 115 -

very easy; the loader virtually worked on the second
try, and required only about two or three days of

effort to get entirely working under UNIX/24V. It W3.S

originally expected tha the loader would require more

time to get working than the assembler (even though the

assembler was being written from scratch), but little

more than a week of real time was spent on it.

2. Incompatabilities With VULCAN

As designed and implemented, there are a few

noticeable incompatabilities between the programming

environment foun~ on VULCAN and that found under

UNIX/24V. The significance of these differences stems

from the porting path taken. Since many of the

programs moved to UNIX/24V carne from the PDP-II, via

VULCAN, considerable effort was expended to minimize

the amount of work necessary to move programs along

this path. The differences noted were due to the

VULCAN assembler and loader, and as such, resolving

them was not within the scope of this pr oj ect.

and

The first problem was that the VU LCAN as sembler

loat) er 1 b 1 symbol s to be a t most six allowed goa

characters long. Under the scheme chosen for C, all

d (" ") symbols defined in a C program have an un er sc or e

prepended to them to avoi-:3 name collisions with

- 116 -

assembly language routines.
As a result, the six

character limit really imposed a five character limit

on C variables. This applied to all C variables, not

just globally defined ones, since the compiler cannot

easily distinguish between local and global symbols.

Hence, all programs that were originally written . for

the PDP-II had to be checked for name conflicts within

the first five characters (the PDP-II assembler and
.

loader handle eight characte r symbols). In most cases,

the fix for conflicts involved using the C preprocessor

define statement to map the conflicting names into

distinct symbols. It was originally hoped that the

program lint, [10], would be he lpful in locating the

offending symbols, because it has an option to pe rform

checking of this sort. HOW21er, lint checks for

conflicts only within the first six characters because

its application was targeted for the Honeywell 6000

machine.

The second problem dealt with the notion of

common storage. VULCAN trea ts common a s a separate

segm ent d uri ng assembl y and linkage . Henc e , all

b 1 t d common must be identified as such. sym 0 s ype

Further , externally referenced symbols are in a

different segment than common, implying t hat a

reference to a symbol must specify if the symbol is

- 117 -

common or external. Under UNIX, common is formed at

linkage time by merging all external references to

symbols of the same size (though it may also be

explicitly declared). This allows a reference to an

external symbol that may be merged common to be

identical to a reference to a symbol which is

explicitly common. The latter scheme greatly

simplifies the compiler's task of creating symbol

references. Figure VII-1"shows program segment layout

under UNIX/24V and how common is handled to remain

compatible with this scheme.

The result of this second problem is that global

declarations in C programs must be carefully matched

across files. If a global variable is initialized at

compile time, the variable is placed in po~~ space

under VULCAN. To compatibly merge other files with

this declaration, all references to the variable in

other files must be as an external variable. A

globally defined variable whi ch is uninitialized is

placed i n c ommo n, requi r ing reference s and declarations

i n other files to be common also. Almost all programs

written for the PDP-11 fail to mainta in this

t ' allowl'ng the loa~er to merge common and conven lon, J

resolve the incompatibilities in declarations .

- 118 -

Explicit
Common

" ------+------1- -' - -"-
Bss "" '" '" " -- "

......

~
- _

-.:::::--Data

+-------+ - - ----- - ---- ----
Text

o
+-------+--- -----

Stack
I
V

Bss
Segment*

(Bss +
Merged

Common +
Explicit

Common)

Data
Segment

Text
Segment

(pure code)

Initialized
?t execu­
tion time
by UNIX

a.out file

* Paged file formats may result in a
being placed in the data segment.
when rounding the size of the data
page boundary.

portion of bss
Th is occur s
segment to a

Figure VII-I. Program Segment Layout Under UNIX/24V

- 119 -

Since the UNIX/24V assembler and loader maintain

conventions compatible with the PDP-ll assembler and

loader, the problems mentioned fail to arise in moving

programs directly to UNIX/24V. The maximum symbol

length supported by as was chosen to remain compatible

with the PDP-li (it could easily have been extended to

allow a nine character limit).

CHAPTER VIII

DEFICIENCIES AND FEATURES OF THE COMPILER

Since the compiler was moved to UNIX/24V, there

has been minimal opportunity to evaluate the

programming environment. Little, if any, software

development has been undertake n except in the area of

the operating system. Nevertheless, some fairly solid

opinions have been formed concerning the facilities

available, as compared to the other UNIX systems with

which the author has had exper i ence.

1. Compiling Efficiency

The most notable item in the software development

cycle on the /6, is that the compiling process is very

slow. This observation is colored somewhat by the

inefficiency of the system as a whole. The time spent

in compiling C programs is more than do ubled under

UNIX/24V. Table VI-3 shows statistics collected under

the swapping version of the system. Disec ting the

compilation process has shown that an abnormal

percentage of the time is spent assembling prog rams.

The two passes of the compiler and the preprocessor

appear to be fairly efficient, though some

- 120 -

- 121 -

consideration has been given to improving the

compiler's performance by merging the two passes into a

single pass.

Possible reasons for the poor performance of the

assembler are directly related to its design. The

focus behind the assembler devlopment was to get it

working as quickly as possible. This is not to imply

that efficiency was totally neglected, merely that it

was considered secondary in importance. The

assembler's two passes are driven uniformly by the

parser. The first pass involves the normal scanning

and parsing of the input file, while the second pass

eliminates rescanning the input file by reading tokens

from a binary intermediate file (created in the first

pass) • It appears that the decision to reparse the

file in the second pass was costly. The decision was

based on the handling of expressions within the

assembler. A common technique in assemblers is to

handle, as much as possible, expressions in the first

pass of the assembler, and backpatching undefined

expressions in a subsequent pass. This is possible if

the expressions are limited enough to allow a symbol

table entry to completely describe all partially

defined expressions (alternatively storing this

information in the intemediate/output fi Ie) •

- 122 -

Unfortunately, with the myriad of types, operators, and

most importantly, literals allowed in ~, such a scheme

is not feasible. The reason being that partial

expression evaluation, on which this sort of scheme

relies, requires that values for items such as literals

be known in the first pass. However, since literals

are placed at the end of the text segment, this

precludes definition of literal and data values until

the end of the first
.

pass. Consequently, to define

partial values for expressions in the first pass would

require a tree representation of the expression, most

likely in the symbol table. The cost of such a scheme

was believed higher than making values defined only in

the second pass via a second parsing.

In profiling the assembler, an inordinately large

portion of its execution time appears to be involved in

handling character input. The input routine is fairly

complex because the assembler suports the inclusion of

text files. This feature has not been heavily used,

a nd i t s removal may result in a speed impr ovement.

2 . User Feedback

1 l'ng attributes of the One of the most peas

portable compiler is the comprehensive error checking

performed. Unlike previous C compilers encountered,

- 123 -

the portable compiler produces excellent diagnostics in

the area of type incompatibilities. Two of the most

nonportable constructs are type punning (an implicit

type conversion carried out by an assignment) and

illegal pointer uses (e.g. using pointers to point to

members of a structure other than their own). The

portable compiler gives warnings in each of these

cases. It is interesting to note that the Ritchie

compiler, which has been firmly entrenched on the PDP-

11 for nearly as long as UNIX has been, does not

produce dignostics for equivalent constructs.

The "noise" created by the portable compiler has

proved instrumental in aiding in the porting of

programs. In many cases, the d i agnostics produced by

the C compiler led to the de tection of nonportable

constructs. The most notable example of this was the

Release 7 shell. The original shell compiled under the

Ritchie compiler without any diagnostics, while the

portable compiler produced hundr ed s of lines of

messages. A large number of these message s we re traced

bl construc ts in the implement ation of back to nonporta e

the shell.

- 124 -

3. Expand abi lity

The por table compiler has been found very easy to

work with i n integrating run-time and compile-time
facilities. The compiler currently supports the
standard UNIX run-time profiling, as well as an

e ntirely ne w feature designed to a id in debugging

programs on a system without a debugger.

Run- time procedure t racing has been added to

allow a use r to specify tha t proc ed ure invok a tions

shoul d be communicated to the user. Th i s fa c il i t y

allows fo r r un-time select i on of which functions to

trace. The output produced by the tr acing shows the

symbolic name of the function, as well as the

parameter s passed to the function. The run-time

selection of which functions to trace is communicated

via a s hel l variable stored in the environment. Once a

f ile ha s been compiled with a tracing option, a user

ma y man ipulate the tracing of functi ons conta ined in

the file by setting the shell variable TRACE ac cording

to the syntax

TRACE=[onloffll [all] I [all-]fl,f2, •.•

This allows a user to selectively trace a class of

functions, all but a class of functions, etc. The

- 125 -

facility has proven useful, particularly in the absence

of a debugger. Approxl'mately 15 l' lnes of code were

added to the compiler to support t ' raclng; the majority

of the work went into designing and building the run-

time support.

The one facility the compiler/assembler system

does not support is the simulation of floating point

arithmetic. This is due t? the architecture of the /6.

Most machines without an optional floating point unit

treat floating point instructions as illeg al

instructions. Under UNIX, this allows a program to

trap the instructions and interpret them.

Unfortunately, a /6 without an SAU treats floating

point instructions as no-operations. Thus, if floating

point simulation is to be performed some other approach

must be taken. The usual alternatives are: have a

non-floating point compiler which generates different

code than produced for float i ng-po i nt machines

(presumably function call to library routines) , or have

the assembler map the floating point instructions into

some set of illegal instructions which UNIX may catch

and return control to a simulation package. The latter

approach b the mos t appealing, since it is appears to e

expected that changing the compiler is a more difficult

proposition than altering the assembler.
Further, the

- 126 -

implementation in the assembler of the latter scheme

can be done trivially by insertl'ng , a speclal trap

before each floating-point instruction in the assembler

co-:3e tables. While the methods needed to handle the

lack of an SAU have been explored, nothing has been

implemented, since the effort required to write a

floating-point simulation package for the /6 is quite

large.

4. Current Status

The prog ramming env ironment developed for

UNIX/24V was created on a /6 cpu that lacked a floating

point unit. As noted above, the simulation of floating

point arithmetic is not currently supported.

Consequently, little, if any, real testing has been

performed on the floating point facilities provided by

C. The compiler generates floating point code:

however, a number of bugs are certain to be present.

The initial validation of the compiler on the PDP-ll/45

included numerous floating point test cases, but since

the compiler has been moved to UNIX/24V no further

testing has taken place.

The assembler was developed under similar

circumstances and lacks only one routine to be able to

support floating point constants (the .float dir ective,

- _127 -

see [16]) • All floating point instructions are

assembled correctly, and the syntax of floating point

constants is supported. Th t ' e rou lne that is missing,

realizeO, has the following calling sequence :

long
realize(whole, frac, exp)

long whole, fr ac;
int exp;

The routine is passed the thre e po r t ions of a floating

point number, the mantis sa (whole.frac) and the

exponent (exp), and is expected t o construct the binary

representation for the number, returning it as its

result (a do~ble type is the s ame size as a long in C

on the /6). This rout ine wa s left unimpl emented

because of the lack of an SAU on the test machine ; its

implementation is straightforward.

Other than the floating point deficiencies noted

above, the compiler and its supporti ng utilit i e s have

undergone extensive testing. All features of the C

programming language described in (13] are supported

and tested. In ad~ition, the compiler suppor ts many

features added to Release 7 of the C prog ramming

language. These features include st ructure

ass ig nmen ts , passing structures as paramete rs and

returning them from functions, enumerated type s (they

- 128 -

are packed as tightly as possible), extensive bit field

arithmetic and typing (i.e. a bit field may be defined

of "enumerated type" , for instance) , and the

initialization of structures containing bit fields.

The portable compiler, in general, supports a dialect

of C that is more advanced than that provided by the

Ritchie compiler. All syntactic constructs deemed

legal by the portable compiler are supported on the /6,

except for fields of character type.

The supporting utilities a re likewise fairly

advanced. The assembler, aside from the floating point

caveat noted previously, has been employed to write the

machine language assists for UNIX/24V, and the system

call library and portions of the standard I/O library.

Besides a flexible syntax, the assembler supports a

number of "frills" to support the future addition of a

macro preprocessor. The assembler supports constructs,

similar to those of the C preprocessor, to allow the

de fini t ion o f the c urr ent source line number and input

fi l e. Should a macro preprocessor be needed , these

feat ures will allow consistent diagno s t ics to be

generated by the assembler.
The link ed itor, Id,

supports the loading of normal assembler output files

(type 4 0 7), a s we 11 as lib r a r i e s
(handled by the ar

0b ° (managed by ranl ib). The
program, and random 11 rar1es ------

- 129 -

loader can cre a te fil e s i n a variety of formats (see

Figure VIII-I) • Al l other program development

utilities moved t o UN IX j24V (make, ar , ranli~, size,

nm, syms, etc.) function exactly (or in a logically

equivalent manne r) as specified in the UNIX Programmers

Manual, Rele as e 7 , [29]. Appendix A contains a list of

all utilities available under UNIXj24V.

- 130 -

Magic ilDe sco. pt ion ---nCOp-fIons'
\ 0 5 ==rp=ag=ed==- ov er-raY":==Normal=--=--nNIx-i_o=-.:z====,
: loverlay , except text and data have' ,

been rounded to page (IK words) , ,
, Iboundaries as in 413. Not' ,
, 'supported by UNIX/24V. , ,
~~iReIocatable 1oacfer-l.nput. PrOClucea-t - ,
,

'

by assembler not executable,' ,
except by early versions of' ,

I IUNIX/24V. Header sizes are exact' ,
______ ~_Z!S of text, data, and bss.' , f10 ,pa~ea reentrant. Text segment is t-n -z

, ,wrlte protected and shared. Text,
and data are rounded to a page

, 'boundary after bss is merged into'
: ldata segment. Maximum program size:
h ~ indicated in a.out,header.-._.-._.--h
f-12 ,NO stack. Program Slze speclfled ,-K0
, ,in a.out header does not include,
I Istack allocation. Unsupported by I
1 lUNIX/24V. ...,-1-_____ _
~13 ,Paged executable. Text segment 1S ,-z
I Iwritable. Size of text plus data,
, Isegment is rounded to a page,
, Iboundary after bss has . been merged,
I linto data segment. MaXlmum program,
~. Isize is indicated in a.out header~._~, ________ __
p.. 7TS45 IArchive or random llbrary. Loader,
, ,input. ~I __

Figure VIII-I. Loader File Formats for UNIX/24V

CHAPTER IX

C ON A WORD-ADDRESSABLE MACHINE

The /6 architecture has had a noticeable impact

on the C programming environment. That is, the

implications of a word addressable machine have had a

tendency to filter into the programs written on it.

The byte pointer representation used on the /6 implies

that conversions between word and byte pointers may

result in a loss of information. Hence, the common

practice, at least on the PDP-II, of using a character

pointer as the "common denom i nator of all types" is not

possible on the /6. In add i t ion, a lack of attention

to parameter type compatabilities across function calls

can cause problems. A more detailed discussion of

these problems follows.

1. Handling Data Types

With multiple representations ex i sting for

po inters and with one of these represent a t ions, the

byte pointer, being vastly different fr om normal

numeric representations,
a number of basic rules must

be established to understand the consequences of

conversion operations.
In addition, in C, numerous

- 131 -

- 132 -

storage conversion operations take place, and their

semantics must be understood.

All po inter conversion rules designed for the /6

are based on two underlying assumptions:

1) The val ue stored in a pointer to a word oriented
item is always assumed to contain the number of
~ords the item is offset from zero.

2) The v a l ue stored in a byte pointer contains the
number of bytes the item is offset from byte
zero.

If one use s these two basic assumpt ions, conversion

operations between pointers may be "consistently"

defined. Table IX-l summarizes the rules for

convers i on between pointers, as well as the storage

conversion r ules involving pointers. One should note

tha t while conversions are defined in all instances,

some conver sions may result in a loss of information.

Th e l oss o f information across certain conversions is

un avo i d able i n the case of the /6. Despite this

information problem, the design of conversion rules

must be as consistent as possib l e. In a byte

addressable ar chitec ture, where the r epresentations for

pointe r s and numeric items is identical ,

a r e usually t rivial (i.e. they do nothing) •

these rules

For the /6

the r ules defined appear to minimi ze
inconsistencies

while remaining logical.

- 133 -

To 1 Rul.e-------,
iCha-r~==i=Int====-======='=convert==for;at==to=~~r;e~'
, , unsigned , byte number of memory ,
, , short 'location pointed to, e.g. ,
I , unsigned short '3 * (number of words) + ,
, ' long , number of bytes., '
, ' -unsigned long I
+char * l in t * --i-Return address of word ,
, , s t ruct * 'pointed to, e.g. mask'
, , l ong * ',With 17777777 (octal). I
' , char **
, , etc . , __ I

-+ i n t * ---i- char-;- : Return adaress ~f ITr st ,
'struct * , . I byte in word pOlnted to, ,
' l ong * , ,e.g. or with 20000000,
'char** , ,(octal). , , , e c • ~ , ,
,1nt~- ,-s nort , Copy. ,
,struct * , unsigned, ,
,long * , short, ,
, char * * , etc., ,
I etc. I .--J ..-____ ,
.J....~-t~-----I l o ng , Treat pointer as unslgned ,
, 1n, . ro fi 11 , s t ruct * ,unsigned long ,lnteger, 7. g . ze
' I * ,from 24-bl t number to ,-
, ~ n g * * , , 4 7 _ bit n urn b e r . , 'C a r , ,
, e tc. , ~I ___________ __

Figur e I X-I. C Pointer Converion Rules for the /6

- 134 -

The storage conversion rules are fairly standard.

The /6 numeric representati'ons and ' instruction set

all ows these conversions to be one or two instructions

normally, and fail to require the extra thought

neces s ary in the case of pointer conversions.

IX- 2 summarizes these conversion rules.

Figure

One notable exception to the scheme presented

above is the handling of a NULL pointer. The C

language definition states that "it is guaranteed that

assignment of the constant e to a pointer will produce

a null pointer distinguishable from a pointer to any

object" [13] . The natural conversion operations,

outlined above, imply that an assignment of this sort

fails to follow this convention. In addition, rules

found in most other C compilers, for the storage

conversion of a character pointer to an integer,

specify that a straight copy is carried out. This also

conflicts with the rules for conversion set forth for

the /6. Consequently, to maintain compatability with

other C c ompilers, the /6 compiler handl es the null

po i n ter as a special case. The decision t o ma ke this

exception to the general conversion rules resul ted from

experiences in porting various user pr ograms
(in

h 11) A resul t of thi s special
particular the Bourne s e •

. de sequences genera ted for
casing is that certaIn co

- 135 -

I From I To I
~ *--.... ====Iin= === ~ Rule I
r,·ar rnt. leturn the-bytenumbe7""or l

I
unsigned he . I bh hn memory locat ion

I G o:-t f,~inted to, e.g. 3 * I
I ~nSlgned short (number of words) + I
I Gon~ I(number of bytes) . I
I I nSlgned long Res~l t is treated as an I
I I bbnSlgned value when I
1r;ru;r _____ I~~~-----f:-'=0~n:..:v-'=e:..':r-':t::i~n~g~ to long S • I

ong nt runcate 41=Eit value to I
nsigned long truct * 4 b' I - it value, then copy. I

har **
tc. I I

~~~----------+~~------. ong fhar ""- r unca te to 8-bi t va lue'-II 
ns igned long I hen copy. I 
nt 
hort I I 
nsigned I I 
n~igned short L------ I I ~n fong ~engthen 24-bit value to: 

~nsigned pnsigned long F 47-~it value by sign I 
fnt * I f:xtenslon or zero I 
ftruct * I ~illing. I 
ftc . L I I 
~nt ""~-:-l-o-a~t----~~~. a-c"""'h-lr-· n-e-?' efined - ~ I 
f5hor t pouble p.nstructlon. I 
long --jITOat -----;f'1~a-c-.hine defined - t~-I 
pnsigned long ~ouble !instruction. - I 
llns ignea !float ~ero fill to a 4 7-bi t I 
tJ.ns ig ned shor t t:Jouble number, then treat as a I 
I I ~bove. I 
rloa t ---rrnt Machine defined by fxa I 
tliouble bnsigned !instruction. Characters I 
I char ere truncated following I 
I bnsigned char conversion. I 
~loat liong Convert to 24-bit number I 
Bouble lmsigned long by fxa instruction, then I 
I I ~ign extend/zero fill to I 
I I ~7-bit value. I 

Figure IX-2. C Storage conversion Rules for the /6 



- 136 -

storage conversions must perform a check for the null 
pointer. In add i tion, the handling of the null pointer 
raises the complexi ty of the code used for hand ling 

constants within the compl'ler. It h appears t at the 

language definition is lacking here. An improvement 

might be the introduction of an explicit null pointer 

to the language definition, as found in Pascal, ADA, 

etc. 

2. The Impact of the /6 on Programming in C 

As mentioned previously, the C compiler for the 

/6 employs two different representations for pointers. 

The byte a~cress format is employed for any pointer to 

a byte oriented object. All non-byte storage items 

(longs, fields, enumerations, etc.) are manipulated 

with a word address format. As one might expect, the 

impact on C goes beyond the compiler's difficulty to 

generate code. Because the conversion between these two 

formats is not a one-to-one mappi ng there are cases 

where statements in C may res ult in information 

h k " In part icul ar, consider "slipping between t e crac s • 

the foll owing statements: 



- 137 -

~har *p, foo[20]: 
Int *q: 

p = &foo: 
p++: 
q = (int *)p: 
p = (char *) qi 

While this code probably won't occur in practice, one 

should notice that the assl" t gnmen to S results in a 

"rounding" of the address to a word boundary. If one 

considers the values that are " 1 d h lnvo ve ere, the 

following will be seen (assume the array foo is placed 

at location octal 1000): 

Statement 

p = &foo; 
p++; 
q = (int *)p: 
p = (char *) q; 

Value for p 

020001000 
040001000 
040001000 
020001000 

Value for q 

<undefined> 
<undefined> 
00001000 
00001000 

The information transfer from E to S, and back to E 

again, results in the byte position being lost. This 

is to be expected, since it is not possible to maintain 

this information across the assignment statements. 

Occurences of this sort can not occur on the PDP-II, 

since byte and word pointers are treated as objects 

hav ing an identical format (i.e. all conve rsion 

operations have no effect on the internal value of a 

pointer) • 



- 138 -

A more serious problem with the differences in 

data type representations is the handl ing of 

parameters. While word pointers and integ er items are 

identically formatted, the shape of a byte pointer 

causes the interchange of a byte pointer and an integer 

to have drastic effects on oper a t ions. While 

conversions may be applied when a type cast takes place 

in-line, parameter passing may hide the need for a 

conversion. Since the . C language definition 

specifically avoids checking ac t ual parameters against 

formals (in fact the syntax of t he languag e doesn't 

always supply enough informat i on to allow this to be 

done), the prograllmer must be held at faul t when 

something of this sort occurs. Once ag ain, 

incompatabilities of this type have no impact on a byte 

addressable machine, since the representation for 

pointers will be equivalent. 

A final problem caused by the data type 

representations for the /6 involves longs. This 

p rob lem is independ ent of a word addressable 

architecture; it is particular to the /6. There is a 

large temptation on many machines to treat longs as 

something other 
than an indivisible storage location. 

be used to allocate storage, but in 
That is, a long may 

are per formed on 
some instances operations 



- 139 -

subcomponents of the long. Since the /6 representation 

of a long requires that the sl'gn bl't l'n the low word be 

zero, the manipulation of a long as two separate words 

may result in inconsistent results. ~d' M mlttedly it is 

poor programming practice to use a trick such as this, 

but, when porting programs, one must be awa re of the 

problem. 

3. The C Programming Environment 

From a users' standpoint, programming in C on the 

/6 is little different from any other machine to which 

C has been moved. As noted above, a user must be aware 

of certain machine problems tha t preclude the "free" 

programming style exemplified on mach i nes such as the 

PDP-ll and VAX-ll. The deficiencies in the /6 in fact 

tend to improve the portability of C code written on 

the /6. Since a user must follow the typing 

conventions in C more closely than on most other 

machines, programs written on the /6 tend to move quite 

easily. A user must be car e f ul to consider the 

consequence s o f poin ter conversions, match parameter 

type s i n function calls, and treat data structures at 

"face value". 
When all the pitfalls of byt e pointers 

are treated carefully, the result is a pr ogram that 

very readable, and most importantly, very por table. 

is 



- 140 -

For efficiency , a user programming in C on the /6 

will usually s tee r clear of unwarranted use of 

character var i ables. Since the cost of accessing 

arbitrarily aligned bytes via an indexing ope ration is 

quite high, the use o f pointers i s i mportant. That is, 

when deciding whether to implement an algorithm with 

indices or po inters, the use of pointe rs is 

recommended, because there is a l a rge cost involved in 

forming byte addresses by add ing an ind ex t o a byte 

pointer. Thus, the 
, , 

ope r ato r for structur e s tends 

to be used less than the '-)' operator, a nd array 

indexing (' []') tends to be used less th a n straight 

pointer manipu lations. As an ex ample of t he relative 

cost of index ing and pointer ma ni pulations, consider a 

simple loop to step through a cha r acter array and 

initialize each e ntry to zero. 

char f oo [20], *p: 
int i: 

for (i 

for (p 

= ": i < 20: i ++) 
foo[ iJ = 0: 

= foo: P < &foo[20]: 
*p = 0: 

p++) 

The code for each loop is displayed below, side by 

side. Note I'nvolved in using arr a y the added cost 

, nipulations. indexing versus pOInter rna 



- 141 -

Indexing Pointers -------- --------
tzm ! i tma f _foo,0 L0 : tam ! p tma ! i L0: -
cma $20 tma ! p 
bon L1 tme *=foo,20 tmi ! i kea 
tma ! -- P bon L1 
tze tma ! p 
lId 2 toa 0 -
rIa 2 rbm ! 0 
aei tmj ! p 
myo 3 bbj .+1 
aia buc L0 
dvo 3 L1: 
aoe 1 . 
lla 2 
rId 2 
tai 
toa 0 
rbm ! 0 
aum ! i 
buc L0 

Ll: 

Similar comparisons may be made for other pointer/index 

related operations with equivalent results. 



CHAPTER X 

CONCLUSIONS 

The previous chapters of this document have 

detailed work carried out in establishing a C 

programming environment under UNIX/24V. Most of these 

discus sions have been concerned with the target 

machine, the Ha rris /6. However, the work carried out 

has served to illuminate several issues that are 

pertinent to a large class of machines and which need 

further study. These issues will be tied together with 

a summary of some of the impor t an t points brought out 

in earlier chapters. 

1. The Portab le C Compiler 

The portab le C compiler has proven to be an 

excellent vehic le whereby a C compiler may be 

effectively boot s trapped onto a new target machine. 

The compiler is clearly equipped for machines with a 

byte addressable a rchi t ecture, while i t s adaptation to 

word addressable architectures is less obvious. The 

, bl s encountered in moving the maJ or reason for pro em 

compiler to a word addressable architecture is the 

d 'ff t types of addr es s 
necessity to maintain two 1 eren 

- 142 -



- 143 -

offsets. The po rtable C compl'ler d ' oes not dlrectly 
support such a not1'on, add' lng a great deal of 

complexity to the handling of address arithmetic. The 

underlying assumption in the design of the compiler is 

that all address arithmetic will be performed in bytes, 

with conversion to words being performed at the last 

possible instance, or that all addresses will be 

maintained in words. Handling al l addresses in bytes 

is impractical if efficient code is to be generated, 

while the consequence of using onl y word addresses is 

that packing o f aggregate structures may not be 

performed -- very costly on machines with a large word 

size. A par allel /6 C compiler project, [31], chose 

the latter route, packing one character pe r 24-bit 

word. They reported that packing one character per 

word simplif i e d code generation, but proved costly when 

performing i nput/output (packing and unpacking of data 

structures wa s required). The Wisconsin C compiler 

packs cha rac ter arrays, but does not pack structures. 

This c ompiler is structured complete l y 

the portable compil e r . 

different from 

t ypes 

The q uestion of how to handle mul t i ple offset 

1'n th1's /6 C compiler, within ha s been addressed 
tion scheme of 

the f ramework of the normal code genera 

the po rtable compiler. 
The resultant implementation 



- 144 -

has proven satisfac tory in that it generates correct 

code, and of a decent quality, but has been 

unsatisfactory with respect to compilation efficiency. 

The first pass algorithms used to build expression 

trees can be very slow when numerous passes must be 

made over the trees to investigate possible byte 

pointer problems. It appears that a closer integration 

of the machine dependent byte/word offset calculation 

algorithms and the machine' independent tree building 

algorithms would result in a more efficient compiler. 

The reason this was not immediately done was to 

maintain the structure of the compiler during 

development stages. The alterations required to carry 

out such a plan are not straightforward, and the 

greatest need during the development was a working 

compiler. Should the compiler be considered for 

further use closer study of its internal structure is 

clearly warranted. 

The other significant problem encountered in 

adapting the portable compiler to the /6 was in mapping 

the compiler's abstract machine model to the target 

machine. The notion of an abstract machine to which a 

d is quite old and has target machine may be mappe , 

definitive model for undergone many studies: as yet no 

machl'ne has been constructed. The a universal abstract 



- 145 -

earlier work on the Janus abstract machines [5], LSD 

programming language [4], BCPL programming language 

[22], IBM S/360 FORTRAN (G) compiler [7], Pascal P-code 

[20] and EM-l [28] abstract machines, and the original 

portable C compiler (27] have been enlightening, but by 

no means conclusive. The abstract machine defined for 

S. C. Johnson's portable C compiler borrows a number of 

ideas from Snyder's portable C compiler, [27], and 

appears to be suitable for most all machines presently 

being designed. The machine model assumes collections 

of homogeneous general purpose registers, a stack of 

some sort (either in software or hardware), and a 

uniform addressing scheme of memory cells. It 

tolerates some deviation from a purely orthogonal 

architecture through the machine dependent register 

allocation scheme and flexibility in constructing the 

code generation tables. Unfortunately, it fails to 

handle severe deviations from this model, as found in 

the /6. There appears to be little reason for the 

compiler to support a wider range of architectures. If 

a designer d enough of the internal can under stan 

workings of the compiler, the modifications necessary 

to tailor the abstract model to a given architecture 

are not di ffic ult . Greater general ization of the 

(for instance t o support more 
abstract mach ine model 

than two register classes) would r esult in a 



- 146 -

degradation in t he performance of the compile r at 

little benefit. Thus, it seems fair to say the mac hi ne 

model is satisfactory f or most implementations. That 

this model has been so succesful implies that its 

properties should be closely studied before future 

attempts at new a n1 imp roved abstract machine models 

are made. 

2. The C Language As a Portable Implementation Language 

One may cons ider the C language on its merits as 

an implementation tool for portable software systems. 

In particular one may ask how C stacks up against other 

languages normally considered in implementing large 

software systems. In short, this author believes C is 

one of the bes t , if not the best, language for 

implementing large so ftware systems that are to be used 

on many different machines. While this opinion is 

heavily colored by a lengthy exposure to the language , 

the statement is no t made without some justification. 

There appear t o be a number of qualities required 

of a language t o be successful as an implementation 

tool. The first is that it should support the basic 

constructs to program in a structured manner. These 

constructs include those used for control flow and 
the 

abstraction of data types. 
Secondly, the programme r 



- 147 -

shouldn't be overly burdened ' wlth "syntactic sugar". 

This fault, common to many of the programming languages 

currently in vogue, tends to stifle programmer 

creativity. Third, recursion should be available. The 

notion of recursl'on ' f 1S one 0 the most powerful 

programming concepts available. Its use tends to 

enhance the correspondence between "natural" algorithms 

and their implementation. Finally, pointer data types 

must be supported. Similar to recursion, pointers are 

usually the natural tool to use in implementing 

algorithms; their presence tends to allow 

implementation to correspond closely to a paper 

algorithm. Needless to say, the C programming language 

supports all these notions, as do many other 

programming languages. However, C is virtually the 

only programming language to support address arithmetic 

in a comprehensive form that meshes quite naturally 

with the remainder of the language. C has its 

detractions, the most common complaint is its weak type 

checking. In truth, saying C performs weak type 

checking is fairly charitable. There are many good 

reasons for having strong type checking in a language, 

'd heck1' ng environment, but how to enforce a rigl type c 

when h sort of extensive address 
combined with t e 

arithmetic 

understood. 

possible in C, is not currently well 

The lack of type checking performed in C 



- 148 -

allows faster compilation, and promotes a "robust" 
environment in which arbitrary memory cells may be 

used. Some of the bad points of weak type checking are 
consider later. Overall, it appears C is an excellent 

tool for implementing software. In a very short period 

of time C has distinguished itself through its use in a 

large number of software projects (operating systems, 

compilers, graphics packages, text processing systems, 

etc. ) 

The question of portability in a language can, 

for the most part, be separated from an analysis of its 

usefullness as an implementation tool. In considering 

why C has been so successful as an implementation 

language, one invariably recognizes the rich set of 

mechanisms offered a programmer. However, it is also 

this rich collection of mechanisms which can inhibit 

portability of a program. certain high level languages 

promote portability through restrictions on the 

operations which may be performed on a data structure, 

while others attempt to supply an abstract machine for 

the user. The former technique (e.g. Pascal) tends to 

be unduly costly for the progr ammer. To perform a 

"natural" operation within the s tructure of the 

language one must resort to subterfuge (i.e. use an 

assembly l anguage assist), or work a round it (for 



- 149 -

instance, use indices instead of pointers) • The latter 
approach to portability (APL for instance) requires a 

simulated environment be moved with each new 
implementation of the language, so penalizes the 

language's implementer . C h , on t e other hand, is easy 

to implement and program in. It allows a user to 

directly employ the power of the target machine. This 

ability to "touch" the bare machine also allows the 

creation of totally nonportable constructs. 

In considering C as a portable language, a number 

of specific reasons have been recognized. The ability 

to abstract data structures avoids the simulation of a 

natural aggregation. For instance, a need for a 

collection of heterogeneous items needn't be simulated 

within an array. Because the constructs needed for the 

representation of a natural data structure are present 

in the language, moving a program from one machine to 

another may depend on the atomic operations expected of 

the language. 

Secondly, while C supports extensive address 

calculation features, problems involved in word size 

differences, data type incompatabilities, etc. are, for 

the most part, eliminated by natur al operator 

d e f i nitions and built-in primitives. 
In particular, 

t he no tions of addl'tion and subtr action have pointer 



- 150 -

the possibility of being completely nonportable. 

However, by consistently def' , 1n1ng their semantics, C 

avoids requiring a programmer to know the width of 

aggregate structures when working with pointers to such 

obj ects. Further, when constants of this sort are 

necessary, the sizeof operator is very useful in 

maintaining a portable program. 

On the negative side, C's notorious l y weak type 

checking allows highly nonpor t able constructs to be 

created without any noise from the compiler. London 

and Re iser [181 have listed four problems they 

encountered during their experiences in moving UNIX and 

C to the VAX-ll/7 80. Two of the four suggestions they 

make are directly related to the weak type checking 

performed in C. 

1) The actual arguments in a procedure call should be 
type checked against the procedure declaration, and 
a "dummy" declar ation which spec i fies type s be 
permitted, even if the cal l ed procedure is not 
actually declared in the same compilation. 

2) The '-)' operator should be checked to insure that 
the structure element on the right is a member of a 
structure to which a pointer on the left may point. 

3) A structure element should be declarable with any 
name, as long as the name is unique within the 
immediately surrounding structure. (The c~rrent 
requirement tha t a s t ructure element must un1quely 
correspond t o an offset from the beg i nning of the 
structure , across all structures in a compilation, 
creates naming problems, and frequen t ly leads to 
errors of the type noted in item 2 above.) 

4) The issue of alignment to an even-byte (or other) 



boundary 
arbitrary 
described. 

sho uld 
d ata 

- 151 -

be brought into the open, so that 
struc tures can be accurately 

Of the suggestio~ s no ted above, the problem addressed 

in the first was f ound to be the most difficult to deal 

with in experiences with the /6. The second item is a 

by-product of the Ritchie C compiler, the portable 

compiler produces diagnostics for constructs of this 

sort. The third is definitely a worthwhile suggestion, 

and warrants further consideration. The last item 

suggests a view o f aggregate data structures similar to 

that found in BLISS, [33], and in this author's opinion 

diverges from one of the nicer facilities of C. The 

issue of alignment normally comes up only when trying 

to model mach ine dependent data structures (i.e. 

byte/word/bit l ayout of a particular structure). As 

such, the the que st ion of representing a structure in a 

portable fashio n is a moot point. The notion of an 

aggregate struc ture in C is to group together items in 

" 1 "t If specl"fl"C layout is required, a single log l ca unl • 

bit fields, and the like, may be employed to construct 

a structure of arbitrary shape. Thus, the latter 

suggestion appears to introduce unnecessary complexity 

into c. 

In summary, the C prog r amming language seems to 

be a success f ul tool for i mpl ementing portable software 



- 152 -

systems because it has a rich set of primitives which 
allow a programmer to use the full power of an 

underlying arChitecture . It is also this ability to 

get at the basic machine which allows introduction of 

nonportable constr t C uc s. onsequently, unlike many other 

programming languages, portabil1°ty l°n ° C 1S easily 

possible, but mostly up to th e programmer. It is 

interesting to note that the consideration of 

portability is subject to· consideration, most other 

languages force "portability" on a programmer by 

techniques of the sort noted previously in this 

section. 

3. Portability Between Widely Different Architectures 

The question of portability, in general, is 

currently not fully understood. Most people can 

recognize a program, language construct, or the like, 

as being nonportable, but few can pinpoint exactly what 

makes a program or programming language "portable". 

Further, when considering portability between machines 

specifics of the particular architectures invariably 

enter into any consensus formed. The basic . variants of 

word size, data types, and addressability playa major 

part in forming conclusions, but are, by definition , of 

little consequence when considering portability between 

machines with similar architectures (for instance a 



- 153 -

PDP-II and VAX-II). 
Thus, if one is to formulate 

opinions about portabil ity it seems appropriate to 
consider a worst case phenomenon. Since the /6 
architecture lOS so h dO muc Ifferent from the PDP-II 

architecture, it is worthwhile to consider the 

experiences garnered from this research (the porting 

project originated on a PDP-II, and had the /6 as its 

target machine) • 

Word size, in and of itself, posed few problems. 

Rather, the specific size of a word on the /6 

introduced incompatibilities. A 24-bit word, with an 

8-bit byte, invariably introduces the number 3 into 

many calculations: while progra~s developed for the 

PDP-II, where a 16-bit word and 8-bit byte are used, 

introduce the constant 2. Worse, since 2 is a power of 

2, division by 2 was often removed in favor of a right 

shift. A portable construct of the form 

(sizeof int/sizeof char) 

quickly became standard in programs developed on the 

/6. If the /6's word size had been a . power of 2, 

further problems migh t have been eliminated, or more 

easily dealt with . A machine with a word s i ze which is 

ny optl"ml"zatlOons a power of 2 offers rna 
of the sort 

portable expression involving 
mentioned. Constructing a 



- 154 -

a constant, as shown above, will be the rule of thumb 

only if the compiler will f per orm the optimization from 

a division to a shift. For a signed number, an 

optimization is not possible (conslOder -1 dO ° lVlded by 2 

and -1 right shifted 1 bit). Thus, at least in C, it 

seems worthwhile to recommend expressions be created as 

above, and that compilers be aware of their existence 

as common practice and optimize accordingly (this 

requires the expression be" unsigned in type) • 

Data type incompatibilities cause problems mostly 

when a programmer assumes no side effects will be 

created when mixing them. In a language such as Pascal 

mixing types is illegal, or well defined. C, on the 

other hand, has been developed on a machine where 

mixing types normally has no effect on the value of an 

object. Consequently, many programs misuse this 

property of the PDP-II architecture. The recent 

introduction of "type casts" to C was of major 

importance in handling the multiple data type formats 

of the /6. It appears portability between machines 

Wl
o th d t formats must be handled incompatible ata ype 

° by a strongly typed language, or with either implicltly 

much foresight, 
and constructs like type casts, in a 

weakly typed language. 
The straight-line interpolation 

of type conversions, 
in a weakly typed language, is 



- 155 -

simple when compared to the . nlghtmares introduced by 
parameter pass i ng. Handling parameter 

incompatibilities i s by far the most difficult problem 

to manage in porting p b rograms etween architectures 

with multiple data type formats: at the very least the 

language support mus t be present to handle conversions. 

A final problem is the method by which a target 

machine addresse s main memory. Most modern . 
architectures support the notion of byte 

addressability , a nd some even allow bit str ing s to be 

directly addressable. When considering the problems 

introduced by movement from a machine which is byte 

addressable to a machine which is not, the first thing 

that comes to mind is how to handle the inevitable 

incompatability be t ween pointers. Should the language 

being used not allow mixing of types of this sort, the 

problem is nonexi s tant. However, should it be possible , 

the architecture has a major impact on the portability 

of a program. As discussed in chapter IX, there is 

bound to be an information loss when converting between 

formats. This problem appears, as much as anything, to 

motivate a need for type checking, for at least some 

. 1 t' s Strong type checking 
cases of pointer manipu a 10n • 

shouldn't be 
. d but at the very least a require , 

must be not ified of an irregularity. 
programmer r 



[1] 

[2 ] 

(3] 

REFERENC ES 

Aho, A. V., and S C 
Generation for .,. Johnson, "Optimal Code 
488-501; 1975 E~ire s~lon Trees:: JACM, 23(3): pp. 

h 
• so 10 Proceedlngs ACM S ' 

on T eory of Comput ing : pp. 207-217: 1975.ymposlum 

Aho, A. V., S. C. J ohnson and J 0 
Generation fo r Ma h" ,.. Ullman, " Code 
Operations": proceed~n~~es4thWl~~M ~ultir7gister 
Priciples of Pr ogramming LangUages.ympPpOSlu2m1 2

0
8

n 
Jan. 1977. ' . - : 

Bruno, J., and R. Sethi, "Code 
One-Register Machine": JACM 
July, 1976. 

Generation for a 
23(3): pp. 502-510: 

[4] Ca lderbank , V. . J., and M. Calderbank, "LSD 
Manual"; CLM-PDN 9/71· Culham L b t 
Abington, Be rkshire: 1971. a ora ory UKAEA: 

[51 Coleman, S. ' S., P. C. Poole, W. M. Waite, "The 
Mobile Prog r amming System: Janus": National 
Technical Info rmation Center PB220322: U. S. 
Dept. of Commerce : Springfield, Va.: 1973. 

[6] Har r is Corpora tion, "Reference Manual 
Digital Compute r ": September, 1976. 

Slash 6 

[71 IBM FORTRAN I V (G) COMPILER, Program Logic Manual: 
1967. 

[8 ] Johnson, S. C. , "YACC Yet Another 
Compiler": Bell Laboratories Computer 
Techinical Report No. 32; July, 1975. 

Compiler 
Science 

[9] Johnson, S. C., "A portable Compiler: Theory and 
Practice"; Proceedings 5th ACM Symposium on 
principles o f pr ogramming Languages: pp. 97-104: 
January, 1978 . 

[10] Johnson, S. C., "Lint, A C Program Checker": Bell 
Laboratories Computer Science Technical Report No. 
65: 1978. 

[111 Johnson, S. C., "A Tour Thr~ugh the portable 2 C 
Compiler"; UNIX programmer s Manual, Vol. -

- 156 -



- 157 -

Supplementary Documents, Seventh Edition' January 
10, 1979. ' . 

[12] Johnson, S. C., and D. M. Ritchie, "portability of 
C Programs and the UNIX System"· Bell System 
Technical Journal, Vol. 57, No.6, 'part 2; pg. 
2021-2048; July-August, 1978. 

[13] Kernighan, B. W., and D. M. Ritchi e , The C 
Programming Language; Prentice-Hall, Englewooa 
cliffs, New Jersey; 1978. 

(14] Knuth, D. E., The Art of Computer programming 
Volume 1: Addison-Wesley; Reading, Mass.: 1975. 

(15] Leffler, S. J., "A Detailed Tour Through the /6 
Portable C Compil~r"; Case Western Re se rve 
University, interna l document ; June 1980. 

{l6] Le ffl er , S. J., "UNIX/24V Assembler Re ference 
Manual": Case Western Reserve University, internal 
document: 1980. 

(17] Lesk, M. E., S. C. Johnson, and D. M. Ritchie, 
"The C Language Calling Sequence": Bell 

[18] 

Laboratories internal memorandum: 1977. 

London, T. B., and J. F. Reiser, "A UNIX Operating 
System for the DEC VAX-l l /780 Computer": Bell 
Laboratories Technical Memorand um 78-1353-4: July 
7, 1978. 

[19] Miller R. "UNIX - A portable Operating System?"; 
Austraiian'universities Computing Science Seminar: 

[20] 

[21] 

[22] 

February, 1978. 

, K V U Ammann , K. J ensen, and H. Nageli, Norl, •• , • 
The Pascal (P) Compiler Implement~t ion N?tes; 
Institut fur- Informa~ik, Eldgenosslsche 
Technische: Hochschule, Zurlch; 1975. 

poole, P. C., "Hierarchical A!;>stract Machines"; 
S um on software Proceedings culham ymPOSl 

Engineering: April , 1971. 

t b "l'ty of t he BCPL 
Richards, M., "The por all 

P ctice and Experience; Vol. 
Compiler": software ra 
1: pp. 135-146: 1971-

C Johnson, M. E. Lesk, and B. 
[23] Rl'tchl'e, D. M., S. • " BSTJ 

C pr ogramming Language : , w. Kernighan, "The 



- 158 -

57(6), Part 2: pg. 1991-2020: July-August, 1978. 

[24] Ritchie, D. M., "A Tour through the UNIX C 
Compiler": UNIX Programmer's Manual, Vol. 2-
Supplementary Documents, Seventh Edition: Jan. 10, 
1979. 

{25] Sethi, R., and J. D. Ullman, "The Generation of 
Optimal Code for Arithmetic Expression Trees": 
JACM 17(4): pp. 715-728: October, 1970. Reprinted 
as pp 229-247 in Compiler Techniques: ed. B. W. 
Pollack: Auerbach: Princeton, New Jersey: 1972. 

[26] Shannon, W. A., "A Demand Paged UNIX Operating 
System for the Harris /6 Computer": Case Western 
Reserve University, forthcoming Master's Thesis: 
Cleveland, Ohio. . 

[27] Snyder, A., "A Portable Compiler for the Language 
C": Master's Thesis: M.I.T, Cambridge, Mass.: 
1974. 

[28] Tannenbaum, A. S., "Implications of Structured 
Programming for Machine Architecture": CACM, 
21(3): pp. 237-246: March, 1978. 

[29] UNIX Programmer s Manual, Vol. 1, Seventh Edition: 
January, 1979. 

[30] Weber, L. B., "A Machine Independent Pascal 
Compiler": Master's Thesis: University of 
Colorado, Boulder: 1973. 

[31] Williams, M.: personal communications: 
Laboratories, Murray Hill, N.J. 

Bell 

[32] 

[33] 

Wulf, W., R. K. Johnson, C. B. Weinsto~k, S. O. 
Hobbs, and C. M. Gesch~e, The .Deslgn of An 
Optimizing Compiler: Elsevler Press, 1975. 

If W D B. Russel, and A. N. Habermann, 
~~LI~S:·'A ianguage for systems programming": CACM 
1(12): pp. 780-790: December, 1971. 



APPENDIX A 

UNIX/24V UTILITIES 

This appendix lists the user utility programs 

that have been ported to UNIX/24V. Most all programs 

were taken from the PDP-II Release 7 distribution of 

UNIX. In some instances the utility runs under both . 

the VULCAN operating system and UNIX/24Vi these are 

marked with a * A list of the major utilities not 

provided under UNIX/24V is also included. Items in the 

latter list were not moved because their implementation 

was highly nonportable, or because they were of little 

utility to the project. 

- 159 -



Current Utilities 

ar arithmetic as (*) at 
basename cal cat (*) cb 
chgrp chmod chown clri 
cmp comm cp date(*) 
dcheck dd df diff 
du dump dumpd ir echo 
em (*) fgrep file getty 
grep (*) icheck init kill 
Id learn In login 
lpd lpr 1 s (*) mail(*) 
make mkdir mkfs(*) mknod 
mount mv (*) ncheck newgrp 
nice nm (*) od (*) passwd 
pr ps pwd ranlib 
restor rm(*) sed sh 
size (*) split strip stty 
su sum syms sync 
tail tar(*) tee test 
time tr tsort tty 
umount uniq update wall 
wc who write(*) wump 
ya~c(* ) 

- 160 -



adb 

awk 

bc & dc 

lex 

lint 

sort 

tp 

eqn, ptx, 
pubindex, 
roff, tb l , 
nroff, trof f, 

f77, m4, 
ratfor, s truct 

uucp , uux, 
uuc ico , e tc. 

Major Missing Utilities 

requires ptrace system call 

requires lex. 

bc requires dc which is 
complicated, and as yet hasn't 
been looked at for portability 

highly nonportable 

r~quires sort 

tried to port it, but still 
buggy 

no need for it, always use tar 

Text Processing Programs 

etc. 

must have nroff/troff to 
useful, and nroff/troff 
highly nonportable 

Fortran Processors 

be 
is 

f77 uses the portable 
compiler, 
must be 
changes 
language 

so careful study 
made regarding the 

to the intermediate 

Uucp utilities 
low priority, and require 
conversion of a packet driver 
at kernel or user level 

- 161 -



This digital copy was produced by the Case Western Reserve University Archives in 2020. 
 
Original documents from the University Archives were scanned at 300 ppi in black and white or 
grayscale or color. Blank pages were not scanned. The images were OCR’d using Adobe 
Acrobat X.  
 

 
 

Please send questions or comments to 
University Archives 

Case Western Reserve University 
archives@case.edu 

216-368-3320 
 
 
 
 

Warning Concerning Copyright Restrictions 
The Copyright Law of the United States governs the making of photocopies or other 
reproductions of copyrighted material. Under certain conditions specified in the Law, libraries 
and archives are authorized to furnish a photocopy of other reproduction. One of these specified 
conditions is that the photocopy or other reproduction is not to be “used for any purpose other 
than private study, scholarship, or research.” If a user makes a request for, or later uses, a 
photocopy or other reproduction for purposes in excess of “Fair Use,” that user may be liable for 
copyright infringement 

 
 
 


	KIC Document_pp1-12
	KIC Document_pp13-32
	KIC Document_pp33-52
	KIC Document_pp53-72
	KIC Document_pp73-82
	KIC Documentp83-102
	KIC Documentp103-122
	KIC Documentp123-142
	KIC Documentp143-161

