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AN IMPLEMENTATION OF THE C PROGRAMMING LANGUAGE
FOR THE HARRIS /6 MINICOMPUTER

Abstract

by
SAMUEL JACOB LEFFLER

As part of a project to port the UNIX operating system
to a Harris /6 minicomputer, a programming environment
for the C programming language has been developed. A C
compiler based on the portable C compiler has been con-
structed, along with the necessary support utilities --
assembler, link-editor, etc. The architecture of the
Harris /6 ©posed numerous problems to the porting ef-
fort, necessitating modifications to the machine in-
dependent portions of the portable compiler. This
document describes the porting effort and modifications
to the compiler. An evaluation of the code quality
produced and the efficiency of the compiler are inclu-
ded. Finally, experiences gained from the porting pro-
ject are employed in 1lending observations about the
generality of the portable compiler, and the portabili-
ty of the C language and programs written 1in the C
language.

- 11 -



~To my parents, Amos and Florence.




ACKNOWLEDGEMENTS

I would 1like to thank William Shannon who was my
partner on the UNIX/24V project. With his porting of
the UNIX operating system this project became a signi-
ficant contribution to the UNIX community. I must also
acknowledge his efforts in helping test the compiler.
Our endless discussions were important to the success
of the project.

The efforts of Robert Gingell must be ack-
nowledged. He was instrumental in 1initiating the
UNIX/24V project and played an important role in it by
moving the Release 7 shell.

I would like to thank my advisor, Professor Char-
les Rose, for his guidance in preparing this document,
and Professors George Ernst and Raymond Hookway for
serving on my committee.

C and UNIX exist because of the efforts of Dennis
Ritchie and Ken Thompson. Also, Steve Johnson and
Allan Synder were the originators of the portable C
compiler. This project was possible because of the
previous work of these people.

Finally, the A. R. Jennings Computing Center must
be acknowledged for their support in this venture.



TABLE OF CONTENTS

LIST OF FIGURBS ..................................-......’.Vii
CHAPTERI INTRODUCTION.o.oooooo.oo.oooooo--.o-ooooco-l

CHAPTER II A DESCRIPTION OF THE PORTABLE C
COMPILERI..........."......l'.............6

i 1Y e s RN RSP RG-S A S T S N I ]
2. EXPIBABION TUBRS, o v v s smmhsmeswhnnssmesnss el
e Phe Flrat (PasS. il icesisses R RE R SR e B TS S TP TR O
4. Bhe SN PESS L qov.io s v eis v ionelo s idlaiaie e shakers e ote uis il D

CHAPTER III THE BARRIS /6 MINICOMPOTER: .vnosntsenewessselh

i e REGIBLEE BBE. i vsisanansbsnnsrosebonssnesseld
2 RAAresaing - MOAEE . ssedvs cunsimnsidbnssansssaesseed
e 19 (S SR ORCT  BAGEOBRR NG 400 64 o winn s bibm s Fa sl e o B9
22 INOLEect AAAreSsiNg . v cnnmstnrtnsnssnsyssrsens sl
203 3015 G RN VPR O KPRt I -G A PNy L WIS NI R -
2.4, PETe PNAEGERBITG o v o hvnin o5 48 s satm s w boos o &5 wiwsssnds
3% Data TypeS..... H Rt R e B S P S auslbe ok a e e wie D
4, Stack Management....cee.. A e e e R e DD

CHAPTER IV THE PORTING PROCESS:cessscssnctscnscnsnensald

CHAPTER V MOVING THE PORTABLE C COMPILER TO

p o e e RG-S RSy i SRR RGN NSRS EE SRS R, |
THR BB CURRE IOAR] « s v o aos o vasvwnddni s bnvaentns sl
ROOreRs A LMo ticC . scacvs s snvvus w5 SR e s D
Sethi-Ullman Number ComputationS.....eceeeeees..60
Register Allocation StrategieS<cccicecesvdesscnosnsslB
Machine Dependent Rewriting RuleS.....c.eeceeeeeslb
Machine Independent MoAUl €8 .sscssssscinnsnssessil
: The 64K Word Boundary...... %) 5 R] BT, B RO U R R o ¢

S wN e

CHAPTER VI AN EVALUATION OF CODE EFFICIENCY. . s :esnsss88

) R OverVieWssssnsssassisvanssssaess P RP S = SRR -
2, Optimization of Address CalculationS..eecceecese93
Jia Machine Independent Local

OoLIMmIZAtiONE:s snssanmes sommyns = wne b o ava hT et 99
4, Machine Dependent Local Optlmlzatlons...........100
4l Switch Statements.......... 5 6% 5d e E pamEales s s O
4.2 Parameter Passing..... R e W L] g e e 1
4.3. Structure Assignments and Structure

PACamelerfBsvossvnwienson ey sne . wim o w w0 AR R
4.4. Byte Pointer Additions and

Subtractions, ... Sl s e e PP e B CPRS [  §
4.5, PACONV and PSCONV CalculationS........ PRNERERPRPRNIS |
4 ;6% Special InstructionS.icsecssses PRI ARG GRS | b



]

5' Statistics.......l.....ICI..I..."...I....‘......1@2
B Further Optimization for the Portable
Compiler.'.......l.. . 0 8 0 8 e e l........'....llgs

CHAPTER VII THE INTERACTION BETWEEN COMPILER,
ASSEMBEER " AND "HOBDER s . s s ersia s os cwinies oo wsinell2
j 2 An Overview of the Assembler and
BOAU T titia s nisissie oisie s aiesie diere shaahe e e ol & stnei st sves d11L2
2 Incompatablilities With VUOLCAN: cccvssssssesseinsellS

CHAPTER VIII DEFICIENCIES AND FEATURES OF THE

M DR R s et ARl LR L o s el ansiorin el iaie 2
CORPITING BEEINABNOY, « Loy vvwviondiessnes savssevsssdlel
UBEt FPEadbDBCK . s ixnssovanivieinsns TIPS N £ )
T er T L e S TR S WY B T ISR A IS T SR . - -
CHETBNTE BEBCUS . . v vanssssbiiadrasnbiarcnssssnsasssnnesldl
CHAPTER IX C ON A WORD-ADDRESSABLE MACHINE. ..eceseeee.131

ks Bandling Dath TYPOB. . cnssndnsrtnasssenes s cosssd Il

o 48 The Impact of the /6 on Programming in

CivsasnssemsuansnnssonplanssvosbsnesdoscnsesionlIB

i 3 The C Programming Environment...ccicscesssscisecl3d9

W N -

CHAPTER X CORCHUSTENSES Sl cioininnlehahe siloyaielorsliets sinrel sies aik sivie o s lG2
1 The Forvtable C Compiler, isssvassnidnornnsribons sl 8P
2. The C Language As a Portable
Implementation Language..ccecececsecececcceecssealdb
. A Portability Between Widely Different
BECHEERCEREER « o 'v v 66 & 5o wns 50w sidewes s W bwiss ol e

REFERENCES LR I B I B L D I I I N L L I B B B B D D B I I R ...'....00156

APPENDIX A UNEX/24V UTILITIESccssvnnsssnnnsl PRI ST N ..

- vi -



I1-1
1111
I11I=2
111-3
ITII-4
V=1
V=l
VIi-1
vVIi-=2

vi-3

VI-4

VIii-1

VIII-1

1X-]1

IX-2

LIST OF TABLES AND FIGURES

Selected Portable Compiler

Intermediate Language Node TYPES .veeeeseeeall
The /6 Register Set (used by the

CORDIIRE) : sisnesss s nsdnbabussbirmsswsedsss s
/6 Memory Reference FOrmatsS ..cceeeeecccccasall
Data Type Representations scciwsscssnsssessasdb
Stack Management In' € .asissemespsinsnsisisesId
Expected and Actual Schedules for the

Development DNIX/24V ..coscssssnesavnseuneesdl
Original and Final Register Classes

in the /6 Machine Model .. cespnssassonnes &9
Definition of PACONV and PSCONV Nodes

for the Intermediate Language .....cseeee0.95
Representative Program Sizes For

Various C ComMpilers juisisnidvrsasvivrvnses1D5
Execution Times For the /6, PDP-11,

Interdata 8/32, and VAX-11/788

COMPILIRLEE - i s siecsmuin vivs s e ies NS e G T A
Detailed Execution Prof11e For the /6
C COMDLIRE : wsnsnvsinnshyowiemenvs IR €

Program Segment Layout Under UNIX/24V

oo.cc-Qoooonoooo.ooo.noo--.n--o-uo...cn.---118

Loader File 'FPormats for HDNIRLZAY .. ..iveeees .130
C Pointer Conversion Rules for the /6
i S (el Gl RS W IR SR S M S S bl bl e JURS

C Storage Conver51on Rules for the /6

® e 0 00 o8 s 000 0 ® e o ® 00 00 00 o-.o---o.-.u...on-l35

- vii -



CHAPTER I

INTRODUCTION

In 1976 Case Western Reserve University entered
into a project to construct a campus-wide resource
sharing network which would tie together exisﬁing
minicomputers and allow for additional hardware to be
supported at minimal connection cost. The machines
chosen for this venture were Harris /6 minicomputers.
By the summer of 1979 the proposed network plans had
been reevaluated due to unforseen circumstances
involving the development of networking software by the

Harris corporation.

During the 1initial phase of the network
development, the native /6 operating system, VULCAN,
was found to have a number of weaknesses that made
software development difficult. Consequently, one part
of the reevaluation process involved the selection of
an alternate operating system on which to base future
work. The operating system chosen to replace VULCAN
was the UNIX operating system. The choice of UNIX was
due mainly to its proven ability as a base for software
development and text processing, and for its known

portability. The latter point was a major factor in



establishing credibility of the selection, for at that

time UNIX was not available for a Harris /6.

The UNIX system and 1its central software were
originally written in assembly language, before the C
language was invented, and have since been rewritten in
C. Previous portability projects have involved moving
the  UNIX . kernel « to. the  ‘Interdata 7/32 . [19]; the
Interdata 8/32 [12], anq the VAX-11/788 [18]. These
efforts have had a major impact on the UNIX Kkernel,
both in pointing out weaknesses in the C language, and
in isolating nonportable sections of the kernel. The
PDP-11 version of the kernel, on which the porting
effort was based, consisted of approximately 10,000
lines of C code and about 1,000 lines of assembly code.
Thus, a prerequisite to the porting of the UNIX kernel

was a C compiler for the /6.

While it was clear that porting the UNIX
operating system required a C compiler for the target
machine, it was not clear exactly what route to take to
create this compiler. At the initiation of the project
there were three choices for <creating a C compiler:
write one from scratch, port the Ritchie C compiler
[24] which runs on all PDP-11"s, or use the portable C
compiler written by S. C. Johnson [11]. Recent C

compiler efforts had followed all of these routes: the



Interdata 7/32 C compiler was based on the Ritchie
compiler, the VAX-11/788 compiler used Johnson’s
portable C compiler, and the University of Wisconsin’s
Harris /6 C compiler was written from scratch (in

assembly language).

For the purposes of this project, the Wisconsin C
compiler was unsuitable. The compiler supported an
early version of C (versioq 6) and was known to have a
significant number of bugs. The Ritchie compiler, a
production compiler tuned to the PDP-11, was too firmly
entrenched in the PDP-11 architecture to hope for
reliable conversion to such a radically different
architecture. Since the /6 C compiler would be needed
before UNIX could be ported, and writing a compiler
from scratch would take considerable time, this left
only the portable compiler to consider. Previous
efforts involving the compiler had shown excellent
results, both in ease of movement and reliability of
operation. The VAX-11/788 compiler, based on the
portable compiler, required about one month of effort
to create a first cut compiler, and more than two years
after it was used to bootstrap a UNIX system onto the
machine, it remains as the production compiler. Thus,
it was decided that the C compiler for the /6 would be

based on the portable compiler.
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This research 1involved the movement of the
portable C compiler to the /6 and creation/movement of
related software necessary to support a programming
environment compatible with that found on other
machines supporting UNIX. The /6 architecture contains
many features that made the porting effort very
difficult and impacted the C language environment in a
negative way. The solution of these problems will be
discussed in somewhat general terms, in the hopes that
they might be applied to machines with similar
architectures. Necessary background for this document
includes some familiarity with the C programming

language.

The organization of the remainder of this
document follows the development of the compiler, then
steps back to consider the resultant programming
environment created. Chapters 1II and 1III provide
background material on the portable C compiler and the
Harris /6 minicomputer, respectively. Later chapters
presume a knowledge of these two topics commensurate
with that presented in chapters II and III. Chapter IV
gives an overview of the porting process, while chapter
v covers the compiler modifications that were
necessitated by the /6 architecture. Chapter VI

discusses the gquality of code presently generated by



the compiler, and offers observations about possible
future optimizations. Chapter VII considers the
interaction between the compiler and its support tools,
the assembler and link-editor. Chapters VIII evaluates
some of the compiler’s good and bad points, while
chapter IX 1looks at the impact of the /6°'s word
addressable architecture on the C programming
environment. Finally, chapter X summarizes the results

of this research.



CHAPTER II

A DESCRIPTION OF THE PORTABLE C COMPILER

1. Overview

This chapter discusses the structure and
organization of the portable compiler. Rather than
reiterate all that has been presented in previous
descriptions of the portable compiler, [11], this
chapter will introduce only those notions necessary for
an understanding of the design issues involving the /6
version of the compiler. Some of the theoretical work
on which the compiler is based, and its application to
the compiler, is discussed elsewhere, [9], while a
detailed analysis of the /6 adaptation of the portable

compiler may be found in [15].

The compiler consists of two passes that together
turn C source code into assembler code for the target
machine. The two passes are preceded by a preprocessor

which is highly portable in its own right.

Although the compiler is divided into two passes,
this represents historical accident more than deep
necessity. In fact, the compiler can optionally be

loaded so that both passes operate in the same program.
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This "one pass" operation eliminates the overhead of
reading and writing an intermediate file, so the
compiler operates about 30% faster in this mode. In
this form the compiler also occupies about 30% more
space than the larger of the two component passes.
Because the compiler is fundamentally structured as two
passes, even when loaded as one, this chapter primarily

describes the two pass version.

2. Expression Trees

While there are a large number of important data
structures involved in the operation of the compiler,
the focus of interest in this document will be on the
parse trees formed in the first pass, and used in the
second pass by the code generation scheme. These parse
trees are used to represent C expressions; almost all
flow control constructs have code generated for them
immediately in the first pass. The use of trees for an
intermediate representation has simplified many of the
complicated operations per formed during code

generation.

The definition of the nodes that comprise an
expression tree differs from the first pass of the
compiler to the second. The first pass must be

concerned with a wvariety of symbol table related



o

issues, while the second pass doesn’t wuse the symbol
table, but must maintain information wused 1in the
register allocation and expression compilation schemes.
The expression trees, along with other information, are
communicated between the two passes by an ascii
intermediate file. When the two passes are merged to
form a single pass compiler this file 1is eliminated,
and the trees are simply "handed off" to the
appropriate second pass ‘routine. Since the node
definitions differ 1in each pass, the combination of
passes requires node definitions to be made large
enough to hold the union of the information needed in

each pass.

Each node contains two members used in both
passes: op, used to specify the "node number", and
type. A node number identifies either a C language
operator, or an operator internal to the compiler. The
collection of node numbers defines the intermediate
language wused to communicate with the code generator.
The internal operators defined are primarily used to
process declarations in the first pass. The bottom-up
construction of the parser and top down néture of 1 8E
declarations requires declarations be used to build a
"declaration tree", which is then processed in a top

down fashion. Most C operators have a corresponding
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node number. For example, + is represented by PLUS, %
by MOD, etc. A token such as MINUS may be seen in the
lexical analyzer before it is known whether it 1is a
unary or binary operator; clearly, it is necessary to
know this by the time the parse tree 1is constructed.
Thus, an operator (really a macro) called UNARY is
provided, so that MINUS and UNARY MINUS are both
distinct node numbers. Similarly, many binary
operators exist in an assignment form -- for example -=
-- and the operator ASG may be applied to such node
names to generate new ones, e.g. ASG MINUS. Table II-1
shows some of the most common op values which will be

used in further discussions.

C has a rich typing structure, with a potentially
infinite number of types. To begin with there are the
basic types: CHAR, SHORT, INT, LONG, the unsigned
versions known as UCHAR, USHORT, UNSIGNED, ULONG, and
FLOAT, DOUBLE, and finally STRTY (a structure),
UNIONTY, and ENUMTY. Three operators may be applied to
types to construct others: if t is a type, one may
potentially have types pointer

to t, function returning t, and array of t’s generated

from ¢t. Thus, an arbitrary type in C consists of a

basic type, and zero or more of these operators. The

type member of each node contains a C type, as outlined
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I"'Name 'Description |
NAME" mamed memory location |
lzcon linteger constant, possibly a symbolic address |
lpLUS I+ operator l
Minus |-, U- has UNARY prefix l
MUL I*, U* <=> UNARY MUL |
lAND ls, Us& <=> UNARY AND |
br I}, inclusive-or |
lER |, exclusive-or |
IANDAND l&&, logical connective |
lorOR I, logical connective |
lcomop I*,” operator |
b1v I/ |
IMmop |%, remainder |
ILs l¢<, left shift I
Irs I>>, right shift I
lcaLL |function call, UNARY CALL has no param’s l
lcoMP. |~, one’s complementation |
lINCR l++, postfix and prefix |
IDECR |- l
lEQ ==, logical connective |
INE, |y |
ILE l¢<=, ULE is unsigned version l
LT <, ULT is unsigned version |
lce I>=, UGE is unsigned version |
lcT I>, UGT is unsigned version |
IREG Iregister |
lorREG loffset from register (U* REG + ICON) |
IsTasc lstructure assignment |
ISTARG lstructure argument to a CALL |
IsTcALL |CALL returning a structure, UNARY STCALL I
IFLD Ibit field I
Isconv Istorage conversion (e.g. pointer => int) |
lPCconv lpointer conversion (e.g. int => pointer) |
lPMCONV Ipointer multiplication conversion, e.g. |
| lpointer + offset => pointer + offset*width |
lpvcONV lpointer division conversion, e.g. pointer - |
| lpointer => (pointer-pointer)/width |
IPACONV lpointer addition conversion, see Figure VI-1 |
=PSCONV =pointer subtraction conversion, .see Figurel
VI-1
IFORCE Imust have left tree in specific register |
ICBRANCH lconditional branch to label on right, |
| laccording to comparison on left |
[INIT |initialize memory location with value on left |

Figure II-1.

Portable Compiler Node Types



here, describing the type of the expression rooted at

that node.

Remaining members of the node structure contain
dimension table pointers, size table pointers, constant
values, symbol table pointers, label numbers, register
allocation information, Sethi-Ullman numbers (see
section 4 of this chapter), etc. The exact application
of each element of a qode will be described where
needed. For a complete description of all the data

structures used in the portable compiler consult [15].

The formalism chosen in this document to
represent the expression trees has been tailored to
simplify their inclusion in the text, so it will be
introduced here. Expression trees will be displayed
"on their side", with each level of the tree marked by
an extra level of indentation. To avoid ambiguity, the
left son at each level will be displayed first. all
unary operators therefore will have their single
descendant on the left. Consider the expression a += b

—

- ¢, the corresponding tree would be:

+=, <type>, ...
NAME, _a, <type>,
-, <type>, ...
NAME, b, <type>, ...
NAME, _c, <type>, ...
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Each node in the tree contains a 1leading node number
(displayed symbolically), the C type of the node, and
any further information that might be appropriate to
the example. For the purposes of discussion, many of
the details which would be present in the actual node
representation (e.g. dimension table indices, si;es,
etc.) may be omitted. Note that the NAME nodes, used
to indicate that the wvariables, a, b, and ¢ are
statically allocated, have the symbol’s name present,
prepended with an wunderscore (" _"). The convention
chosen for the /6 1is that all C symbols will be
constructed in this fashion to avoid name conflicts

with assembly language defined symbols.

3., The First Pass

The first pass performs lexical analysis,
parsing, and symbol table maintenance. It also
constructs parse trees for expressions and keeps track
of the types of the nodes in these trees. Additional
code is devoted to initialization of static data
structures. Machine dependent portions of the first
pass serve to generate subroutine prologs and epilogs,
code for switch statements, code for branches, label
definitions, alignment operations, changes of 1ocation

counter, etc.
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The porter of the portable compiler has
relatively few jobs to perform in the first pass. The
work of 1lexical analysis, parsing, symbol table
maintenance, semantic checking, and initialization of
static data structures are, £for the most part,
completely handled by the machine independent portions
of the compiler; the porter is 1left with only minor

tasks.

For each machine, the expression trees built by
the first pass will need specific massaging. There are
two major areas where this is important -- NAME nodes

and conversion operations. In the case of NAME nodes,

the machine dependent portion of the compiler must
rewrite the node to reflect the physical location of
the name in the machine. 1In effect, the NAME node must
be examined, the symbol table entry found (through a
field in the node), and based on the storage <class of
the node, the tree must be transformed. Automatic
variables and parameters are usually rewritten by
treating the reference to the variable as a structure
reference off the register which holds the stack or
argument pointer. In the case of LABEL and internal
static nodes, the node will be transformed to place the
negative of the internal 1label number in the node.

Finally, a name of class REGISTER must be converted



into a REG node, and the encoded register number must
be placed in the appropriate field of the node for wuse
by the second pass. For machines with addressability
problems (for instance the IBM 378) the work here may

become fairly involved.

The conversion operator treatment 1is rather
tricky. It 1is necessary to handle application of
conversion operators to constants in machine dependent
routines 1in order that all constant expressions can
have their values known at compile time. In extreme
cases, this may mean that some simulation of the
arithmetic of the target machine might have to be done
in a cross-compiler. In the most common case,
conversions from pointer to pointer do nothing. For
some machines, however, conversions from byte pointer
to short or long pointer might require a shift or

rotate operation which would have to be generated here.

The other machine specific issue involves the
subroutine prolog and epilog generation. The hard part
here is the design of the stack frame and calling
sequence. While code for these jobs may be emitted in
part in the first pass, the final stack size and the
number of register variables is not known until the
second pass, so these values must be referred to by

assembler constants.
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C has a finite, but fairly extensive, number of
storage classes available. One of the compiler design
decisions was to process the storage class information
totally in the first pass -- the second pass has no
access to the symbol table. This means that all of the
storage allocation must take place in the first pass,
so that references to automatics and paremeters can be
turned into references to cells lying a certain number
of bytes offset from certain machine registers. The
first pass of the compiler deals with all address
information internally in bits. It is the compiler
writer’s responsibility to «convert these values to

bytes or words, as appropriate.

i

The Second Pass

It is difficult to organize a code generator to
be flexible enough to generate code for a large number
of machines and still be efficient for any one of them.
Flexibility 1is also important when it comes time to
tune the code generator to 1improve the output code
qguality. On the other hand, too much flexibility can
lead to semantically incorrect code, and potentially a
combinatorial explosion 1in the number of cases to be

considered in the compiler.
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One goal of the code generator is to have a high
degree of correctness. It is very desirable to have the
compiler detect its own inability to generate correct
code. This goal is achieved by having a simple model
of the job to be done (e.g. an expression tree) and a
simple model of the machine state (e.g. which registers
are free). The act of generating an instruction
performs a transformation on the tree and the machine
state. If each of these instruction/transformation
pairs is correct, and if the machine state model really
represents the actual machine, and 1€ the
transformations reduce the 1input tree to the desired

single node, then the output code will be correct.

For most real machines, there 1is no definitive
theory of code generation that encompasses all of the C
operators. Thus, the selection ot which
instruction/transformations to generate, and in what
order, is necessarily heuristic 1in flavor. I, for
some expression tree, no transformation applies, or
more seriously, if the heuristics select a sequence of
instruction/transformations that do not, 1in fact,
reduce the tree, the compiler will report its inability

to generate code and abort.

A major part of the code generator 1is concerned

with the model and the transformations, most of which
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is machine dependent or depends on simple code tables.
The flexibility comes from the heuristics that guide
the transformations of the tree, the selection of

subgoals and the ordering of the computation.

The remainder of this section involves a
description of the scheme used by the code generator.
It is based heavily on the machine model imposed by the
portable compiler, so befer the details are discussed,

this model must be introduced.

The machine 1is assumed to have a number of
registers, of at most two different types: A and B.
Within each register <class, there '‘may be scratch
(temporary) registers and dedicated registers (e.g.
register variables, the stack pointer, etc.). Reguests
to allocate and free registers involve only the

temporary registers.

Each of the registers in the machine is given a
name and a number; the numbers are used as indices into
various tables that describe the registers, so they
should be kept small. One such table describes the

status of each register. The status of each register

is an expression formed from manifest constants

describing the type of the register: SAREG for

dedicated AREG s, SAREG|STAREG for scratch AREG s, and,
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similarly SBREG and SBREG|STBREG for BREG s.

The actual code generation is done by a hierarchy
of routines. Each tree to be processed 1is first
scanned for any delayable operations, such as postfix
++ and -- operations. Also, an attempt is made to
handle comma operators by computing the ‘left side
expression first, and then rewriting the tree to
eliminate the operator. This is not always possible;
fot example, parameter lists 1involve the comma
operator, but their evaluation order may not be
altered. The code generation process takes as
arguments a pointer to an expression tree, and a second
argument that, for socio-historical reasons, is called
a cookie. The cookie describes a set of goals that
would be acceptable for the code generation. These are
assigned to individual bits, so they may be 1logically
or’ed together to form a number of possible goals.
Among the possible goals are

FOREFF Compute for side effects only; don’t worry
about the wvalue.

INTEMP Compute and store the value into a temporary
location in memory.

INAREG (INBREG)
Compute the value into an A (B) register.

INTAREG (INTBREG)
Compute the wvalue 1into a scratch A (B)

register.

FORCC Compute the expression for the condition
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codes it produces.
FORARG Compute the expression as a function
argument; e.g. stack it if appropriate.

The first step in the code generation process is

a canonicalization of the expression tree.
Canonicalization involves searching the "tree _for
certain transformations that might be applicable. One,
which is very common and very powerful, 1is to fold
together an indirection ‘operator (UNARY MUL) and a
register (REG); in most machines, this combination is
addressable directly, and so is similar to a NAME in
its behavior. The UNARY MUL and REG are folded
together to make another node type called OREG. 1In
fact, in many machines, it 1is possible to directly
address not just the cell pointed to by a register, but
also cells differing by a constant offset from the cell
pointed to by the register; such cases are also sought.
Another transformation 1is to replace bit field
operations by shifts and masks if the operation
involves extracting the field. Finally, a machine
dependent routine 1is called to calculate Sethi-Ullman
numbers for the tree. A Sethi-Ullman number, [25], 1is
an estimate of the number of registers required to
evaluate an expression. These numbers are calculated
in a bottom-up fashion. Each node in the tree has a

number which is intended to reflect the number of
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registers required to evaluate the expression rooted at

that node.

After the tree has been canonicalized, it is
perused for subtrees that may be computed and (usually)
stored before beginning the computation of the full
tree. The selection of these subtrees is usually a
result of the full tree requiring more registers
(according to the Sethi—Ul{man numbers calculated) than
the machine has available. The trees handled in this
manner must be computable without need for temporary
storage locations. In effect, the only store
operations generated while processing the subtree must
be in response to explicit assignment operators in the
tree. This division of the job marks one of the more
significant, and successful, departures from most other
compilers. It means that the code generator may
operate under the assumption that there are enough
registers to do 1its job, without worrying about

temporary storage.

One consequence of this organization is that code
is not generated by a treewalk. There are theoretical
results that support this decision (1], [2], [25]. i
may be desirable to compute several subtrees and store
them before tackling the whole tree; if a subtree is to

be stored, this is known before the code generation for
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the subtree is begun, and the subtree is computed when

all scratch registers are available.

When a tree is ready to be evaluated (i.e. it has
been stripped of all subtrees that need to be stored)
it is passed to a routine which handles the -evaluation
of expression trees that do not require temporary
locations. This routine may make recursive calls on
itself, and, 1in some cases, on routines higher up in
the hierarchy. For example, when processing the
operators &&, ||, and comma, that have a left to right
evaluation, it 1is 1incorrect to examine the right
operand for subtrees to be stored. In these cases, a

recursive call to a higher level routine must be made

" when it is permissible to work on the right operand. A

similar situation arises with the ?: operator.

The evaluation of expression trees works by
matching the current tree with a set of code templates.
If a template is discoverd that will match the current
tree and cookie, the associated assembly code is
generated. The tree is then rewritten, as specified by
the template, to represent the effect of the output
instruction(s). If no template match is found, first
an attempt 1is made to match with a different cookie;
for example, to compute an expression with cookie

INTEMP, 18 is usually necessary to compute the
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expression into a scratch register first. If  all
attempts to match the tree fail, the heuristic part of
the algorithm becomes dominant. Control 1is_ typically
given to one of a number of machine-dependent routines
that may in turn recursively call on the evaluation
process to achieve a subgoal of the computation (for
example, one of the arguments may be computed into a
temporary register). After this subgoal has been
achieved, the process begins again with the modified
tree. If the machine-dependent heuristics are unable

to reduce ' the  tree  Further, a 'number 'of default

rewriting rules may be considered appropriate.

To close this introduction, we will consider the

steps in compiling the code for the expression

where a and b are static variables.

The canonicalization and Sethi-Ullman number
computation are machine dependent, so assume they do
not alter the tree noticeably. Then, to begin with,
the whole expression tree is examined with the cookie
FOREFF, and no match 1is found. Search with other
cookies is equally fruitless, so an attempt at

rewriting is made. Suppose we are dealing with the
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Interdata 8/32 for the moment (it bears some
resemblance to the /6 in many of its rewriting rules).
It 1is recognized that the left and right hand sides of
the += operator are addressable, and in particular the
left hand side has no side effects, so it |is

permissible to rewrite the tree as

and this is done. No match 1is found on this tree
either, so a machine dependent rewrite is done; it
recognizes tha the left hand side of the assignment |is
addressable, but the right hand side 1is not in a
register, so a request‘is made to place the right hand
side of the assignment operator into a register. This
invocation of the code generation scheme searches the
tree for a match, and fails. The machine dependent
rule for + notices that the right hand operand is
addressable; it decides to put the left operand into a
scratch register. Another recursive call is made to
the code generator, with the tree consisting solely of
the leaf a, and the cookie asking that the wvalue be
placed into a scratch register. This now matches a
template, and a load instruction is emitted, and this
third call to the code generator returns. The second

call now finds that it has the tree
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reg + b

to consider. Once again, there is no match, but the
default rewriting rule rewrites the + as a += operator,
since the left operand is a scratch register. When

this is done, there is a match: in fact,

reg += b

simply describes the effect of the add instruction on a
typical machine. After the add is emitted, the tree is
rewritten to consist merely of the register node, since
the result of the add is now in the register. This
agrees with the cookie passed to the second invocation
of the code generator, so this invocation terminates,
returning to the first level. The original tree has now

become

a = reg

which matches the template for the store instruction.
The store 1is output, and the tree is rewritten to
become a single register node. At this point, since the
top 1level call to the code generator was interested
only in side effects, the c¢all returns, and code
generation for the expression tree is completed; we

have generated a load, add, and store as might have



been expected.

The effect of machine architecture on this scheme
is considerable. For example, on the Honeywell 6000,
the machine dependent heuristics recognize that there
is an "add to storage" instruction, so the strategy is
quite different: b is loaded into a register, and then
an add to storage instruction is generated to add this
register to a. The transformations, involving as they
do the semantics of C, are largely machine dependent.
The decisions as to when to use them, however, are

almost totally machine independent.

Chapter V will consider much of the code
generation scheme for the Harris /6. The design of the
machine dependent tree rewriting rules and Sethi-Ullman
number computations is extremely difficult; an analysis
of a specific example should prove wuseful to future

porters of the portable C compiler.
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CHAPTER III

THE HARRIS /6 MINICOMPUTER

Since many of the design issues involved 1in the
writing of a compiler are driven by the target
machine’s architecture, this chapter introduces the
basics of the /6 machine, and describes their use
within the implementation of the C 1language. The
material in this chapter describing the architecture of
the Harris /6 is mostly from the /6 reference manual,

(61.

1. The Register Set

The Harris /6 has no general purpose registers in
the sense of the PDP-11 or VAX-1l1l architectures. There
are five 24-bit registers available to a wuser in the
main cpu and additional registers may be added with
extra features (such as the Scientific Arithmetic Unit
- SAU, bit processor, external timer, etc.). The
register set is composed of three index registers and
two arithmetic accumulators, as illustrated in Figure
ITI-1. The two arithmetic accumulators may also be
referenced as a pair, the D register, for double

precision integer arithmetic; a byte register, the B

Ak u
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register, is the lower byte of the A register.

~

In the scheme chosen for C, certain registers are
either dedicated, or heavily used for a specific
purpose. The K register is used as the frame pointer
in the stack management scheme (i.e. it is equivalent
to RS on :the PDP=11, or FP on the  VAX-11). The A
register 1is wused when items must be forced into a
specific register, as 1in returning a wvalue from a
function call. Within the compiler s machine model,
the B register is never explicitly referenced, rather a
need for the B register is effected by a request for

the A register.

Two add-on registers are used by the compiler,
the X register from the SAU, and the V register from
the bit processor. The X register is the only register
in which floating point arithmetic may be performed,
while the V register is used for a temporary storage
place for the K register while performing structure

assignments.

The /6 instruction set forces many restrictions
on the use of registers. Virtually all complex
arithmetic operations and all character manipulations
must be performed 1in a fixed register. This problem

has similarities to the even-odd register pairing
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problem of the PDP-11, but  forces a much more
restrictive approach to code generation. For example,
multiplication, division, shifting, remaindering, and
extraction of arbitrary bytes from memory all must be
performed wusing the A register. While this may seem
attractive for overlapping operations without register
to register transfers, in practice it results in just
the opposite; the A register tends to become a

bottleneck during expression calculations.

2. Addressing Modes

Total memory available to a /6 cpu is 256K 24-bit
words. Because of the cpu’s basic architecture and the
corresponding addressing technique, executable code is
confined to the 1lower 64K words of memory. However,
memory above 64K may be addressed by means of indirect
references. Figure I11-2 illustrates the memory

referencing formats available.

2.1. Direct Addressing

The standard memory reference instruction format
allows the direct addressing of 32K words. The value
of 32K words is a constraint imposed by the 15-bit
address field of the instruction word. The addressing
logic divides the lower 64K words of memory into two

areas: 0-32K; and 32K-64K. Under this method, the most
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Figure III-2. /6 Memory Reference Formats



significant bit of the program counter is used to bias
all direct address references. By performing a
- logical-or function between the immediate address
reference and bit %5 of the program counter,
instructions may directly address up to 32K words

within their respective sections of memory.

Modification of a 15-bit direct address by means
of 1indirection (*) and/or indexing (X) can permit an
instruction to address any memory location up to 256K
words. These provisions are discussed in sections 2.2

and 2.3

A special group of 1long branch instructions

permits direct addressing up to 64K words. The
instruction word format for this group 1is shown in
Figure TIII-2. Note that these instructions may be
modified by indirect references (*), but have no
provision for 1indexing. Long branch instructions are

not biased by bit 15 of the program counter.

2.2. Indirect Addressing

Indirect address references permit the cpu to
access up to 256K words of memory. When a memory
reference instruction is decoded, bit 17 (*) of the
instruction word 1is examined. If bit 17 is set, an

indirect address reference 1is indicated. The word
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retrieved from memory when the effective address is
calculated is treated as an indirect address word.
Consequently, indirect addressing references may be
| chained together. The /6 imposes no restriction on the
depth of chaining; however, the stall alarm feature may

be enabled, limiting the total effective memory address

calculation to 128 machine cycles.

The standard indirect format, with its 16-bit
address field, permits access up to 64K words. Up to
256K words can be accessed by the 18-bit field 1in the
long address word. Neither type of indirect address is

affected by the program counter’s address bias.

Bit 23 (*) of either format may be set to specify
another 1level of indirect addressing. Each level of
indirect reference may be individually indexed to

provide further address modification.

2.3. Indexing

A direct or indirect address reference may be
modified by indexing. This operation adds the contents
of a specific index register (I, J, or K) tohuns
address in the current instruction or indirect
reference to determine an effective address. A two bit
field (X) in the 1instruction or indirect reference

specifies which register will be employed in each
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indexing operation.

In the lower 32K memory section, direct address
references may be indexed to access up to 64K words.
However, instructions in the 32K-64K section of memory
may not reference the lower section by indexing, since
all immediate references will be biased by bit 15 of

the pc.

2.4. Byte Addressing

The byte processing group of instructions permits
program manipulation of all three bytes within a memory
location. These instructions are divided into two
classes: those that operate on a standard address
format and always reference byte 3 (the right most
byte), and those that work with a special byte address
format (see Figure III-2) to access arbitrary bytes in

memory.

The set of instructions that work with standard
address formats includes operations to add a byte to
the B register, subtract a byte from the B register,
compare a byte to the B register, and transfer a byte
in memory to/from the B register. The instruction

formats permit both indirect address references and

indexing.
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The collection of instructions that operate on
the byte address format is very restricted. They
consist entirely of instructions to transfer bytes in
memory to and from the B register, and instructions to
increment a byte pointer residing in the I or J
register. All arithmetic operations performed on bytes
inaccessible by a standard address format must be
carried out 1in registers. The instruction to fetch a
byte from memory (emb) uses a byte address constant
placed in the J register to locate the desired memory
location, while the replacement of a byte in memory
(the rbm instruction) employs an address found in the I

register.

3. Data Types

The /6 architecture supports data types for
single word integer arithmetic and floating point
arithmetic. In addition, a double word, double
precision integer data type is supported by a small set
of instructions. Within C, this double word data type
is used for longs, while the standard data type is used
for integer types (i.e. unsigned, int, and short).
Floating point arithmetic is supported by the hardware
only in double precision. The double word data type,
shown in Figure III-3, has a particularly ugly property

to it: the sign bit in the low word must be zero, or
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unpredictable results may occur. As a result, many
conversions and arithmetic operations involving longs

require extensive cleaning up.

4. Stack Management

The /6 instruction set provides no direct support
for  a stack. The architecture is very much FORTRAN
oriented, unlike most of the previous machines to which

C has been moved.

Because of the architecture of the /6, it was
decided that no registers offered to a user process
were suitable for dedication to a stack pointer.
Instead, a memory location was allocated for it. Since
the stack pointer must reside in data space, to allow
creation of a pure text segment, the memory location
can not be fixed, and must be referenced symbolically.
Also, as a result of the limitations of the direct
addressing mode, all references to this memory location
must be indirect to allow its placement anywhere in the
256K word address space. The cost of adding an extra
level of indirection for each reference to the stack
pointer was considered at length. However, to allow

for the eventual creation of programs of maximum size,

one must simply pay the price.
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The C language, as developed on the PDP-11 under

UNIX, has the stack managed by the hardware and the
operating system. The stack is initialized to the top
of the user s logical address space and allowed to grow
downward as needed. A fixed size segment is allocated
for an 1initial stack segment, with memory faqlts
interpreted by UNIX as an indication of the stack
needing expansion. This uniform treatment of memory
faults implies that inadvertant traps, caused by faulty
user programs, expand the stack needlessly. Under
UNIX/24V (the official name for the UNIX implementation
on a 6824/6 cpu) a similar approach was selected. A
users’ stack is treated as on the PDP-11, but the
maximum stack size is set by the loader and is integral
to each executable program. The heuristic used by the
loader to set the stack size is based on the program
size. The user may override the heuristic and specify
the stack size. The reason for having the stack size
vary is related to the /6 virtual memory hardware; e
suffices to say that uniformly starting the stack at
the top of the 256K word address space is too costly in
terms of operating syétem resources. For a complete

discussion of the UNIX/24V handling of the stack the

reader is referred to [26].




<38 %

The implementation of C on the PDP-11 employs two
general purpose registers to manage the stack. R5 is
used as the frame pointer, and the normal hardware
stack pointer R6 (SP) points to the location on the
"top" of the stack. The stack grows down from high
memory, with local variables being referenced via
negative offsets from the frame pointer, and function
arguments, placed on the stack prior to the register
save area, referenced via positive offsets from the
frame pointer (see Figure III-4). The management of
this stack arrangement is handled by a pair of 1linkage
routines, csv (for saving live registers on procedure
entrance) and cret (for cleaning things up on procedure
exit). For the /6, the management scheme is virtually
identical to that used for the PDP-11. The register
save area differs in size (tpere are no register
variables on the /6, so only the frame pointer and
stack pointer need be saved), and the stack pointer
points to the next open location on the top of the
stack (to minimize the number of pushes required when
passing parameters for procedure calls). At one point
there was some thought to expanding the routines csv
and cret in-line, however the eventual coding of these
routines showed this to be too costly. For a more

detailed dAiscussicn of the C calling sequence consult

(171.
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CHAPTER IV

THE PORTING PROCESS

The porting process basically consisted of three
steps:

1) Create a version of the compiler on a PDP-11/45
running UNIX, which generated symbolic assembly
code for the /6.

2) Cross-compile the compiler to create a compiler
running on the /6 under the native /6 operating
system, VULCAN.

3) Re-fit the compiler for UNIX/24V.
While there may appear to be no reason for step 2}, @&
number of major stumbling blocks reguired the
intermediate step of going to VULCAN. Some of the

problems encountered were:

1) The 11/45 had no compatible physical medium with
which to communicate with the /6. All files
transfered from the 11/45 to the /6, and vice
versa, had to be sent over terminal lines at
3¢ baud (/6 => 11/45) and 1200 baud (11/45 =>
/6 with such an inefficient method for
communication it became imperative to minimize
the amount of work carried out on the 11/45.
Consequently, little UNIX/24V development was
carried out on the 11/45.

2) There were only two people involved in the
majority of the project, and moving directly to
a UNIX system would have required a /6 assembler
and 1link-editor running on the 11/45, plus
binary conversion programs to be able to boot a
system directly off of tape or disk. By moving
to VULCAN first we were able to take advantage
of the existing assembler, link-editor, and

debugger.

- 40 -
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The existing VULCAN environment, augmented by
the C compiler and standard I1/0 library, allowed
parallel conversion of user programs such as the
shell and editor.

Expanding the first list then, a more detailed list of

the steps taken in the porting effort would be:

1)
2a)

2b)

2c)

24)

3a)
3b)

3¢)

34)

4)

5)

A C compiler was developed on the 11/45.

A standard 1I/0 library was tailored to " the
VULCAN operating system.

UNIX/24V development work was carried out on the
1%,

The C compiler was cross-compiled and moved
(numerous iterations) via the terminal link.

The C compiler was modified to eliminate PDP-11
dependencies. This mostly involved alterations
to data structures that reguired a long on the
PDP-11, but only an int on the /6.

A swapping version of UNIX/24V was brought up.

YACC was moved to VULCAN to make the compiler
completely self-sufficient under VULCAN.

A version 7 shell was brought over to UNIX/24V,
while a UNIX/24V assembler and link-editor were
being written.

The C compiler on VULCAN was modified to run
with the UNIX/24V assembler, then compiled into
.0 files and moved to UNIX/24V where it was

linked.

All other necessary user programs, not already
on UNIX/24V, were moved.

The UNIX/24V kernel development was moved to
UNIX/24V.

After the last step, UNIX/24V was completely self

sufficient. The current programming environment

includes all essential programs, such as the shell,



editor, assembler, 1link-editor, vyacc, and compiler,

plus numerous other tools such as make, sed, etc.

Because the compiler had to run under the VULCAN
operating system for a 1long period of time (during
kernel development), some compromises in the cross-
compiler had to be selected. The VULCAN assembler and
loader were not to be the eventual assembler and loader
under UNIX, so little effgrt was put forth to make the
compiler compatible with these programs. Rather a
program external to the compiler was constructed to
massage the assembly language output generated by the
compiler into a format suitable for input to the VULCAN
utilities. This post processing program, called cpop,
was developed by the A. R. Jennings Computing Center in
accordance with a previous agreement. The decision to
handle the stay on VULCAN in this manner was caused by
certain deficiencies in the assembler and 1loader (see

chapter VII for a more detailed discussion).

The actual process of moving the portable
compiler from the 11/45 to UNX/24V was fairly painful.
The step between the 11/45 and VULCAN, over. a 306 baud
terminal 1line, took a number of weeks. This process
was complicated by the involvement of cpop. Early on,
bugs were traced as often to cpop as to the compiler,

though very quickly the compiler became the standard
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culprit. Once the compiler initially reached the /6,
very few trips back to the 11/45 were made. About one
week after the compiler was deemed "usable" on the /6,
it began to be fully used for kernel development. The
trip from VULCAN to UNIX/24V was easier, but no less
painful. While files could be moved by magnetic tape,
the variable here was the assembler. The assembler was
initially tested by use of a "mini-loader" (a simple-
minded 1loader which relocated only a single file into
the executable a.out format), but many instruction
table typos and a few misunderstandings of the
architecure resulted in a number of weeks worth of
debugging. Once the assembler was stable, it was
straightforward to move the compiler, and the UNIX/24V
kernel soon followed. Since it is always interesting
to look back on the work spent in such a project,
Figure 1IV-1 has been included to allow comparison of
the actual time spent on each phase of the porting
effort to that which was originally expected. This

figure should be taken lightly, as division of certain

steps is nearly impossible.

The initial testing of the compiler involved the
creation of a "validation suite”. This collection of
test cases was used extensively during the early

debugging phases that took place on the 11/45. Once
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the compiler was moved to the VULCAN operating system,

however, regression testing using the test cases was
virtually abandoned, since the size of the test suite
(approximately 200 files) required an extraordinary
amount of compile time. Later testing usually
consisted of specific test cases, followed by a
complete recompilation of the compiler and operating
system. While abandonment of the validation suite is
not a recommended practice) most bugs encountered at
this stage were usually as a result of "edge effects”
in the Sethi-Ullman number calculations, and fixes had
virtually no affect on unrelated constructs. If the
compiler had been an order of magnitude more efficient
(see chapter VIII), the use of the validation suite
would have been possible. However, due to the large
number of changes being made to the compiler during its

stay on VULCAN, lengthy testing of this sort was not

feasible.

In addition to the basic compiler being moved to
VULCAN, a prerequisite was the creation of a standard
I/0 1library to interface to the VULCAN operating
system. The C language provides no 1/0 support within
the language. Thus, in order to move the compiler from
one machine to another, a friendly I/O environment must

be pfovided. The standard I/0 library was brought up
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in two stages. First, a version of the library was
implemented under the Wisconsin C compiler. This
allowed for testing of many of the algorithms involved,
as well as the development of a small number of wuseful
utility programs. When the cross-compiler was ready
for use, the library was then recompiled on the }1/45
and moved along with the compiler. The stack design of
the Wisconsin compiler precluded any possible mixing of

compiled code.



CHAPTER V

MOVING THE PORTABLE C COMPILER TO THE /6

L The Machine Model

As described in chapter II, the portable compiler
has an abstract machine model to which a target machine
must be mapped. Unfortunately, the /6 failed to fit
into this model. The first problem involved the index
registers. With only two register classes available in
the original model, the /6 register set was divided
such that index registers and arithmetic accumulators
were in the same class, while the floating point
register was kept in a class by itself (see Figqure V-
1). This caused considerable problems, the most
difficult being the allocation of an index register.
Since the machine model assumed all registers placed in
the same class were identical, it was not possible to
guarantee allocation of an index register when needed.
For this reason, and because of problems encountered in
handling the allocation of the D register, it was
decided that more than two register classes were
necessary. Since the abstract machine model was to be
altered, it was decided to tailor it specifically to

the needs of the /6 (to minimize the work that had to

R
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be done in other machine dependent portions of the
compiler). The register classes shown in Figure V-1
were the result of these modifications to the machine
model. Note that many of the register classes overlap,
and that the class SDREG contains only the D register.
The choice of placing the D register in a separate
class implied that the register allocation scheme no
longer needed to be concerned with register pairing.
However , this decision also implied that the allocation
routines were now required to handle the problem of
physically overlapping registers. Certain of the
register classes (SIREG and SJREG, in particular) were
added soley to allow recognition of specific shapes in
the code tables; these classes are never requested for

allocation.

The modifications that were necessary to
implement the new machine model were simple. The
register allocation routines were altered to be aware
of the new register classes. The low level allocation
routines no longer needed to be concerned with register
pairing, but instead had to handle the physical
overlapping of the D register. Finally, the shape
matching routine used in the template matching

algorithm were made aware of the new shapes associated

with the new register classes.
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2. Address Arithmetic

By far the most difficult problem in moving the
compiler involved the handling of address arithmetic.
The difficulty stemmed from the /6°s basic word
addressable architecture, and the format of the

pointers used to retrieve bytes from memory.

To understand some of the difficulties
encountered, one must consider how the compiler
normally forms addresses. Consider the following code

sample,

int foo([20];

P S . ey £

On the PDP-11 and VAX-11, a portion of the expression

tree to be passed to the second pass of the compiler

appears as

B, 0ty ses
+, PTR int, ... '
ICON, _foo, PTR int, ...
<expression>, int, ...
where the expression contains the index in bytes.
Howevér, on the /6, the appropriate index should be in

words, not bytes. The index is formed, in a machine

dependent manner, by converting the internal
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representation of the offset, maintained 1in bits, to
the numeric value it should have for transmission to
the code generator. By interpreting the type of the
node to which an offset is to be added, in most cases
the conversion from bits to bytes/words 1is obvious.
However, not all cases are so obvious. For example,

i consider another sequence of code,

struct foo {

int a;
char b;
} bar([10];

::; bar[..].a;

«o= bBarf..].0;
This example hits at the core of the problem. The
structure contains two members, one a character, the
other an integer. The natural addressing structure on
the /6 for each of these items is very different; one
may be accessed by indexing, while the other requires a
byte pointer. Consequently, all offsets constructed in
addressing the integer member must be in words, while
offsets for the character should be in bytes (in order
B to optimize the address calculations). If one

" considers the address formation as the trees are built,

both have the common base
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+; PTR strty, ...
ICON, bar, PTR strty, ...
PMCONY, int, ...
<index expression>, int, ...
ICON, <width of structure>, int, ...

The PMCONV node refects the semantics of addition to a
pointer in C. The addition results in the index
expression being multiplied by the width of ° the
structure, so that one may point to the appropriate
element of the aggregate. At this point in the address
formation, the tree building routines do not know which
element of the structure will be accessed (if, 1indeed,
an element will be addressed at all). Thus, a decision
as to which type of calculation (byte or word) should

be performed for the offset is impossible.

The problem of deciding between byte and word
offsets permeates much of the machine dependent portion
of the first pass of the compiler. As shown above,
there are cases where the compiler can not, in a
straightforward manner, decide whether to create an
address offset in bytes or words. This raises the
possibility of leaving all offsets in bytes.
Unfortunately, this is far too expensive to be a viable
solution. Assume all address offsets are maintained in
bytes. If one now considers the first example of this

section, the original tree used to form the array index

would appear as
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U*' int’ "o
SRR int, ...
ICON, foo, PTR int, ...
PMCONV' int ’ LR
<expression>, int, ...
ICON' 3' int' .- e
The 3 in the last line indicates that each element of
the array 1is 3 bytes wide (since the /6 has a 24-bit
word) . Because the offset is maintained in bytes, the
PMCONV node can not be collapsed to the previous form
for the tree. Without intervention before the second
pass of the compiler to convert the byte count to a
word count, this expression tree will have incorrect
code generated for it. The problem of intervening in
instances such as this is very difficult, thus one may

conclude that maintaining all address offsets in bytes

is impractical.

Since it has been shown that both byte and word
offsets are reguired, a logical guestion to ask is how
they might be distinquished? Within the original
scheme of the compiler it was not possible. 1In most
cases, offsets are merely integer constants -- ICON
nodes. However, the only distinguishing characteristic
of an 1ICON node 1is its type. To handle the
identification problem, a new characteristic was added
to all ICON nodes describing their "offset-type". That

is, a new node element, sym x, was added to all ICON



nodes. Sym x has one of the values BYTES, WORDS, or
NOTYPE to indicate that the ICON is an offset in bytes,
an offset in words, or a constant introduced outside of

the compiler (e.g. a program constant).

By using this added information, the problem of
forming the appropriate offset type (bytes or words)
may be delayed, in the most difficult cases, until
information is available to make a decision. When a
decision is formed, a pass 1is made through the
expression tree to convert appropriate expressions.
For instance, if we reconsider the structure reference,
we find that the partial tree from before takes the

form,

4+, PIR Strty, «..
ICON, _bar, PTR strty, ...
PMCONV, int, ...
<index expression>, int, ...
ICON, 2 (WORDS), int, ...
The size of the structure is maintained in words, as
all structures are aligned to word boundaries according
to the semantics of C. Now, if the expression refers

to the integer member of the structure, the resultant

expression tree is,



%, iat, ...
25 PR Ant, ...
ICON, bar, PTIR int, ...
o 1 - | TR
<index expression>, int, ...
ICON, 2 (WORDS), int, ...

wWhile the "intermediate" tree for the character member

18,

M ehat,; v
e SRR ehary e
PCONV, . PTR char, ...
£, PIR SEXLY, eoe
JOOM, bar, PTR sErty: ves
PMCONV, int, ...
<index expression>, int, ...
ICON, 2 (WORDS) , ARk, wss
ICOR, 1 (BYTES), Int; s

This tree is intermediate because the word offset has
yet to be converted to a byte offset. To create the
final tree we must consider first what happens to the

PMCONV node. For the /6, this is always transformed to

straight multiplication:

U*, char, ...
+, PTR char, ...
PCONV, PTR char, ...
+, PPR SLYEYe wios
ICON, _bar, PTR Strty, es.
*, int, ...
<index expression>, int, ...
ICON, 2 (WORDS), int, ..s
ICON, 1 (BYTES), PR e,

However, a machine independent local optimization will

normally convert this to a left shift (see section 3 of
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this chapter), since one of the operands is a constant
and a power of two. Thus, the true form of the

intermediate tree is,

D%, char,; ...
- PBR chat s
PCONV, PTR char, ...
4, "PPR SELtY, s
TCON,  bar, PIR SELEY) v
"y T
<index expression>, int, ...
ICON, 1 (WORDS), int, ...
ICON, 1 (BYTES), int, ...

Now, to convert this to a suitable byte address, a pass
is made through the trée, converting all word offsets
to byte offsets. The construct involving the << node
is recognized as the result of an optimization, and

converted to the appropriate byte calculation. The

result of the transformations is,

Px, char, «+-
+, PTR char, ...
PCONV, PTR char, ...
+; PTR SELtY, +.s
ICON, _bar, PTR strty, «..
k., fnty woew
<index expression>, int, ...
ICON, 3 (BYTES), int, ...
ICON, 1 (BYTES), Ty wisis

The following list summarizes the reasoning

behind the design of the eventual scheme for handling
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address calculations:

1) The first pass of the compiler must handle the
machine dependent translation of all offsets from
bits to bytes/words; the second pass of the

compiler expects all this work to be previously
performed.

2) Since the /6 has two distinct techniques for
addressing memory, one for word-oriented items,
the other for bytes, offsets must necessarily be
maintained in both bytes and words. '

3) The simple cases are handled with little trouble
by interrogating the type of the expression to
which an offset is to be added; the only
difficulty exists 1in the formation of addresses
for structures.

4) The intermediate address calculations involving
structures are always performed in words since
the constants involved will all be offsets to a
word-aligned memory location, and because the
resultant address calculation may not be used for
the addressing of an element of basic type (e.qg.
bar[3], for the above example, 1is a perfectly
legal construction).

5) All references to items of character type (char
and unsigned char) that involve address offsets
have these offsets maintained in bytes (with the
exception of NAME nodes, which will be described
shortly) .

The result is that the second pass of the compiler may
assume any address construction involving a word-
oriented item will involve only word offsets, while

offsets for byte items are almost always in bytes.

The reader may be asking why all offsets involved
in byte address calculations must be maintained in
bytes? In the previous example dealing with the

structure, it appears that a more viable approach to



the calculation of the byte pointer is to form the word

address, convert to a byte pointer, then add the byte
offset left over. Clearly this approach would result
in the same address as the approach taken. There are
two problems with such an attack. First, the cost in
manipulating byte pointers, both in conversion and
calculation, 1is enormous; this approach tends to
increase the number of such calculations. Second, the
compiler attempts to minimize the number of byte
pointer calculations by combining constants wherever
possible; by maintaining offsets in both words and
bytes in the same expression subtree, such
optimizations are greatly complicated. In general, the
resulting code for byte pointer calculations has been
found to be very good. This is due mainly to the

approach taken in handling address offsets.

In the previous discussion, it was assumed that
the character item the compiler was attempting to
address was in an arbitrary memory location. In many
instances this is not the case, and the compiler may
use an alternate form of addressing which 1is far
cheaper than creating a byte pointer. For those items
located in the third byte of a word, the character may
be retrieved by supplying only the word address of the

word it is contained in. In addition, while arbitrary
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bytes may only be brought to or from memory when byte
pointers are used, bytes addressable in this special
case may be wused 1in limited arithmetic calculations
(addition and subtraction). As a result, the compiler
trys, whenever possible, to establish the feasability
of this word addressable format. Cases where byte; may
be retrieved in this manner 1include those bytes at
constant offsets within aggregate structures (both on
the stack and in "main" memory). When such an
addressable byte 1is recognized, if possible, the
address offset 1is folded to form a NAME node. The
second pass understands that all NAME nodes of
character type are examples of this special addressing

form.

Further candidates for the above addressing
format are single characters allocated static storage.
However, some problems arise in performing address
calculations in this manner. The portable compiler has
a simple notion of the way bytes are 1laid out in a
machine word. One may specify only that bytes are
always placed left to right, or right to left. Since
the /6 is word addressable, the attachment of a label
to a memory location (in the assembler) allocates a

word of storage, not a byte as the portable compiler

likes to believe. Consequently, the compiler assumes
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that a statically allocated character is allocated a
memory cell (on the /6 a word) and placed in the first
byte of a word (on the /6 the left most one). Thus, if
one is to arbitrarily assume that statically allocated
bytes are situated in the third byte (to aid in
addressing) , inconsistencies may appear. For example,
if the wuser attempts to 1initialize a statically
allocated character or take the address of such a
variable (using the & operator), the result will
reflect the notioﬁ that the value 1is 1located in the
first, rather than third, byte of the word.
Consequently, to optimize addressing of static
character items, some modifications (special cases)
were necessary to bypass the compiler’s idea of byte

layout in statically allocated characters.

3. Sethi-Ullman Number Computations

The movement of the portable C compiler to a new
machine requires the creation of a number of machine
dependent modules which are hooked into the machine
independent portions of the compiler. Examples of
these moduleé include those wused to handle tree
transformations 1in processing type conversions, the
generation of code for subroutine prologs, epilogs,
switch statements, etc., and the compilation of

expressions. In the process of compiling expressions
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one of the most important routines calculates Sethi-

Ullman numbers for parse trees. As described in.

chapter II, Sethi-Ullman numbers are intended to
reflect the minimal number of registers needed to
evaluate an expression. The numbers are calculated
when a tree is initially handed to the second pass of
the compiler (be it from an intermediate file or
directly), and after every transformation is performed
on the tree (e.g. after a code seguence has been
emitted) . Each node of an expression tree has a
Sethi-Ullman number stored in it to reflect the
relative difficulty of evaluating the tree rooted at
that node. This section will describe the algorithms
employed in the /6 compiler for calculating Sethi-
Ullman numbers. It should be noted that the problem of
calculating "perfect"” Sethi-Ullman numbers (i.e.
estimating the minimal number of registers required to
evaluate an expression tree) for any but the simplest
machines is NP-complete [3]. Thus, the algorithms found
in almost all versions of the portable compiler are
swamped in heuristics, and the creation of such

algorithms should be considered at best an art.

The Sethi-Ullman computations normally create a
number for a node dependent on the numbers of each

descendent, and the operator of the node under
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op, <type>, su, ...
1eft, <typeld, sul, ...
tight, <typer>, sur, ..
That is, the calculation of su is dependent on op, sul,
and sur. In addition, in most cases, the type of ‘each
node involved may come into the calculation. For a
leaf node, the values for sul and sur are assumed to be
zero. For machines with an orthogonal architecture,
computations may normally be grouped according to
operator classes or by the operand types. For instance,
for the PDP-11 and VAX-11 virtually all simple
arithmetic operations have identical addressing modes
and allowable source and destination locations,
allowing computations to be identical. However, the /6
instruction set has numerous special case restrictions
and supports a highly iregular collection of operand
addressing modes. Thus, the Sethi-Ullman computations
for the /6 tend to be extermely complex, with almost
every operator having separate calculation rules.
Further, the many restrictions on register usage often
requires computation for an operator be overestimated,
to guarantee the availability of a necessary register.
For instance, all operations involving longs must have

the D register available for use. If the Sethi-Ullman
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number computed for that node were to specify it needed
only two registers (the size of the D register), the
code generation scheme could conceivabiy be left with
the I and J register which would satisfy its
requirements, but prevent it from generating code.
Therefore, in many instances, operations involving a
long must specify a requirement for all of the
registers to insure that the D register will be
available for allocation. This difficulty in reserving
registers required the handling of €floating point
operations, and operations involving longs to treat the

/6 almost as if it were a single accumulator machine.

All directly addressable items -- constants,
static memory 1locations, indirect references, etc. --
are assigned a value of zero. Indirection operators
(U*) normally require one extra register to hold the
address. Certain indirect references, such as those
requiring character extractions, will always require a
register. Assignment operations are manipulated to
insure that the right hand side is placed in a register
when the expression is not addressable. Care must be
taken in handling assignment statements to make sure
that the right hand side isn’t placed in a register

before the right hand side is addressable. For example,

the construct
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*f(a) = b

if handled as previously specified, would result in the
right hand side being placed in a register before the
function call was made, but function calls require all
the registers to insure all scratch registers will be

free.

Logical operations (i.e. comparisons) have the
most compact calculation rules of any class of C
operators. Depending on the size of the object
involved in the comparison, the following calculation

is used:

su = min (max (sul, sur+size),

max (sur, sul+size))
The size is the number of registers required to hold an
item to be compared: 1 for an integer or character, 2
for a long or float. The calculation rule reflects an

attempt to evaluate the more difficult side first.

Storage conversion operations are special-cased
to recognize certain of the more difficult
possibilities. The conversion of a pointer to an
integer type is a no-operation, with the exception of a
byte pointer. This conversion is very expensive,

requiring all but one of the scratch registers. Since
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the resource requirements are so great, and certain
specific registers are needed to perform the operation
(the A and E registers), an SCONV node involving a byte
pointer is reserved all the registers. The handling of
conversions to a long format requires the D register.
However, as described at the beginning of this section,
the allocation of the D register proved to be a
difficult problem, so storage conversions to a long

also require all the registers.

Assignment operators (i.e. +=, -=, etc.) are very
difficult to evaluate, because the /6 has virtually no
instruction support for them. Consequently, the machine
dependent rewriting routines almost always transform

these operations to their eguivalent form,

el op= e2 => el = el op e2

after any side effects in the left hand side have been
"weeded out". Thus, the calculations for assignment
operators are used mainly in guiding Sethi-Ullman
calculations higher up in the tree. In general, the

handling of these operators is broken into two classes:

those involving single word items, and all others. The

latter category encompasses character items and double

word items (longs and floats). If the assignment

operator involves word-addressable items, the
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calculation is identical to a simple assignment
operation (=). This allows the /6 instructions to add
a register to memory, add a constant to memory, etc. to
be used without penalty. Those operations that will
require rewriting, as discussed previously, will be
transformed and recalculated to reflect the true nature
of the work which must be performed. All other cases
fall into the difficult category that must be handled
very carefully, and thus are specified to require all
registers. One should note that the condition implied
by the 1latter decision, while appearing to be costly,
exists for only a "short period of time", since the
operator is almost immediately rewritten. Thus, the
difficulty in performing the operation is merely for
the benefit of calculation at a higher level in the

expression tree.

The handling of normal arithmetic operations (+,

-, /, %, *,etc.) involves the most complexity since

the gquality of code generated for these operators has a
heavy impact on the quality of code generated for many
other operators (due to the way assignment operators

are handled). The operations *, /. %, <<, and >> all’

require the A2 and E register, D register, or just the A

register. After a number of months of trying various

heuristics to optimize usage for these operations, it
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was decided to reserve all of the registers when
handling these operators. This causes complex
expressions involving one or more of the operators to
invariably require a store into memory, but guarantees
that compilation of expressions involving the operators
will be successful (i.e. won’t result in an inability
to allocate the needed register). The difficulty in
approximating register needs for these operators
indicates that expressions involving the operators are
good targets for future optimization (see chapter VI).
The remaining operators, + and -, require close
scrutiny of the types involved. This is because, for
instance, the addition of two integers requires far
less wer-k than the addition of an integer to a byte
pointer. A myriad of heuristics are 1involved in
computing estimates for operations involving byte
pointers; the actual code is the definitive source for
an exact description of what goes on. The overall
approach to handling these operators, when word-
addressable items are involved, closely resembles that
used for logical operations. The rule applied to

expressions where the left hand operand 1is directly
addressable is
su = max (size+size,

min (max (sul, size+sur) ,
max (sur, size+sul)))



This calculation, as for logical operators, reflects an

intent to place the more difficult expression in a
register first, then the easier. The possibility of
both operands having to be placed 1in registers is
reflected in size+size. For expressions whose right

hand operand is addressable, the simple estimate

su max (size, sul)

suffices. This usually causes the left hand
(unaddressable) side to be placed in a register before

the operation takes place.

The remaining calculations of interest handle
PACONV and PSCONV nodes. The work here involves
checking to see whether the operands will require a
full calculation, or whether an optimization may be
per formed (see chapter VI). 1f the offset operand is a
constant, the code emitted will not require all the

registers to perform the calculation, so fewer

registers are needed, and fewer stores into memory will

be generated.

The rules described comprise the majority of the

Sethi-Ullman calculation procedure. However, certain

side effects may also take place as a result of

calculations. An attempt is made to place the tree in



a canonical form, to insure consistent tree shapes may

be expected in the rewriting routines. These canonical
shapes normally are meaningful only when dealing with
commutative operators, such as +. The rules employed
in canonicalizing the trees are:

- 1if a float and double are involved, place the
double on the right ‘

- 1if a character and a word item are involved,
place the character on the left

- 1if a long and something other than a 1long are
involved, place the long on the right

- 1if two longs are involved, place the more complex
one on the right

- 1if the right hand side has a larger Sethi-Ullman
number than the right, swap the operands

The code should be consulted for further elaboration on
this simplified description. The result of these
transformations is to place the more difficult operand
on the 1left of an operator. Rewriting routines may
then assume this without checking the Sethi-Ullman
numbers. (One shold note that once a guantity has been
placed in a register it is never moved about in the
tree by a canonicalizing transformation; this avoids
destructive interference between the Sethi-Ullman

computations and the machine dependent rewriting

rules.)
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4. Register Allocation Strategies

The register allocation strategy in the portable
compiler is divided 1into two sections -- a machine
independent portion and a machine dependent portion.
The machine independent portion of the strategy
involves keeping track of those registers which are
busy, allocating registers within a certain class, and
other bookkeeping-type chores. The machine dependent
portion allows a designer to specify, in a more exact
manner, register needs or preferences. Each node in an
expression tree has a member, rall, which is used by
the machine dependent allocation strategy to indicate
if a specific register is needed or preferred in the
calculation of the expression rooted at that node.
Thus, if an expression must be calculated into, say,
the A register, the designer may communicate this need
to. the machine indepc:ndent allocation routines by
placing the code for the A register in rall and or-ing
in a flag that specifies the result of the calculation
must be placed there (a MUSTDO flag). When code is
for the tree rooted at the node, the machine

generated

independent routine which allocates registers will take

this information 1into account. If the result of
compiling the expression is not the required register,

a transfer will automatically be generated to satisfy




the MUSTDO condition. Should this transfer fail due to

the register being busy, the compiler will abort. The
specification of a register preference allows the
designer to “"steer" expression calculations away from
needed registers, or allow possible optimizations to
take place (e.g. keeping things in the A register on
the /6 for an &, |, or operation). This section will
describe the strategies 1involved in handling the
machine dependent portion of the register allocation
scheme. As in the Sethi-Ullman computations,
algorithms provided here are totally heuristic, driven
by an attempt to minimize the cost of compiling each

expression.

The A and E registers, alternatively the D
register, have already been mentioned as major
bottlenecks in code generation. Consequently, a large
portion of the register allocation strategy is involved
in steering operands away from these registers. For
instance, calculation of the expression a+b, where a is
a character pointer and b is a byte offset, may best be

done by placing a in the A register and b in the I or J

register before performing the actual calculation.

Should b end up in the A or E register, it would have
to be moved before a could be placed in the A register

and manipulated (shifted and divided) . HencOuiass
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register allocation routine tries to steer b away from
the A register, though it is not always possible
(suppose b were actually f(), then the value returned
from the function call would necessarily reside in the
A register). Further work involves the requirements of
the emb and rbm instructions. These instructions, for
extracting and replacing bytes in memory, respectively,
require one of their operands, the byte pointer, be
placed in the J and I registers (J for an emb, I for an

rbm) .

Requirements of floating point operations are
fairly simple, because of the simple structure of the
floating point unit. Division reguires that the 1left
side be placed in the X register, while the right
resides in the D register. Negation (U-) operations
act on values only in the X register. All other
requirements are handled in the code tables by explicit

cases that perform register interchanges when the

operands are incorrectly situated.

Function calls, where the function is not

directly addressable (i.e. a pointer to a function is

involved) , must have the address placed in an index

register. Arbitrarily, the I register was selected.
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Exclusive-or, bit-or, bit-and, and multiplication
are most efficiently performed when one of the operands
is placed in the A register. Therefore, both operands

of these operators show a preference to be placed

there.

Division and remaindering must have the left
operand in the A register and the right not in either
the A or E registers. Thus, the 1left operand is
MUSTDO’d into the A register and the right into the I
register. Most of the time the right operand will not
have to be placed in a register, but in case it
requires evaluation prior to the right hand side (a
function call, for instance), this requirement will

keep the A and E registers free for allocation.

Variable 1left and right shifts cause some
problems on the /6 because the instruction set supports
only shifts of a constant number of bits. To handle
this weakness and insure reentrancy, tables of shift
instructions are available in the C run-time library.
A variable shift, then, performs an "execute memory",

exm instruction, after placing the value to be shifted

in the A or D register. To execute the correct shift

instruction out of the tables, the amount to be shifted

must be placed in an index register and then used to

index into the shift tables. Thus, reqister allocation
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requires the 1left operand be placed in the A or D
register (MUSTDO’d in) and the right operand placed in

an index register.

Assignments involving characters reguire that the
character to be manipulated be placed in the B register
and that the pointer to the memory location reside in
the I register. Since the B register 1is never
allocated by the allocation routines, the A register is
requested instead. To steer intermediate calculations
away from the I register, assignment operators force
the left hand side’s address to always be placed in the
I register and the right hand side’s address in the J
register. The specification of I and J registers for
addresses involved in character pointer manipulations
often results in extraneous register transfers. This is
because the decision to place an address in the I or J
register is made at the assignment operator level in an
expression tree, and forcing this decision on lower
level calculations in the same tree often results in

previous allocation decisions being reversed.

Addition, subtraction, PACONV, and PSCONV

operations are primarily concerned with steering

expressions into the most cost efficient configuration.

The handling of character pointers is best done by

placing the byte pointer (word address for PACONV and
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PSCONV nodes) in an index register and the byte offset
in the A register. If one or more of the operands
fails to be situated correctly special cases in the
code tables will have to generate register transfers or
interchanges to set the operands up correctly before a
calculation is performed. Usually, something of .this
sort occurs only when an operand is tied to a register
by a previous register allocation (for instance a

function call).

Storage and pointer conversions require the 1left
operand be placed 1in the A or D register when a byte
pointer or long 1is involved. These are  MUSTDO

situations.

The overall scheme of register allocations can
best be seen 1in the handling of the assignment
operators. The compiler attempts to maintain address
type operands lying to the left of an assignment
operator in the I register and those lying on the right
in the J register. Much of the reasoning behind this
scheme is due to the handling of characters, but it
also is applicable to word oriented items (in forming
OREG nodes by indexing off the I or J registers).
Register transfers or stores into a compiler-generated
arise when expressions Cross the

temporary may

"borders" imposed by the assignment operators. This may
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be seen in expressions 1like

*(p=qg+n) -=a*b

Where nested assignment statements are involved,
incorrect placement of the operands is often observed.
The resultant register transfers are very difficult to
optimize out, since they reflect a belief, on the part
of the compiler, that an expression should go in a
specific register, and it doesn’t recognize its error
until deep into the calculation. Thus, to eliminate
the register transfer, it is usually required to rework
many previous calculations to insure the final result
will reside 1in the correct register, thus eliminating

the register transfer.

5. Machine Dependent Rewriting Rules

Whenever a search of the code tables for a match
of the current expression tree fails, the tree is

handed to a machine dependent rewriting routine. The

routine is expected to manipulate the tree in such a

way that another search of the code tables may result

in a match. Manipulations wusually take the form of

evaluating a portion of the tree into a register or

compiler temporary, though it is not required that one

of these actions take place. Further, the
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transformation on the tree needn’t be of a "global"
nature. Rather, only a small portion of the tree may
be manipulated. Should further rewriting be required,
the same routine, or a similar one may be called again.
The process of rewriting trees 1involves close
cooperation between all the rewriting rules as well as
cooperation with the Sethi-Ullman calculation routine
and the register allocation strategy. Since the
rewriting of trees may not be successful, the compiler
maintains a count of the number of recursive calls it
makes to the rewriting rules to avoid infinite

recursion.

The rewriting routines are divided according to
the class of operators on which they act. For
instance, routines must be supplied to rewrite binary
operators, assignment operators (both =, and op=
types), increment and décrement operators (++ and --),
sfructure assignment operations, etc. This section
will consider the work performed by the rewriting
routines used in the /6 compiler. The focus will be on
the general "attack" used in handling an expression

tree; each rewriting routine will be considered

separately.

The routine offstar is called whenever an

———

indirection (U*) operator is to be rewritten. Offstar
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tries to form an OREG node whenever possible. This may

be done if a tree of the form

ur, Ctype>, ...
+/-' <type>' LI
{expressionl>, ...
RO, eav

is present. The subtree labeled expressionl must be

placed in an index register to allow indexing to be
used with the constant offset. The types involved are
important, as a character pointer may not be used in an
indexed addressing format. However, should a PACONV or
PSCONV node 1lie wunder the U* operator, indexing is
possible if a constant offset is present and the offset
is "well formed" (the constant must be a number, say n,
with n+l mod 3 = ¢). If it is not possible to form an
OREG node (i.e. no +, -, PACONV, or PSCONV is a
descendent), the subtree is forced into a register to

allow a straight indirection to be performed.

The routine setasop 1is wused to handle op=

constructs. In most instances, the /6 instruction set

is not equipped to efficiently handle these operators,

SO rewriting transforms the tree to an equivalent form:

el op= e2 => el = el op e2

after any side effects have been removed from the left
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hand side. As one might expect, recognizing side
effects is a nontrivial chore. The scheme used to
recognize them relies heavily on the Sethi-Ullman
calculations. The routine assumes that a Sethi-Ullman
number greater than zero indicates some calculation
must be performed on the left hand side. Consequeqtly,
it tries to "evaluate out" any side effects before
transforming the tree. Unfortunately this 1is not

always possible. Consider the expression

* (p+3) op= f()

Should the left hand side be partially evaluated into a
register before rewriting, the function call on the
right may be executed with one or more scratch
registers occupied with temporary calculations. The
choice here is to hold off evaluating the 1left hand
side, causing it to be evaluated twice, or to try to
place it in a temporary memory location. The code
generator won’'t place the expression in memory on its
own, since it can’t possibly have a Sethi-Ullman number
greater than the number of free registers (the
requirement to form a store operation), so setasop
to make a decision for itself. Since most

would have

instances do not require a store, arbitrarily storing

L work
everything would be very costly. However, the
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involved in optimizing store selection is also very
costly. Thus, the routine chooses the first approach
described: when a complex calculation is being
performed on the right hand side that might possibly be
a function call, ﬁhe left hand side 1is not evaluated
until after the tree has been rewritten. This app;oach
leads to instances where poor code will be generated,
but avoids adding a great deal of complexity to the

rewriting process.

The remainder of setasop deals with optimizing
those operations which may be performed with the add
register to memory and add operand to memory
instructions. To allow use of these instructions the
right hand side is scrutinized for constants,
registers, etc. 1If use of one of these instructions is
possible, setasop delays forcing full evaluation of the
right hand side, attempting instead to make the left

hand side addressable, in the hopes that one of the

instructions described may be applied.

Straight assignment operations are handled by the

routine setasg. This routine, and the routine to handle

binary operators, plays an important role in the

overall rewriting scheme since most assignment

operators are rewritten to form a binary operator and a

i i i outine is fairl
simple assignment. Therefore, this r %
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complex. The /6 has no memory to memory transfer
instructions, so the right hand side of an assignment
operator must always be placed in a register (with the
exception of an assignment of =zero or -1). While
placing the right hand side in a register is the main
priority of the routine, it must be careful not to tie
up a register needed for an address calculation on the

left hand side. For instance, the expression

foo[a*b].bar = ¢

will probably require the A, and possibly the E,
register td perform an address calculation for the
structure reference. Therefore, setasg can not
immediately place the right hand side in a register.
Fortunately the Sethi-Ullman numbers may be wused to
decide when the left hand side is complicated enough to
require an approach different than simply placing the
right hand side in 2 register. The result is that the
left and right hand sides are scanned for indirection
operations and the 1like, with calculation priority
going to the one with highest Sethi-Ullman number.
This approach is clearly not infallible and has led to
a partial evaluation of one side has

a few cases where

resulted in the other being untenable (the compiler

reacts to such a situation by aborting).
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The other difficulty in handling assigment
operations stems from the possibility of cascaded

assignment operators, i.e.

[+
[}
o
1
Q
]
Qu
"

= expression

.

In this case one must be careful not to move . too
quickly to place the 1left hand side in a register,
because too many registers may be tied up in
calculating addresses for the memory locations
associated with a, b, etc. Since the right hand side
will occupy at most 2 registers room must always be
left for its placement in a register. To avoid filling
up registers a check is always made on the right hand
side, to insure it requires no extra registers to be
made available before acquiring new registers for the

left hand side.

The final routine that will be considered is
setbin. Setbin handles rewriting of binary operators.

As mention previously, setbin plays a major role in

producing gquality code because other rewriting rules

often introduce new binary operators.

Setbin must handle two classes of operations:

logical and arithmetic. The handling of logical

operators attempts to generate a "compare memory to
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addressable "a little at a time". That is, the routine
tries to bounce back and forth between the operands,
evaluating each side piece by piece, until eventually
both are addressable. When this occurs, one of the two
is selected to be placed in a register, and a
comparison is performed with the other in memory. this
scheme can be very dangerous, since the partial
evaluation of the component expressions, if done in the
wrong order, may result in both sides holding registers
which are needed for the completion of the calculation
of the other side (a deadlock of sorts). Consequently,
checks are present to recognize cases where it is clear
which side should be placed in a register first (e.g. a
function call must be per formed before a
multiplication). 1In addition to the "rocking" scheme
described, setbin may also reverse the sense of a
comparison when one side is placed in a register. This
is because the code tables were only made aware of

comparisons where the left hand side has been placed in

a register. Thus, when the right hand side is the

first to make it into a register, setbin must reverse

the sense of the comparison, and flip the tree to allow

a match in the code tables.

The handling of arithmetic binary operators 1s

guided mainly by the Sethi-Ullman numbers. As
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described in section 3 of this chapter, a by product of
the Sethi-Ullman number calculations is that the left
hand operand almost always has a higher Sethi-Ullman
number than the right (i.e. it is "harder" to evaluate
than the right). Setbin uses this to good effect, by
usually working on the 1left hand side, going to the
right only if the left hand side is addressable. This
work is complicated by longs, since the routine assumes
it can, in the worst case, place both operands in
registers. Longs may be placed only in the D register,
so simultaneous placement of long operands in registers
is not feasible; setbin must handle this case

specially.

6. Machine Independent Modules

The compiler, as distributed with release 7 of
UNIX, had two "bugs" in it. One, more a machine
dependency than a bug, involved the 1lexical scanner.

Within the routine that handled recognition and

conversion of numeric constants, 2 PDP-11 dependency

had crept in. The C language specifies that those

constants too large to fit in a single word are

automatically typed long. In the original routine, the

test performed to check overflow was based on a

constant fitting 1in a 16-bit number. A trivial fix

resulted in the machine dependency being removed from
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this supposed machine independent module.

A second bug was more serious in nature. The
machine independent routine which handles the building
of expression trees performs constant collapsing
whenever both operands of the expression are suitably
formed. However, in collapsing the tree the routine
failed to correctly coerce types. This resulted in
expressions such as 1L+l being turned into (integer)2.
The fix for this problem required a fair amount of code
to be added. The problem appears to be basic to all
versions of the compiler, since it was present in both
PDP-11 and VAX-11/783 versions of the portable

compiler.

7. The 64K Word Boundary

As discussed in chapter III, the only way for a
program to address memory above 64K words is via an
indirect reference through a memory location which has
bit 28 set (a lac in the /6 terminology) . Since this
has a major impact on the code generation scheme, the

current version of the compiler supports only programs

less than or equal to 64K words in total size. Because

this appears to be a detraction from the compiler, a

discussion of the reasoning behind the restriction

seems in order.
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Since a lac is required to access memory, this
implies that code can not be generated which performs
any indirect references through user defined pointers
stored in memory. That is, if one considers the
construct *p in C, in order to insure the memory cell
pointed to by p is addressable, the contents of p must
first be placed in an index register, then an indirect
reference must be made through a lac. For programs
restricted to at most 64K words this is not required.
Indirect references through a memory location of any
type allow addressing memory in the lower 64K words of
the address space, so the retrieval of *p is possible
by an indirect reference through the memory location
where p is stored. In terms of /6 assembly language the
two code sequences that would be required to retrieve

*p, assuming p is a pointer to an integer, are

64K words 256K words
tma *@ p tmJ ! P
i3 tma 19,3

It is not feasible to maintain all pointers in @ lae

format, since this would imply that address arithmetic,

comparisons, etc. would reguire special calculations.

To handle programs of maximum size, then, it is

: ser-defined
necessary that the compiler always place u

pointers in an index register before performing an
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indirection. Having to place all pointers in an index
register has a significant impact on the code
generation scheme. Whereas before, certain expressions
might have been addressable without any registers, to
handle the expression under the restriction of a full
address space requires at least one register. Thus, to
handle a full 256K word address space the Sethi-Ullman
number computations must be reworked. This portion of
the compiler is by far the most difficult to construct
and tune; any major modifications such as this,
requires extensive work. In addition to adding
complexity to the code generation scheme, code size and
efficiency suffer when the address space is expanded.
For these reasons the decision to limit program size to

64K words appears to be sound.



CHAPTER VI

AN EVALUATION OF CODE EFFICIENCY

This chapter furnishes qualitative and
guantitative observations concerning the code generated
by the /6 C compiler. One must remember that the
current version of the _compiler has had very little
tuning performed on it. In addition, almost all C
compilers running on other machines have a later pass
which performs peephole optimizations. Later sections
of this chapter contain observations concerning the
impact a peephole optimizer will have on code gquality.
The feasability of a machine independent global
optimizer is also considered, something along the lines

of the optimizer built into the BLISS-11 compiler [32].

When considering code quality produced by the
portable compiler, one must take into consideration the
delicate balance between generation of efficient code

and the reliability of the compiler. As mentioned in

chapter II, the code generation scheme wused by the

i i i e to insure
compiler 1is very simple and takes great car

the compiler is consistent. When squeezing efficient

code out of such a scheme, one must be careful not to

cause the compiler to lose the ability to generate code

- 88 -



for expressions it was previously able to handle. The
tuning of the Sethi-Ullman computation routine tends to
have a major impact both on code quality and compiler
reliability. Thoughtless alterations to this routine to
generate better code for a class of expressions may
cause the resource calculations for related expressions

to be underestimated.

Finally, since the_ conpiler views individual
expressions as disjoint objects, the generation of code
is inherently limited to optimization within a single
expression. The notion of cross-statement
optimizétions, Or even Cross expression optimizations,
are out of the realm of the basic code generation
scheme. Consequently, when viewing the quality of code
generated by the portable compiler, one must localize
it to individual expressions. At this level, the most

notable item 1is ths number of unnescessary stores that

are generated.
1. Overview

At the highest level, the code generated by the

compiler leaves a lot to be desired. This is due almost

entirely to the problems encountered with redundant

loads and stores that appear when individual code

i t . EO
sequences are juxtaposed. However, with respec
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individual expression trees, the code appears to be
very good. This opinion is based on nearly 6 months of
viewing assembly code generated by the compiler for the

UNIX/24V operating system and its utilities.

The manipulation of multiple characters appears
to be the most difficult area for the compiler to
handle. This is true because nearly all character
arithmetic must be performed in registers, and there is
normally a great deal of pressure placed on the
compiler to simultaneously stuff multiple characters in
registers. Unfortunately, the complexity of this
problem tends to overwhelm the compiler “s simple-minded
notion of the /6 architecture. The result 1is that
stock code sequences must be used to insure multiple
characters are placed in registers. When this 1is
combined with the bottleneck imposed by the I and J
registers for operations dealing with byte pointers,
the code generated tends to be of a "worst case"

variety. For example, the construct

char *p, *Qq:
while (*p++ 1= *gt+)

is very common in C programs. The code the compiler

will normally generate, assuming the character pointers
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are statically allocated, is

Lnnn:

——————————
—— — ———— ———

————————

The dotted lines serve to separate individual code
sequences generated. The code created for the
expression is fairly good. The difficult task of
getting both characters into registers 1is handled
nicely by the register interchange. With the exception
of the interchange near the bottom, this code is nearly
optimal when only 1local information is taken into
account. Clearly, the looping nature of the construct
would warrant the pointer p being maintained in a
register througout the loop. However, enhanced register
possible

allocation strategies such as this are not

within the scheme used by the portable compiler.
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A more difficult situation for the compiler is an

assignment operator dealing with characters. Consider

char *p, c;

*prE i o)

the resultant code would be

Once again, this code is fairly good, aside from the
register shuffling that must inevitably occur when two
characters are brought from memory. The most notable
step in the evaluation of the expression is that the
pointer p was brought from memory only once and the ++

operation was performed early on, thus minimizing the

number of memory-register transfers that had to take

place. Wwith more context available to the code

generation scheme it is possible to expect the code



might be improved to the following.

tmi
bbi
imi
tij
emb 10

tae

tmb 1 ¢
oea

rbm 10

=
o =t

To generate code of this quality, the code generator
would have to know that the result of the bitwise-or
was to be used for assignment to a character data type.
This would allow deletion of the conversions from 8-bit
quantities to 24-bit gquantities (the esb instructions).
Rearranging the values in the A and E registers would
be not be necessary if the code generator knew their
values would be discarded after the bitwise-or was

performed.

2. Optimization of Address Calculations

The original scheme for generation of code
optimized word address calculations fairly well.
However, the handling of addresses for character items
left quite a bit to be desired. To impréve the code

that was generated for byte manipulations,

modifications were made to the intermediate language;

two new node types were added, specifically for



character pointer manipulations.

These new nodes,

PACONV and PSCONV, are formed by squashing trees as

shown in Figure vI-1. This collapsing process must

perform the appropriate coersions to word quantities

where needed. The form of the node corresponds to

converting the expression

(char *)word address+byte offset

to a single operation.

The result of adding these new nodes is a
compaction in the height of a tree which is passed to
the code generator. With more information stored in a
single node, code seqguences may be tailored to handle
operations in a more efficient manner . The
introduction of these new nodes had a major impact on
the complexity of the code generator; a number of
machine independent modules had to be modified to be
aware of their existence. However, the benefits, in
terms of code quality, far outweighed the difficulties

encountered in augmenting the intermediate language.

3. Machine Independent Local Optimizations

The compiler performs a small number of machine

independent local optimizations on the expression trees

in the first pass. These optimizations primarily
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PCONV, gTR char PACONV, PTR char
+, “PTR char <base-address>
<base-address> => <byte offset>
<word offset>

PCONV, ETR char PSCONV, PTR char
=y  PPR c¢har => <base-address>
<base-address> <byte offset>

<word offset>

+, . PTR char PACONV, PTR char
PCONV, PTR char <{subtree>
<{subtree> => <byte offset>

<byte offset>

-, PTR char PSCONV, PTR char
PCONV, . PTR char <subtree>
<{subtree> => <byte offset>

<byte offset>

Figure VI-1. Definition of PACONV and PSCONV Nodes
for the Intermediate Language
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involve constant folding and variations on this theme.
Some of the optimizations which were assumed to be
machine independent turned out not to be applicable to
the /6, while certain optimizations, inspired by the
addition of the PACONV and PSCONV nodes, were added
especially for the /6. Rather than give elaborate
detail of the optimizations performed, a tree
transformation will be shown, followed by an

explanation of any fine points.

U, Stype>; ... => NAME, <type>, ...
JCON, PTR <type>, ...
This sort of collapsing reflects the addressability of
arbitrary memory 1locations on a machine. For the /6,
this optimization may be performed for any word
addressable 1item, but only 1in special instances for

character items.

H&y  «ss => ICON, PTR <typed, .sam«
NAME, <type>,

This optimization 1is the inverse to the previous

transformation.
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*, <type>, <o Ry SEYPEP . aui
<expression>, ... => {expression>, ...
TCON,; Ny <.l ICON;:: Y1092 B, vas

This standard transformation requires the constant n be

a power of two, as is easily verified by the condition,

n >= 0@ and n&(n-1) = 9 =>"s a power of 2

This transformation also checks for multiplication by

one.

+/—/*/|I s e L
<expression>, ...
ICON’ g' L
Operations with zero are transformed or eliminated.
Since these transformations are applied only to integer
expressions, one needn’t worry about eliminating
operations with @ that might be performed for their

side effects, e.g. normalization of a floating point

number by adding 0.0.

<expression>, ... =>
JCON, 1, ...

LoD, et
/., <type>, <expres§1 '

Division by the constant one 1S removed.
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The previous optimizations are very simple. The
remaining optimizations involve tree transformations to

combine constants,

+' LB ) +,

oL : {expression>, ...
<expression>, ... => ICON, n2-n1,
CON,; nl, ...

ICON, n2, ...

This corresponds to

(el-e2) + e3 => el + (e3-e2)

when e2 and e3 are constants.

IR char, ... PESCONV, PTR char, ...

PSCONY, PTR char, ... <{word address>, ...
<word address>, ... => ICON, n2-nl (BYTES) , “ass

SCON, ni (BYTES), ...
ICON, n2 (BYTES), ...
This optimization is similar to the previous one,

except it deals with collapsing address calculations

for character pointers. The optimization corresponds

to

((char *) (el-e2) + e3) => (char *) (el - (e2-e3))

For the /6, this optimization and others 1like it are

very powerful. The result of this transformation may be
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a halving of the code generated for the tree. Note
that there is no need to check that the constants
involved are byte quantities because the PSCONV node
always has a byte offset as its right son, and, since
the PSCONV node appears below the addition, one knows
the type must be "PTR char." A similar transformation

is performed for trees with PACONV nodes.

RACONV, BTR char, ... PACONV, PTR char, ias
+/-, <type>, ... <eXPressiond, e
<expression>, ... => ICON, 7 (BYTES); i

ICON, nl, ...
ICON, n2, ...
This is the first optimization in which the offset-type
of a constant must be checked. Since a PACONV node is
formed by collapsing a PCONV node into a PLUS node, the
operations performed underneath it may be performed
with word offsets (e.g. in structures). Hence, when
calculating the new ICON node one must coerce byte and
word gquantities. Without the offset-type attribute
added, this would not be possible. A similar

transformation is performed for PSCONV nodes.

COPP i wie <OP>y oo .
éo >' (expressiond>, ...
5 Phalnt = ICON, nl <op> n2, ...

<expression>, ... =
ICON' nl, DR
ICON, n2, ...
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This transformation may be carried out only for

commutative operators.

4. Machine Dependent Local Optimizations

While the previous section described
optimizations that would normally be carried out for
any machine at the intermediate language level (by
transformations to expression trees), this section
concerns itself with various optimizations performed
just before generating code. As such, these
optimizations should properly be considered machine

dependent.

4,1. Switch Statements

The code generated for switch statements attempts
to optimize the operation based on the range of case
values. Two different types of switch statements are
generated: a direct switch through a table of
addresses, and a test and branch sequence. It would be

simple to add further variations such as hashed

switches, looped table lookup, etc.

4.2. Parameter Passing

A by-product of the stack design is that a free

location is always maintained at the top of the stack.

This implies that function calls with a single
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parameter (of one word) may be performed without a

"push" of the stack pointer. This was taken from the

Ritchie compiler for the PEP-11 [24}%.

4.3. Structure Assignments and Structure Parameters

Depending on the size of the structure to be
moved, either a series of moves is emitted, or a loop
is built. Currently, all structures of six words or
less are moved without 3 loop. 1In certain cases the
building of a loop requires three index registers (to
use a buwk, bwj, or bwi instruction). When this is
necessary, the K register 1is saved in the bit

processor ‘s V register, and reused for the loop.

4.4, Byte Pointer Additions and Subtractions

Checks are performed to determine whether the
byte offset involved in the calculation is a constant.
In this case, two possibilities arise. If the constant
is a multiple of three, the operation may be performed
without placing the pointer in a register. Otherwise,
the operation may be performed by an addition and a
series of byte pointer increments (using bbi or bbj

instructions). Should the offset be unknown at

compile-time, a "full" calculation must be performed.
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4.5. PACONV and PSCONV Calculations

These optimizations are similar to those used for
byte pointer arithmetic. In the case of PACONV and
PSCONV, nodes the word address must always be placed in
a register. However, if the offset is a constant, the
operation may be performed using an addition ° and

sequence of byte pointer increments.

4.6. Special Instructions’

The code tables special case certain expressions
to allow use of many low cost special purpose /6
instructions. For example, the assignment of the
constants -1 and g may performed by a single
instruction. The placement of constants in a register
may often be performed by instructions wusing an
immediate addressing mode, e.g. toi, « ‘tna, @ eke;

———

instructions.

5. Statistics

Up to this point, the claims made concerning the

compiler’s effectiveness have been of a qualitative

nature. To substantiate them, 2 number of statlstics

have been collected on the performance of the compller.

While it is somewhat difficult to pinpoint weaknaSgEs

: ion
with simple things such as program S1ze and executio



time (the 1latter being somewhat dependent on the
operating system, and the former being inconclusive
when comparing widely different architectures), they

still merit some thought and explanation.

Figure VI-2 shows relative size, in words, of
certain programs found on the /6, PDP-11, and VAX-
11/786. The numbers for the VAX come from London and
Reiser [18] and represent the state of the VAX compiler
early in 1its development. The figures are fairly
misleading. While the compilers are based on the same
program, internally they are vastly different. The
fairest comparison is the C preprocessor, since it is
virtually identical at the source code level across all
machines; however, figures for the C preprocessor were
not available. Words were chosen for comparison
(instead of bytes) since it tends to even out the
differences in instruction sets and word sizes. One
should note that output for the PDP-11 and VAX-11/788

were produced using a peephole optimizer, while the /6

i i imi i nsidered are
compiler is sans optimlzer. The editors con

identical for the PDP-11, VAX-11, and Interdata 8/32.

The /6 editor, em, is a superset of the ed editor, and

as such would be expected to be somewhat larger. The

drastic difference in size of the second pass of the /6

C compiler can be attributed to the extra work that
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must be carried out in handling the irreqular

instruction set. That is, a large portion of the extra

size 1is due to the code tables. Since the /6 requires
many special cases in the code tables, their size grows
significantly. It has been estimated that a peephole
optimizer, equivalent to that found on the PDP-11 or
VAX-11l, may result in a 106-20% savings in code gize.
However, even if this estimate is applied to the
figures collected, the tekt sizes presented for the /6
will still be larger that those for other machines.
This 1is due mainly to the other machines being byte
addressable. C is a heavily byte oriented language,
word addressable architectures such as the /6 make

implementation of C difficult and costly.

Figure VI-3 shows execution times for the
compilers. The numbers for the /6 were collected on a
swapping system with three other large compilations in
progress and a compute-bound artificial intelligence
program running. The file pftn.c contains the symbol
table management routines for the first pass of the
portable compiler. The second table shows execution
times for other portions of the portabie compiler.

Once again the black box approach is poor, since

external factors play an important role in the numbers

collected. Figure VI-4 shows a more detailed timing of
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}_Program } System e Size (words) '
4 ! o _Text TData | Bss 1 Total |
4 PDPSTT | 18358 T99TI=1"g878~1"3 7177~
g TR | 9380 {7373 1 5878 | 336an |
| | Interdata 8/32 | 15152 1gpas | 6230 | 2943p |
. | Barris /6 122096 16102 110463 | 38661 |
i 1PDP-11 | 1082013127 12623 116377 |
e aaay ) TR-L | 5852 12273 | 1888 |10613 !
| | Interdata 8/32 | 8913 |2258 | 1890 113061 !
I Harris /6 1 15620 | 6398 | 4946 | 26962 |
g | PDP-11 | 5376 1 151 1 2195 I 7722 {
{ ed/em | VAX-11 | 2888 : 53 { 1139 | 4080 :
I | Interdata 8/32 | 5471 11144 | 6735 ' |
: | Harris /6 {8549 0 341 J0eS EuiNse |
T " PDP-II | 2368 | 268 | 953 | 2535
f acon | PR-1 | 1216 | 119 | 484 | 1819 |
' | Interdata 8/32 | 2987 | 290 | 484 | 3761 |
i | Harris /6 4 3961 | 267 Adea 1 Seay
| | BDP-TT | 3552 | 384 | 1928 | 5884 |
g e | VAX-11 | 1721 | 285 | 1441 | 3447 |
| | Interdata 8/32 | 3915 489 1442 5837 ¢
| | Harris /6 | 4713 | 389 | 2588 | 7690 |

Figure VI-2. Representative Program Sizes
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selected compilations on. -Ehe « /6 The values were

calculated without the benefit of floating point

arithmetic, so roundoff érrors are significant. The

figures for the assembler seem to indicate that an
inordinately large part of the compilation process is
spent here. The C preprocessor appears to be very
efficient, while the first angd second passes of the
compiler are heavily compute-bound (a result of
extensive table searching and a heavy use of
recursion). Since the C preprocessor deals almost
entirely with characters, it appears the added effort
devoted to optimizing code for character manipulations

has paid off.

6. Further Optimization for the Portable Compiler

It has become very clear that the wuse of the
portable compiler as a production compiler is possible
only with some sort of optimizer. The major reason for
this statement is that the code generation scheme does
not consider possible cross-statement optimizations or
local common subexpression eliminations. As a result,
while isolated expressions are normally of a high
seqguences often

quality, the Jjuxtaposition of code

results in poor code.
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- 1087 -
T Nachine TExecution Time (seconds) |
¥ Real ~ 1" User I Sys |
FeOP=IT7 70 B PN s ot & e
| (Ritchie Compiler) | | l
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To enhance the quality of code generated, there

are  two alternatives. The most appealing 1is the
development of a machine independent global optimizer
that could be incorporated somewhere in the first pass,
or between the two present passes. For such an
optimizer to be implemented, the first pass of the
compiler would have to undergo major modifications.
The modifications would be necessary to maintain global
context for the expression trees constructed during the
first pass of the compiler. In the current code
generation scheme, each expression 1is treated as a
separate entity. For a global flow analysis to be
performed on a program, expression trees would have to
be maintained within context, implying a significantly
different treatment of the expression tree as a data
structure. A second problem with the scheme used in
the portable compiler, assuming a global optimizer is
to be added, is that the first pass generates certain
portions of code. For a flow analysis to take place,
an entire "block" of context would have to be formed
and analyzed before any code could be emitted. This
sort of treatment implies that constructs presently

processed in the first pass would have to be handled in

a significantly different manner.
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The second alternative, and the one presently

found in many C compilers, is a separate peephole

optimizer that processes the assembly code produced by
the compiler. For most applications, this approach
appears to be the most viable. As mentioned
previously, the portable compiler can produce high
guality code for individual expressions. The instances
where it breaks down are generally due to a lack of
context with which to make decisions. This 1lack of
context normally results in redundant loads and stores
being generated. By performing a backwards pass
through the assembly code to calculate register usage
information, problems such as redundant operations may
be easily recognized (the VAX-11/780 peephole optimizer
presently works this way). Even without a backwards
register pass through the code, an optimizer of this
sort may employ a fairly small "window" into the

assembly code to 1locate redundancies of the sort

mentioned.

To choose between the alternatives presented, one

must consider the applications for which the compiler

is to be used, as well as the target machine on which

the compiler 1is to he run. The cost of performing a

global flow analysis on a program can be very high,

both in compiling speed and in memory overhead. The
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fact that context must be maintained to perform a
global flow analysis normally implies those expression
trees involved must be maintained "tieq together" in
core until the end of a block is reached, at which time
the full analysis may be performed. For machines with
a small address space this is probably not feasible.
Further, the results of performing global analysis, as
opposed to a limited local analysis, quite often are
not significant. Since C was developed for
minicomputers, and presently is found mostly on
minicomputers, the problem of a limited address space
appears to have been a determining factor in the
selection of peephole optimizers. A similar analysis
tends to indicate that further optimization for the /6
minicomputer might best be done in a peephole fashion.
Previous chapters have alluded to possible candidates

for optimization on the /6 (see sections 3, 4, and 5 of

chapter V).



CHAPTER VII

THE INTERACTION BETWEEN COMPILER, ASSEMBLER, AND LOADER

The C programming environment provided wunder
UNIX/24V is dependent on the facilities provided by the
utilities supporting the compiler -- in particular, the
assembler and loader. ~ The major impact of the
assembler and loader is in the treatment of statically
allocated global data structures. This chapter will
discuss the interaction between the /6 C compiler and
its assembler and loader. The problems encountered in
developing a single compiler for multiple

assembler/loader combinations will also be discussed.

1. An Overview of the Assembler and Loader

The  UNIX/24V  assembler, as, bears some
resemblance to the PDP-11 UNIX assembler of the same

name. However, the two programs are totally different

internally. The assembler for the /6 is totally

written in C and uses the parser generator yacc, (81,

to handle syntax analysis, while the PDP-11 assembler

is written 1in assembly language. The UNIX/24V

assembler is two passes, and generates only relocatable

output. That is, unlike the PDP-11 assembler, the

- 112 -
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output produced by as must be processed by the loader,

1d, to create an executable program. This departure

from the normal convention of producing executable

output when possible was due to the addressing
structure of the /6. Simply, the necessity to support
literal constructions in the assembler would have

required a third pass to create executable output.

Since the third pass would have simulated the 1loader’s
actions, there was 1little reason to include this

ability in the assembler.

The UNIX/24V assembler syntax is very compatible
with the VULCAN assembler. The instruction mnemonics
remain the same, and all of the addressing modes may be
expressed identically. The major additions to the
UNIX/24V assembler, which the compiler uses, are:

1) A uniform handling of numeric constants as
operands. The VULCAN assembler had a limited
notion of what values could be wused as an
operand. In particular, negative numbers were
not allowed where the operand was intended to be
an unsigned (positive) value. This.preclu§ed the
use of negative numbers as offsets in forming an
indexed addressing  mode. all values that
overflow an operand field are truncated to fit by
as; an option on the assembler allows the user to

be notified of this action.

2) A nicer handling of externally defined symbols.
In the VULCAN assembler all referencez tg
external symbols requires the symbol be pre acen
By a "$" (to distinguish ;he symbol fiom amchgg
symbol) . This is impractical for the co pt o%
as it is impossible to have t?ls so;t o
information at the time the compiler outp

symbolic names.
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3) Temporary labels as introduced by Knuth [14].
Tgmpogary labels were found most useful in
simplifying the logic needed to construct loops

for structure assignments ang passing structures
as parameters.,

4) A more complete set of storage allocation

Qigegtiyes. In particular, the ability to
initialize memory locations by bytes.

5) An additional literal construct to handle byte
address constants as operands.

As discussed in chapter 1V, before the UNIX/24V
assembler was written, some of the deficiencies in the
VULCAN assembler were so difficult to work with that a
post-processing program was required to massage the
assembly language output. If one counts the time spent
in this program as time spent assembling, the assembly
process was more than halved by moving from the VULCAN

assembler to as. Further information concerning the

—_——

assembler may be found in [16].

The UNIX/24V 1loader was created by partially
rewriting the PDP-11 UNIX loader, 1d. As such, the
semantics of the loading process are nearly 1identical

to that found on the PDP-11. For the most part, the

effort involved in moving the loader was in converting

byte-oriented portions to be word-oriented. “SEGS

i e - s done in a
example, I/O buffering on the PDP 11 wa

byte-oriented manner which was most inefficient on the

: i d
/6, so it was converted to be performed in wor

4 e
guantities. The porting of the loader turned out to b
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very easy; the loader virtually worked on the second
try, and required only about two or three days of
effort to get entirely working under UNIX/24V. It was
originally expected tha the loader would require more
time to get working than the assembler (even though the
assembler was being written from scratch) , but little

more than a week of real time was spent on it.

2. Incompatabilities With VULCAN

As designed and implemented, there are a few
noticeable incompatabilities between the programming
environment found on VULCAN and that found under
UNIX/24V. The significance of these differences stems
from the porting path taken. Since many of the
programs moved to UNIX/24V came from the PDP-11, via
VULCAN, considerable effort was expended to minimize
the amount of work necessary to move programs along
this path. The Adifferences noted were due to the
VULCAN assembler and loader, and as such, resolving

them was not within the scope of this project.

The first problem was that the VULCAN assembler

and loader allowed global symbols to be at most six

characters long. Under the schame chosen for C, all

symbols defined in a C program have an underscore ("_")

prepended to them to avoid name collisions with
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assembly language routines, AsS a result, the six
character limit really imposed j; five character limit
on € variables., Thisg applied to al1 ¢ variables, not
just globally defineqd ones, since the compiler cannot
easily distinguish between 1local ang global symbols.
Hence, all Programs that were originally written - for
the PDP-11 had to be checked for name conflicts within
the first five characters (the Ppp-11 assembler and
loader handle eight charactér symbols). 1In most cases,
the fix for conflicts involved using the C preprocessor
define statement to map the conflicting names into
distinct symbols. 1t was originally hoped that the
pProgram 1lint, [16], would be helpful in locating the
offending symbols, because it has an option to per form
checking of this sort. Hows7er, 1lint checks for
conflicts only within the first six characters because

its application was targeted for the Honeywell 6009

machine.

The second problem dealt with the notion of
common storage. VULCAN treats common as a separate

Segment during assembly and linkage. Hence, all

Symbols typed common must be identified as such.

Further, externally referenced symbols are in a

different segment than common, implying that a

reference to a symbol must specify if the symbol is
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common or external. Under UNIX, common is formed at
linkage time by merging all external references to
symbols of the same size (though it may also be
explicitly declared). This allows a reference to an
external symbol that may be merged common to be
identical to a reference to a symbol which is
explicitly common. The latter scheme greatly
simplifies the compiler’s task of creating symbol
references. Figure VII-1 shows program segment layout
under UNIX/24V and how common is handled to remain

compatible with this scheme.

The result of this second problem is that global
declarations in C programs must be carefully matched
across files. If a global variable is initialized at
compile time, the variable is placed in porg space
under VULCAN. To compatibly merge other files with

this declaration, all references to the variable in
other files must be as an external variable. A

globally defined variable which is uninitialized is

placed in common, requiring references and declarations

in other files to be common also. Almost all programs

written for the PDP-11 fail to maintain this

convention, allowing the 1loader to merge common and

resolve the incompatibilities in declarations.
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Since the UNIX/24V assembler ang loader maintain
conventions compatible with the PDP-11 assembler and
loader, the problems mentioned fail to arise in moving
programs directly to UNIX/24vV. The maximum symbol
length supported by as was chosen to remain compatible

with the PDP-11 (it could easily have been extended to

allow a nine character limit).



CHAPTER VIII

DEFICIENCIES AND FEATURES OF THE COMPILER

Since the compiler was moved to UNIX/24V, there
has been minimal opportunity to evaluate the
programming environment. Little, if any, software
development has been undertaken except in the area of
the operating system.b Nevertheless, some fairly solid
opinions have been formed concerning the facilities
available, as compared to the other UNIX systems with

which the author has had experience.

1. Compiling Efficiency

The most notable item in the software development

cycle on the /6, is that the compiling process is very
slow. This observation is colored somewhat by the

inefficiency of the system as a whole. The time spent

in compiling C programs is more than doubled under

UNIX/24V. Table VI-3 shows statistics collected under

the swapping version of the system. Disecting the

compilation process has shown that an abnormal

percentage of the time is spent assembling programs.

The two passes of the compiler and the preprocessor

appear to be fairly efficient, though some

- 120 -
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consideration has been given to improving the

compiler ‘s performance by merging the two passes into a

single pass.

Possible reasons for the poor performance of the
assembler are directly related to its design. The
focus behind the assembler devlopment was to get it
working as quickly as possible. This is not to imply
that efficiency was totally neglected, merely that it
was considered secondary in importance. The
assembler“s two passes are driven uniformly by the
parser. The first pass involves the normal scanning
and parsing of the input file, while the second pass
eliminates rescanning the input file by reading tokens
from a binary intermediate file (created in the first
pass) . It appears that the decision to reparse the
file in the second pass was costly. The decision was
based on the handling of expressions within the
assembler. A common technique in assemblers 1is to
much as possible, expressions in the first

handle, as

pass of the assembler, and backpatching undefined

expressions in a subsequent pass. Thls 1s possible if

the expressions are limited enough to allow a symbol

table entry to completely describe all partially

defined expressions (alternatively storing i

information in the intemediate/output file).
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Unfortunately, with the myriad of types, operators, and
most importantly, literals allowed in as, such a scheme
is not feasible. The reason being that partial
expression evaluation, on which this sort of scheme
relies, requires that values for items such as literals
be known in the first pass. However, since literals
are placed at the end of the text segment, this
precludes definition of literal and data values until
the end of the first pass. Consequently, to define
partial values for expressions in the first pass would
require a tree representation of the expression, most
likely in the symbol table. The cost of such a scheme
was believed higher than making values defined only in

the second pass via a second parsing.

In profiling the assembler, an inordinately large
portion of its execution time appears to be involved in
handling character input. The input routine is fairly
complex because the assembler suports the inclusion of
text files. This feature has not been heavily used,

and its removal may result in 2 speed improvement.

2. User Feedback

One of the most pleasing attributes of the

portable compiler 1is the comprehensive error checking

: i ntered
performed. Unlike previous C compilers encou '
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the portable compiler produces excellent diagnostics in
the area of type incompatibilities. Two of the most
nonportable constructs are type punning (an implicit
type conversion carried out by an assignment) and
illegal pointer wuses (e.g. using pointers to point to
members of a structure other than their own). The
portable compiler gives warnings in each of these
cases. It is interesting to note that the Ritchie
compiler, which has been firmly entrenched on the PDP-
11 for nearly as 1long as UNIX has been, does not

produce dignostics for equivalent constructs.

The "noise" created by the portable compiler has
proved instrumental in aiding 1in the porting of
programs. In many cases, the diagnostics produced by
the C compiler led to the detection of nonportable
constructs. The most notable example of this was the
Release 7 shell. The original shell compiled under the

Ritchie compiler without any diagnostics, while the

portable compiler produced hundreds of lines of

messages. A large number of these messages were traced

back to nonportable constructs in the implementation of

the shell.
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3. Expandability

The portable compiler has been found very easy to
work with in integratihg run-time and compile-time
facilities. The compiler currently supports the
standard UNIX run-time profiling, as well as an
entirely new feature designed to aid in debugging

programs on a system without a debugger.

Run-time procedure tracing has been added to
allow a wuser to specify that procedure invokations
should be communicated to the user. This facility
allows for run-time selection of which functions to
trace. The output produced by the tracing shows the
symbolic name of the function, as well as the
parameters passed to the function. The run-time
selection of which functions to trace is communicated
via a shell variable stored in the environment. Once a

file has been compiled with a tracing option, a user

may manipulate the tracing of functions contained in

the file by setting the shell variable TRACE according

to the syntax

TRACE=[on|off]|[all]l[all—]fl,fZ'...

i of
This allows a user to selectively trace a class

functions, all but a class of functions, etc. The
’
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facility has proven useful, particularly in the absence
of a debugger. Approximately 15 lines of code were
added to the compiler to support tracing; the majority
of the work went into designing and building the run-

time support.

The one facility the compiler/assembler system
does not support 1is the simulation of floating point
arithmetic. This is due to the architecture of the /6.
Most machines without an optional floating point unit
treat floating point instructions as illegal
instructions. Under UNIX, this allows a program to
trap the instructions and interpret them.
Unfortunately, a /6 without an SAU treats floating
point instructions as no-operations. Thus, if floating
point simulation is to be performed some other approach
must be taken. The usual alternatives are: have a
non-floating point compiler which generates different
code than produced for floating-point machines

(presumably function call to library routines) , or have

the assembler map the floating point instructions into

some set of illegal instructions which UNIX may catch

and return control to a simulation package. The latter

approach appears to be the most appealing, since 1t 1s

expected that changing the compiler is a more difficulk

he
Proposition than altering the assembler. Further, t
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implementation in the assembler of the 1latter scheme
can be done trivially by inserting a special trap
before each floating-point instruction in the assembler
code tables. While the methods needed to handle the
lack of an SAU have been explored, nothing has been
implemented, since the effort required to write a
floating-point simulation package for the /6 is quite

large.

5; Current Status

The programming environment developed for
UNIX/24V was created on a /6 cpu that lacked a floating
point unit. As noted above, the simulation of floating
point arithmetic is not currently supported.
Conseguently, little, if any, real testing has been
per formed on the floating point facilities provided by
Ce The compiler generates floating point code;
however, a number of bugs are certain to be present.
The initial validation of the compiler on the PDP-11/45

included numerous floating point test cases, but since

the compiler has been moved to UNIX/24V no further

testing has taken place.

P Lo
The assembler was developed under similar

i be able to
circumstances and lacks only one routine to

' tive
support floating point constants (the .float direc ;
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see [16]). All floating point instructions are

assembled correctly, and the syntax of floating point

constants 1is supported. The routine that is missing,

realize (), has the following calling sequence:

long

realize(whole, frac, exp)
long whole, frac;
int exp;

The routine is passed the three portions of a floating
point number , the mantissa (whole.frac) and the
exponent (exp), and is expected to construct the binary
representation for the number, returning it as its
result (a double type is the same size as a long in C
on . the /6). This routine was left unimplemented
because of the lack of an SAU on the test machine; its

implementation is straightforward.

Other than the floating point deficiencies noted

above, the compiler and its supporting utilities have

undergone extensive testing. All features of the &

programming language described in [13] are supported

and tested. 1In addition, the compiler supports many

features added to Release 7 of the C programming

language. These features include structure

: e S the
returning them from functions, enumerated types (they
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are packed as tightly as possible), extensive bit field
arithmetic and typing (i.e. a bit field may be defined
of "enumerated type", for instance), and the
initialization of structures containing bit fields.
The portable compiler, in general, supports a dialect
of C that is more advanced than that provided by the
Ritchie compiler. All syntactic constructs deemed
legal by the portable compiler are supported on the /6,

except for fields of character type.

The supporting wutilities are 1likewise fairly
advanced. The assembler, aside from the floating point
caveat noted previously, has been employed to write the
machine language assists for UNIX/24V, and the system
call library and portions of the standard 1/0 library.
Besides a flexible syntax, the assembler supports a
number of "frills" to support the future addition of a

macro preprocessor. The assembler supports constructs,

similar to those of the C preprocessor, to allow the

definition of the current source line number and input

file. Should a macro preprocessor be needed, these

features will allow consistent diagnostics to be

generated by the assembler. The 1link editor, 1d,

supports the loading of normal assembler output files

(handled by the ar

———

(type 407), as well as libraries

ib) . [ ‘The
program, and random libraries (managed by ranlib)



< §29 =

loader can create files in a variety of formats (see

Figure NI =13, All other program development

utilities moved to UNIX/24V (make, ar, ranlib, size,

nm, syms, etc.) function exactly (or in a logically
equivalent manner) as specified in the UNIX Programmers
Manual, Release 7, [29]. Appendix A contains a list of

all utilities available under UNIX/24V.
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CHAPTER IX

C ON A WORD-ADDRESSABLE MACHINE

The /6 architecture has had a noticeable impact
on the C programming environment. That 1is, the
implications of a word addressable machine have had a
tendency to filter into the programs written on it.
The byte pointer representétion used on the /6 implies
that conversions between word and byte pointers may
result in a loss of information. Hence, the common
practice, at least on the PDP-11, of using a character
pointer as the "common denominator of all types" is not
possible on the /6. 1In addition, a lack of attention
to parameter type compatabilities across function calls

can cause problems. A more detailed discussion of

these problems follows.

1. Handling Data Types

With multiple representations existing for

pointers and with one of these representations, the

byte pointer, being vastly different from normal

i s must
numeric representations, a number of basic rule

o
be established to understand the consegquences f

i i numerous
conversion operations. In addition, 1N €,

- L3E =
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storage conversion operations take place, and their

semantics must be understood.

All pointer conversion rules designed for the /6

are based on two underlying assumptions:

1) The value stored in a pointer to a word oriented
item 1is always assumed to contain the number of
words the item is offset from zero.

2) The value stored in a byte pointer contains the
number of bytes the item 1is offset from byte
zero.

If one uses these two basic assumptions, conversion
operations between pointers may be "consistently"
defined. Table IX-1 summarizes the rules for
conversion between pointers, as well as the storage
conversion rules involving pointers. One should note
that while conversions are defined in all instances,
some conversions may result in a loss of information.
The 1loss of information across certain conversions is

unavoidable in the case of the /6. Despite .this

information problem, the design of conversion rules

must be as consistent as possible. In a byte

addressable architecture, where the representatiQRs s

; : ; i rules
pointers and numeric items 1S identical, these

are usually trivial (i.e. they do nothing) . For the /6

: i ies
the rules defined appear to minimlze inconsistencie

while remaining logical.
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| From 1 To g Rule
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| | unsigned short |3 = (number of words) +
| | long Inumber of bytes.
1 l-unsigned 1long !
‘char * ] int * . Return™ address of word
' struct * lpointed to, - e.9. mask
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Figure IX-1.

C Pointer Converion Rules for the /6
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The storage conversion rules are fairly standard.
The /6 numeric representations and instruction set
allows these conversions to be one or two instructions
normally, and fail to require the extra thought
necessary in the case of pointer conversions. Figure

IX-2 summarizes these conversion rules.

One notable exception to the scheme presented
above 1is the handling of a NULL pointer. The C
language definition states that "it is guaranteed that
assignment of the constant € to a pointer will produce
a null pointer distinguishable from a pointer to any
object" i131. The natural conversion operations,
outlined above, imply that an assignment of this sort
fails to follow this convention. 1In addition, rules
found in most other C compilers, for the storage
conversion of a character pointer to an integer,
specify that a straight copy is carried out. This also
conflicts with the rules for conversion set forth for

the /6. Consequently, to maintain compatability with

other C compilers, the /6 compiler handles the null

pointer as a special case. The decision to make this

exception to the general conversion rules resulted from

i in
experiences in porting various user programs

; ial
particular the Bourne shell). A result of this speci

code seguences generated for

casing is that certain
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i Frem | To : Rule |
Fﬁar % Ent. sturn the byte number OFf |
| nsigned hg memory location
| hort F01nted Lo, B 3 oA
' nsigned short !(number of words) 4+ |
| ong (number  of bytes) . |
| |n51gned long tesglt is treated as an!
| | nsigned value when
! A onverting to longs. I
ong Be ¥ funcate 47-bit value to |
nsigned long ErUCt * <E4—bit value, then copy. :
ar **

} e, J :
ong Fhar 0 runcate to 8-bit value, |
nsigned long | hen copy. ‘
nt
shor t : : :
Hnsigned | | '
unsigned short , |\ I
int gong engthen 24-bit value to
insigned Pnsiqned long p 47-bit value by sign
int * | xtension or zero |
struct * | ﬁilling. |
pte. |

gnt |1oat pachine defined - fax |

ghort gouble pnst;uctlon: |

Long float Machine defined - fno [

pnsigned long fouble gnstrug?;§n.t 47‘brt:

binsigned float ero fi o a -bi

hnsigned short Houble g;mber, then treat as a:

| | ove.

i Wachine defined by ftxal
gggg{e E;:igned linstruction. Characters |
| khar bre truncated follow1ng:
| bnsigned char konversion. 3 I
Float Tong onvert to 24-bit number

ouble Fnsigned long by fxa instruction, then

kignextend/zero fill to |
| | k7-bit value.

Figure IX-2. C Storage Conversion Rules for the /6
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storage conversions nmust perform a check for the null

pointer. 1In addition, the handling of the null pointer
raises the complexity of the code used for handling
constants within the compiler. 1t appears that the
language definition is lacking here. An improvement
might be the introduction of an explicit null pointer

to the 1language definition, as found in Pascal, ADA,

etc.

2. The Impact of the /6 on Programming in C

As mentioned previously, the C compiler for the
/6 employs two different representations for pointers.
The byte adiress format is employed for any pointer to
a byte oriented object. All non-byte storage items
(longs, fields, enumerations, etc.) are manipulated
with a word address format. As one might expect, the
impact on C goes beyond the compiler’s difficulty to
generate code. Because the conversion between these two
formats is not a one-to-one mapping there are cases

where statements in C may result in information

"slipping between the cracks". In particular, consider

the following statements:



- 131 '=

char *p, foo[20];
int *q;

P

P+
q

P

&foo;

nn -+
~-e

(int *)p;

(char *)q;

While this code probably won’t occur in practice, one
should notice that the assignment to g results in a
"rounding" of the address to a word boundary. If one
considers the wvalues that are involved here, the
following will be seen (assume the array foo is placed

at location octal 10680):

Statement Value for p Value for g
p = &foo; p20001000 <undef§ned>
pt++; 0400210990 <undefined>
g = (int *)p; 040001000 00901000
p = (char *)q; 020001000 p0001000

The information transfer from p to g, and back to p
again, results in the byte position being lost. This

is to be expected, since it is not possible to maintain

this information across the assignment statements.

Occurences of this sort can not occur on the PDP-11,

since byte and word pointers are treated as objects

: ersion
having an identical format (i.e. all conv

operations have no effect on the internal value of a

pointer) .
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A more serious problem with the differences in
data type representations is the handling of
parameters. While word pointers and integer items are
identically formatted, the shape of a byte pointer
causes the interchange of a byte pointer and an integer
to have drastic effects on operations. While
conversions may be applied when a type cast takes place
in-line, parameter passing may hide the need for a
conversion. Since the = C language definition
specifically avoids checking actual parameters against
formals (in fact the syntax of the 1language doesn’t
always supply enough information to allow this to be
done) , the programmer must be held at fault when
something of this sort occurs. Once again,
incompatabilities of this type have no impact on a byte

addressable machine, since the representation for

pointers will be eguivalent.

A final problem caused by the data type

representations for the /6 involves longs. This

problem is independent of 2 word addressable

architecture; it is particular to the /6. There 1s a

large temptation on many machines to treat longs as

something other than an indivisible storage location.

That is, a long may be used to allocate storageé., but in

i ormed on
some instances operations are perf
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subcomponents of the long. Since the /6 representation

of a long requires that the sign bit in the low word be
zero, the manipulation of a long as two separate words
may result in inconsistent results. Admittedly it is
poor programming practice to use a trick such as this,

but, when porting programs, one must be aware of the

problem.

3. The C Programming Environment

From a users’ standpoint, programming in C on the
/6 is little different from any other machine to which
C has been moved. As noted above, a user must be aware
of certain machine problems that preclude the "free"
programming style exemplified on machines such as the
PDP-11 and VAX-11. The deficiencies in the /6 in fact
tend to improve the portability of C code written on
the /6. Since a user must follow the typing

conventions in C more closely than on most other

machines, programs written on the /6 tend to move gquite

easily. A user must be careful to consider the

consequences of pointer conversions, match parameter

types in function calls, and treat data structures at

"face value". when all the pitfalls of byte pointers

are treated carefully, the result is a program that 1is

i ortable.
very readable, and most importantly, very P
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For efficiency, a user programming in C on the /6

will usually steer clear of unwarranted use of

character variables. Since the cost of accessing

arbitrarily aligned bytes via an indexing operation is
quite high, the use of pointers is important. That is,
when deciding whether to implement an algorithm with
indices or pointers, the use of pointers is
recommended, because there is a large cost involved in
forming byte addresses by adding an index to a byte
pointer. Thus, the ".’ operator for structures tends
to be used less than the '->" operator, and array
indexing ('[]°) tends to be used less than straight
pointer manipulations. As an example of the relative
cost of indexing and pointer manipulations, consider a
simple loop to step through a character array and

initialize each entry to zero.

char foo[20], *p:

int i;

Be (1= 8; 1 < 20; i+9)
foo[i] = @;

for (p = foo; p < &foo[20]; pt+)
*p - @;

The code for each loop is displayed below, side by

side Note the added cost involved in using array

indexing versus pointer manipulations.
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Indexing Pointers
tzm 1 i tma ¢ foo,®

LB: tam ! p
tma ! i LO: o
cma $29 tma 1 p
bon L1 tme # foo,20
tmi 1 i kea -
tma 1 p bon Ll
tze tma ! p
214 2 toa @~
rla 2 rbm !9
aei tmj ! p
myo 3 bbj .F1
aia buc L8
dvo 3 Ll:
aoce 1
a2
tla 2
tai
toa @
rbm !0
aum ! i
buc LD

Ll:

Similar comparisons may be made for other pointer/index

related operations with equivalent results.



CHAPTER X

CONCLUSIONS

The previous chapters of this document have
detailed work carried out 1in establishing a C
programming environment under UNIX/24V. Most of these
discussions have been .concerned with the target
machine, the Harris /6. However, the work carried out
has served to illuminate several issues that are
pertinent to a large class of machines and which need
further study. These issues will be tied together with
a summary of some of the important points brought out

in earlier chapters.

1. The Portable C Compiler

The portable C compiler has proven to be an
excellent vehicle whereby a C compiler may be

effectively bootstrapped onto a new target machine.

The compiler 1is clearly equipped for machines with a

byte addressable architecture, while its adaptation to

word addressable architectures is less obvious. The

i i the
major reason for problems encountered 1n moving

compiler to a word addressable architecture 18 the

: : ddress
necessity to maintain two different types of a

- 142 -
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offsets. The portable ¢ compiler does not directly
support such a notion, adding a great deal of
complexity to the handling of address arithmetic. The
underlying assumption in the design of the compiler is
that all address arithmetic will be performed in bytes,
with conversion to words being performed at the last
possible instance, or that all addresses will be
maintained in words. Handling all addresses in bytes
is impractical if efficient code is to be generated,
while the consequence of using only word addresses is
that packing of aggregate structures may not be
performed -- very costly on machines with a large word
size. A parallel /6 C compiler project, [31], chose
the latter route, packing one character per 24-bit
word. They reported that packing one character per
word simplified code generation, but proved costly when
performing input/output (packing and unpacking of data

structures was required). The Wisconsin C compiler

packs character arrays, but does not pack structures.

This compiler is structured completely different from

the portable compiler.

The gquestion of how to handle multiple offset

types has been addressed in this /6 C compiler, within

i heme of
the framework of the normal code generation SC

The resultant implementation

the portable compiler.
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has proven satisfactory in that it generates correct

code, and  of a decent quality, but has been

unsatisfactory with respect to compilation efficiency.

The first pass algorithms used to build expression
trees can be very slow when numerous passes must be
made over the trees to investigate possible byte
pointer problems. It appears that a closer integration
of the machine dependent byte/word offset calculation
algorithms and the machine” independent tree building
algorithms would result in a more efficient compiler.
The reason this was not immediately done was to
maintain the structure of the compiler during
development stages. The alterations required to carry
out such a plan are not straightforward, and the
greatest need during the development was a working

compiler. Should the compiler be considered for

further use closer study of its internal structure is

clearly warranted.

The other significant problem encountered in

adapting the portable compiler to the /6 was in mapping

the compiler’s abstract machine model to the target

machine. The notion of an abstract machine to which a

target machine may be mapped, is gquite old and has

undergone many studies; as yet no definitive model for

: - he
a universal abstract machine has been constructed T
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earlier work on the Janus abstract machines [5], LSD

programming language (4], BCPL programming language

[22], 1IBM S/360 FORTRAN(G) compiler [7], Pascal P-code
[20] and EM-1 [28] abstract machines, and the original
portable C compiler [27] have been enlightening, but by
no means conclusive. The abstract machine defined for
S. C. Johnson’s portable C compiler borrows a number of
ideas from Snyder ‘s portable C compiler, [27), and
appears to be suitable for most all machines presently
being designed. The machine model assumes collections
of homogeneous general purpose registers, a stack of
some sort (either in software or hardware), and a
uniform addressing scheme of memory cells. It
tolerates some deviation from a purely orthogonal
architecture through the machine dependent register
allocation scheme and flexibility in constructing the
code generation tables. Unfortunately, it fails to
handle severe deviations from this model, as found in
the /6. There appears to be little reason for the
compiler to support a wider range of architectures. If

a designer can understand enough of the internal

workings of the compiler, the modifications - HEGEREREE

to tailor the abstract model to a given architecture

are not difficult. Greater generalization of the

abstract machine model (for instance to support more

in a
than two register classes) would result
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degradation in the performance of the compiler at

little benefit. Thus, it seems fair to say the machine

model is satisfactory for most implementations. That

this model has been so succesful implies that its
properties should be closely studied before future

attempts at new and improved abstract machine models

are made.

3; The C Language As a Portable Implementation Language

One may consider the C language on its merits as
an implementation tool for portable software systems.
In particular one may ask how C stacks up against other
languages normally considered in implementing large
software systems. In short, this author believes C is
one of the best, if not the best, language for

implementing large software systems that are to be used

on many different machines. While this opinion is

heavily colored by a lengthy exposure to the language,

the statement is not made without some justification.

There appear to be a number of qualities required

of a language to be successful as an implementation

tool. The first is that it should support the basic

constructs to program in a structured manner. These

constructs include those used for control flow and the

abstraction of data types. Secondly, the programmer
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shouldn’t be overly burdened with "syntactic sugar".

This fault, common to many of the programming languages

currently in vogue, tends to stifle programmer
creativity. Third, recursion should be available. The

notion of recursion is one of the most power ful

programming concepts available. Its use tends to
enhance the correspondence between "natural®™ algorithms
and their implementation. Finally, pointer data types
must be supported. Similar to recursion, pointers are
usually the natural tool to wuse in implementing
algorithms; their presence tends to allow
implementation to correspond closely to a paper
algorithm. Needless to say, the C programming language
supports all these notions, as do many other
programming languages. However, C is virtually the
only programming language to support address arithmetic
in a comprehensive form that meshes quite naturally
with the remainder of the language. C has its
detractions, the most common complaint is its weak type
checking. In truth, saying C performs weak type
checking is fairly charitable. There are many good

reasons for having strong type checking inva language,

Bbt how to enforce a rigid type checking environment,

Whén combined with the sort of extensive address

i 3
arithmetic possible in C, 1S not currently wel

understood. The 1lack of type checking performed 0 C
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allows faster compilation, and promotes a "robust"

environment in which arbitrary memory cells may be

used. Some of the bag points of weak type checking are

consider later. Overall, it appears C is an excellent

tool for implementing software. 1In a very short period

of time C has distinguished itself through its use in a
large number of software projects (operating systems,

compilers, graphics packages, text processing systems,

etc.)

The question of portability in a 1language can,
for the most part, be separated from an analysis of its
usefullness as an implementation tool. 1In considering
why C has been so successful as an implementation
language, one invariably recognizes the rich set of
mechanisms offered a programmer. However, it is also
this rich collection of mechanisms which can inhibit
portability of a program. Certain high level languages
promote portability through restrictions on the
operations which may be performed on a data structure,
while others attempt to supply an abstract machine for

the user. The former technigue (e.g. Pascal) tends to

be unduly costly for the programmer. To perform a

"natural” operation within the structure of the

i an
language one must resort to subterfuge (1.e. use

i for
assembly language assist), Of work around it (
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instance, use indices instead of pointers). The latter

approach to portability (APL for instance) requires a

simulated environment be moved with each new

implementation of the language, so penalizes the

language’s implementer. C, on the other hand, is easy

to implement and program in. It allows a user to
directly employ the power of the target machine. This
ability to "touch" the bare machine also allows the

creation of totally nonportable constructs.

In considering C as a portable language, a number
of specific reasons have been recognized. The ability
to abstract data structures avoids the simulation of a
natural aggregation. For instance, a need for a
collection of heterogeneous items needn’t be simulated
within an array. Because the constructs needed for the
representation of a natural data structure are present
in the language, moving a program from one machine to

another may depend on the atomic operations expected of

the language.

Secondly, while C supports extensive address

calculation features, problems involved in b0 -

differences, data type incompatabilities, etc. are, for

the most part, eliminated by natural operator

definitions and built-in primitives. In particular,

the notions of pointer addition and subtraction have
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the possibility of being completely nonportable.

However, by consistently defining their semantics, C
avoids requiring a programmer to know the width of
aggregate structures when working with pointers to such

objects. Further, when constants of this sort are

necessary, the sizeof operator is very useful in

maintaining a portable program.

On the negative side, C’s notoriously weak type
checking allows highly nonportable constructs to be
created without any noise from the compiler. London
and Reiser [18] have 1listed four problems they
encountered during their experiences in moving UNIX and
C to the VAX-11/788. Two of the four suggestions they
make are directly related to the weak type checking

per formed in C.

1) The actual arguments in a procedure call should be
type checked against the procedure Qeglaratlon, and
a "dummy" declaration which specifies types be
permitted, even if the called .pro;edure is not
actually declared in the same compilation.

2) The '->° operator should be checked to insure that
the structure element on the right is a member gf a
structure to which a pointer on the left may point.

3) A structure element should be dgclargble with :gy

name, as long as the name is unique within :

immediately surrounding structure. (Thi ggra:?
requirement that a structure element mus uofq thz
correspond to an offset from the beginning St
structure, Aacross all structures 1n alcomgéads té
creates naming problems, gnd' frequently :

errors of the type noted in 1item 2 above.

4) The issue of alignment to an even-byte (or other)
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boundary should be brought into the open, so that

arbitrary data structures
described. can be accurately

Of the suggesticns noteg above, the problem addressed

in the first was foundq to be the most difficult to deal

with in experiences with the /6. The second item is a

by-product of the Ritchie C compiler, the portable
compiler produces diagnostics for constructs of this
sort. The third is definitely a worthwhile suggestion,
and warrants further consideration. The 1last item
suggests a view of aggregate data structures similar to
that found in BLISS, [33], and in this author’s opinion
diverges from one of the nicer facilities of C. The
issue of alignment normally comes up only when trying
to model machine dependent data structures (i.e.
byte/word/bit layout of a particular structure). As
such, the the question of representing a structure in a
portable fashion is a moot point. The notion of an
aggregate structure in C is to group together items in
a single logical unit. If specific layout is required,
bit fields, and the like, may be employed to construct
a structure of arbitrary shape. Thus, the latter

suggestion appears to introduce unnecessary complexity
into C.

In summary, the C programming language seems to

be a successful tool for implementing portable software
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systems because it has a rich set of primitives which

allow a programmer to use the full power of an

underlying architecture. It is also this ability to
get at the basic machine which allows introduction of
nonportable constructs. Consequently, unlike many other
programming languages, portability in C 1is easily
possible, but mostly up to the programmer . i & gl ¥
interesting to note that the consideration of
portability is subject to consideration, most other
languages force "portability" on a programmer by

techniques of the sort noted previously in this

section.

3. Portability Between Widely Different Architectures

The question of portability, in general, is
currently not fully understood. Most people can
recognize a program, language construct, or the 1like,
as being nonportable, but few can pinpoint exactly what
makes a program or programming language "portable”.

Further, when considering portability between machines

specifics of the particular architectures invariably

enter into any consensus formed. The basic. variants of

word size, data types, and addressability play a major

part in forming conclusions, but ar€, by definition, of

little consequence when considering portability between

’ i e a
machines with similar architectures (for instanc
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PDP-11 and VAX-11). Thus, if one is to formulate

opinions about portability it seems appropriate to

consider a worst case phenomenon. Since the /6

architecture is so much different from the PDP-11

architecture, it is worthwhile to consider the

experiences garnered from this research (the porting
project originated on a PDP-11, and had the /6 as its

target machine).

Word size, in and of itself, posed few problems.
Rather, the specific size of a word on the /6
introduced incompatibilities. A 24-bit word, with an
8-bit byte, invariably introduces the number 3 into
many calculations; while programs developed for the
PDP-11, where a 16-bit word and 8-bit byte are used,
introduce the constant 2. Worse, since 2 is a power of
2, division by 2 was often removed in favor of a right

shift. A portable construct of the form

(sizeof int/sizeof char)

quickly became standard in programs developed on the

/6. If the /6°s word size had been a power of 2,

further problems might have been eliminated, or more

easily dealt with. A machine with a word size which is

e . £
a power of 2 offers many optimizations of S

mentioned. Constructing a portable expression involving
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a constant, as shown above, will be the rule of thumb

only if the compiler will perform the optimization from

a division to a shift. For a signed number, an

optimization 1is not possible (consider -1 divided by 2

and -1 right shifted 1 bit). Thus, at least in Cs X%

seems worthwhile to recommend expressions be created as

above, and that compilers be aware of their existence
as common practice and optimize accordingly (this

requires the expression be unsigned in type).

Data type incompatibilities cause problems mostly
when a programmer assumes no side effects will be
created when mixing them. In a language such as Pascal
mixing types is 1illegal, or well defined. C, on the
other hand, has been developed on a machine where
mixing types normally has no effect on the value of an
object. Consequently, many programs misuse this
property of the PDP-11 architecture. The recent
introduction of "type casts" to C was of major
importance in handling the multiple data type formats

of the /6. It appears portability between machines

with incompatible data type formats must be handled

either implicitly by a strongly typed language, or with

much foresight, and constructs like type casts, in a

weakly typed language. The straight-line interpolation

of type conversions, in a weakly typed language, 1S
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simple when compared to the nightmares introduced by

parameter passing. Handling parameter

incompatibilities is by far the most difficult problem

to manage in porting programs between architectures

with multiple data type formats; at the very least the

language support must be present to handle conversions.

A final problem is the method by which a target
machine addresses main  memory. Most modern
architectures support the notion of byte
addressability, and some even allow bit strings to be
directly addressable. When considering the problems
introduced by movement from a machine which is byte
addressable to a machine which is not, the first thing
that comes to mind is how to handle the inevitable
incompatability between pointers. Should the 1language
being used not allow mixing of types of this sort, the
problem is nonexistant. However, should it be possible,
the architecture has a major impact on the portability
of a program. As discussed in chapter IX, there 'is

bound to be an information loss when converting between

formats. This problem appears, as much as anything, to

motivate a need for type checking, for at least some

cases of pointer manipulations. Strong type checking

|
shouldn’t be required, put at the very leas

programmer must be notified of an irregularity.
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APPENDIX A

UNIX/24V UTILITIES

This appendix lists the wuser utility programs
that have been ported to UNIX/24V. Most all programs
were taken from the PDP-11 Release 7 distribution of
UNIX. In some instances the utility runs under both
the VULCAN operating system and UNIX/24V; these are
marked with a *, A list of the major utilities not
provided under UNIX/24V is also included. Items in the
latter list were not moved because their implementation
was highly nonportable, or because they were of little

utility to the project.
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ar
basename
chgrp
cmp
dcheck
du

em (%)
grep(*)
14

1pd
make
mount
nice
pr
restor
size(*)
su
tail
time
umount
wC
yace (*)

Current_Utilities

arithmetic

cal
chmod
comm
dd
dump
fgrep
icheck
learn
lpr
mkdir
mv (*)
nm (*)
ps
rm(*)
split
sum
tar (*)
tr
unigqg
who

- 160 -

as(¥*)
cat (*)
chown
cp

daf
dumpdir
file
init
In
18(*)
mkfs (*)
ncheck
od(*)
pwd
sed
strip
syms
tee
tsort
update
write(*)

at

cb
clri
date (*)
ai1ff
echo
getty
kill
login
mail (*)
mknod
newgrp
passwd
ranlib
sh
stty
sync
test
tty
wall
wump



Major Missing Utilities

adb requires ptrace system call

awk requires lex.

bec & dc bc requires dc which is
complicated, and as yet hasn’t
been looked at for portability

lex highly nonportable

lint requires sort

sort tried to port it, but still
buggy

tp no need for it, always use tar

Text Processing Programs

egn, ptx, must have nroff/troff to be

pubindex, useful, and nroff/troff is

roff, tbl, highly nonportable

nroft, troff, etc.

Fortran Processors
£77, m4, o uses the portable
ratfor, struct compiler, so careful study
must be made regarding the
changes to the intermediate

language
Uucp Utilities_ :
uucp, uux, low priority, and require
uucico, etc. conversion of a packet driver

at kernel or user level
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