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AN IMPLEMENTATION OF THE C PROGRAMMING LANGUAGE 
FOR THE HARRIS 16 MINICOMPUTER 

Abstract 

by 

SAMUEL JACOB LEFFLER 

As part of a project to port the UNIX operating system 
to a Harris /6 minicomputer, a programming environment 
for the C programming language has been developed. A C 
compiler based on the portable C compiler has been con­
structed, along with the necessary support utilities -­
assembler, link-editor, etc. The architecture of the 
Harris /6 posed numerous problems to the porting ef­
fort, necessitating modifications to the machine in­
dependent portions of the portable compiler. This 
document describes the porting effort and modifications 
to the compiler. An evaluation of the code quality 
produced and the efficiency of the compiler are inclu­
ded. Finally, experiences gained from the porting pro­
ject are employed in lending observations about the 
generality of the portable compiler, and the portabili­
ty of the C language and progr ams written in the C 
language. 
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CHAPTER I 

INTRODUCTION 

In 1976 Case Western Reserve University entered 

into a project to construct a campus-wide resource 

sharing network which would tie together exis t ing 

minicomputers and allow for additional hardware to be 

supported at minimal conn~ction cost. The machines 

chosen for this venture were Harris /6 minicomputers. 

By the summer of 1979 the propose d network plans had 

been reevaluated due to unforseen circumstances 

involving the development of networking software by the 

Harris corporation. 

During the initi al phase of the network 

development, the native /6 operating system , VULCAN, 

was found to have a number of weaknesses tha t made 

software development difficult. Consequently, o ne part 

of the reevaluation process involved the select ion of 

an alternate operating system on which to base future 

work. The operating system chosen to replace VULCAN 

was the UNIX operating system. The choice "of UNIX was 

due mainly to its proven ability as a base for software 

development 

portability. 

and text processing, and for it s known 

The latter point was a major factor in 
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establishing credibility of the selection, for at that 

time UNIX was not available for a Harris 16. 

The UNIX system and its central software were 

originally written in assembly language, before the C 

language was invented, and have since been rewritten in 

C. Previous portability projects have involved moving 

the UNIX kernel to the Interdata 7/32 [19], the 

Interdata 8/32 [12], and the VAX-ll/780 [18]. These 

efforts have had a major impact on the UNIX kernel, 

both in pointing out weaknesses in the C language, and 

in isolating nonportable sections of the kernel. The 

PDP-II version of the kernel, on which the porting 

effort was based, consisted of approximately 10,000 

lines of C code and about 1,000 lines of assembly code. 

Thus, a prerequisite to the porting of the UNIX kernel 

was a C compiler for the 16. 

While it was clear that porting the UNIX 

operating system required a C compiler for the target 

machine, it was not clear exactly what route to take to 

create this compiler. At the initiation of the project 

there were three choices for creating a C compiler: 

write one from scratch, port the Ritchie C compiler 

[24] which runs on all PDP-II's, or use the portable C 

compiler written by S. C. Johnson [11]. Recent C 

compiler efforts had followed all of these routes : the 
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Interdata 

compiler, 

7/32 

the 

C compiler 

VAX-Il/780 

W3S based on the Ritchie 

compiler used Johnson's 

portable C compiler, and the University of Wisconsin's 

Harris /6 C compiler was written from scratch (in 

assembly language) . 

For the purposes of this project, the Wisconsin C 

compiler was unsuitable. The compiler supported an 

early version of C (version 6) an~ was known to have a 

significant number of bugs. The Ritchie compiler, a 

production compiler tuned to the PDP-II, was too firmly 

entrenched in the PDP-II architecture to hope for 

reliable conversion to such a radically different 

architecture. Since the /6 C compiler would be needed 

before UNIX could be ported , and writing a compiler 

from 

only 

sc ratch would 

the po r tab 1 e 

ta ke considerable time , this left 

compiler to consider . Previous 

efforts involving the compiler had shown excellent 

results, both in ease of movement and reliabi lity of 

operation. The VAX-Il/780 compiler, bas ed on the 

portable compiler, required about one month of effort 

to create a first cut compiler, and more than two years 

after it was used to bootstrap a UNIX system onto the 

machine, it remains as the production compiler . Thus, 

it was decided that the C compiler for the /6 would be 

based on the portable compiler. 
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This research involved the movement of the 

portable C compiler to the /6 and creation/movement of 

related software necessary to support a programming 

environment compatible with that found on other 

machines supporting UNIX. The /6 architecture contains 

many features that made the porting effort very 

difficult and impacted the C language environment in a 

negative way. The solution of these problems will be 

discussed in somewhat general terms, in the hopes that 

they might 

architectures . 

includes 

language. 

some 

be applied to machines with similar 

Ne cessary background for this document 

familiarity with the C programming 

The organization of the remainder of this 

document follows the dev elopment of the compil er, then 

steps back to consider the resultant programming 

environment create1. Chapters II and III provide 

background material on the portable C compiler and the 

Harris /6 minicomputer, respectively. Later chapters 

presume a knowledge of these two topics commensurate 

with that presented in chapters II and III. Chapter IV 

gives an overview of the porting process, while chapter 

V covers the compiler modifications that were 

necessitated by the /6 architecture. Chapter VI 

discusses the quality of code presently generated by 
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the compiler, and offers observations about possible 

future optimizations. Chapter VII considers the 

interaction between the compiler and its support tools, 

the assembler and link-editor. Chapters VIII evaluates 

some of the compiler's good and bad points, while 

chapter IX looks at the impact of the /6's word 

addressable architecture on the C programming 

environment. Finally, chapter X summarizes the results 

of this research. 



R 

CHAPTER II 

A DESCRIPTION OF THE PORTABLE C COMPILER 

1. Overview 

This chapter discusses the structure and 

organization of the portable compiler. Rather than 

reiterate all that has been presented in previous 

descriptions of the portable compiler, [11], this 

chapter will introduce only those notions necessary for 

an understanding of the design issues involving the /6 

version of the compiler. Some of the theoretical work 

on which the compiler is based, and its application to 

the compiler, is discussed elsewhere , [ 9 ] , while a 

deta i led analysis of the /6 adaptation of the portable 

compiler may be found in [15]. 

The compiler consists of two passes that t ogether 

turn C source code into assembler code for the target 

machine. The two passes are preceded by a prepr ocessor 

which is highly portable in its own right. 

Although the compiler is divided into two passes, 

this represents historical accident more than deep 

necessity. In fact, the compiler can optionall y be 

loaded so that both passes operate in the same pr ogram. 

- 6 -
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This "one pass" operation eliminates the overhead of 

reading and writing an intermediate file, so the 

compiler operates about 30% faster in this mode. In 

this form the compiler also occupies about 30% more 

space than the larger of the two component passes. 

Because the compiler is fundamentally structured as two 

passes, even when loaded as one, this chapter primarily 

describes the two pass version. 

2. Expression Trees 

While there are a large numbe r of important data 

structures involved in the operation of the compiler, 

the focus of interest in this document will be on the 

parse trees formed in the first pass, and used in the 

second pass by the code generation scheme. These parse 

trees are used to represent C expressions; almost all 

flow control constructs have code generated for them 

immediately in the first pass. The use of trees for an 

intermediate representation has simplified many of the 

complicated operations performed during code 

generation. 

The definition of the nodes that compri se an 

expression tree differs from the first pass of the 

compiler to the second. The first pass must be 

concerned with a variety of symbol table related 
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issues, while the second pass doesn't use the symbol 

table, but must maintain information used in the 

register allocation and expression compilation schemes. 

The expression trees, along with other information, are 

communicated between the two passes by an ascii 

intermediate file. When the two passes are merged to 

form a single pass compiler this file is eliminated, 

and the trees are simply "handed off" to the 

appropriate second pass "routine. Since the node 

definitions differ in each pass, the combination of 

passes requires node definitions to be made large 

enough to hold the union of the information needed in 

each pass. 

Each node contains two members used in both 

passes: ~E' used to specify the "node number", and 

type. A node number identifies either a C language 

operator, or an operator internal to the compiler. The 

collection of node numbers defines the intermediate 

language used to communicate with the code generator. 

The internal operators defined are primarily used to 

process declarations in the first pass. The bottom-up 

construction of the parser and top down nature of C 

declarations requires declarations be used to build a 

"declaration tree", which is then processed in a top 

down fashion. Most C operators have a corresponding 
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node number. For example, + is represented by PLUS, % 

by MOD, etc. A token such as MINUS may be seen in the 

lexical analyzer before it is known whether it is a 

unary or binary operator; clearly, it is necessary to 

know this by the time the parse tree is constructed. 

Thus, an operator (really 3 macro) called UNARY is 

provided, so that MINUS and UNARY MINUS are both 

distinct node numbers. Similarly, many binary 

operators exist in an assignment form -- for example -= 

and the operator ASG may be applied to such node 

names to generate new ones, e.g. ASG MINUS. Table 11-1 

shows some of the most common op values which will be 

used in further discussions. 

C has a rich typing structure, with a potentially 

infinite number of types. To begin with there are the 

basic types: CHAR, SHORT, INT, LONG, the unsigned 

versions known as UCHAR, USHORT, UNSIGNED, ULONG, and 

FLOAT, DOUBLE, and finally STRTY (a structure) , 

UNIONTY, and ENUMTY. Three operators may be applied to 

types to construct others: if t is a type, one may 

potentially have types po!nter 

to t, function returning t, and array of t's generated 

from t. Thus, an arbitrary type in C consist s of a 

basic type, and zero or more of these operators . The 

!yp~ member of each node contains a C type, as outlined 
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lName--1 De sc rlptlon I 
WM"E""===lnamecfmemor y40ca t lon--============= I 
IICON linteger constant, possibly a symbolic address I 
~LUS 1+ operator I 
~INUS 1-, U- has UNARY prefix I 
~UL 1*, U* <=) UNARY MUL I 
~ND 1&, U& <=) UNARY AND I 
bR II, inclusive-or I 
IER I , exclusive-or I 
~NDAND 1&&, logical connective I 
bROR II I, logical connective I 
ICOMOP I' " operator I 
IDIV 1/ . I 
IMOD 1%, rema inder I 
ILS I < <, 1 eft s h i f t I 
IRS I», rig h t sh if t I 
~ALL Ifunction call, UNARY CALL has no param's 
~OMPL 1-, one's complementation 
IINCR 1++, postfix and prefix 
IoECR 1-- -
~Q 1==, logical connective 
INE, I! = 
ILE 1<=, ULE is 
ILT 1<, ULT is 
IGE 1)=, UGE is 
IGT I ) , UGT is 

unsigned 
unsigned 
unsigned 
unsigned 

version 
version 
version 
version 

IREG I reg ister 
bREG loffset from register (U* REG + ICON) 
~TASG Istructure assignment 
ISTARG Istructure argument to a CALL 
~TCALL ICALL returning a structure, UNARY STCALL 
IFLD Ib it fie Id 
ISCONV Istorage conversion (e.g. pointer =) int) 
~CONV Ipointer conversion (e.g. int =) pointer ) 
~MCONV Ipointer multiplication conversion , e.g. 
I Ipointer + offset =) pointer + offset*wid th 
IpVCONV Ipointer division conversion, e.g. pointe r 
I Ipointer =) (pointer-pointer)/width 
IPACONV Ipointer addition conversion, see Figure VI-l 
~SCONV Ipointer subtraction conversion, ·see Figure 
I IVI-l 
~ORCE Imust have left tree in specific registe r 
ICBRANCH Iconditional branch to label on right, 
I laccording to comparison on left 
IINIT linitialize memory location with value on left 

Figure II-I. Portable Compiler Node Types 
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here, describing the type of the expression rooted at 

that node. 

Remaining members of the node structure contain 

dimension table pointers, size table pointers, constant 

values, symbol table pointers, label numbers, register 

allocation information, Sethi-Ullman numbers {see 

section 4 of this chapter) ,etc. The exact application 

of each element of a node will be described where 

needed. For a complete description of all the data 

structures used in the portable compiler consult [15]. 

The formalism chosen in this document to 

represent the expression trees has been tailored to 

simplify their inclusion in the text, so it will be 

introduced here. Express ion trees will be di splayed 

"on their side", with each level of the tree marked by 

an extra level of indentation. To avoid ambiguit y, the 

left son at each level will be displayed first . All 

unary operators therefore will have their single 

descendant on the left. Consider the expression a += b 

- c, the corresponding tree would be: 

+=, <type>, •.. 
NAME, _a, <type>, 

<type>, •.• 
NAME, b, <type>, 
NAME, -c, <type>, 
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Each node in the tree contains a leading node number 

(displayed symbolically), the C type of the node, and 

any further information that might be appropriate to 

the example. For the purposes of discussion, many of 

the details which would be present in the actual node 

representation (e.g. dimension table indices, sizes, 

etc.) may be omitted. Note that the NAME nodes, used 

to indicate that the variables, a, b, and care 

statically allocated, have "the symbol's name present, 

pr epend ed wi th an und er score (" 1\). The convent ion 

chosen for the /6 is that all C symbols will be 

constructed in this fashion to avoid name conflicts 

with assembly language defined symbols. 

3. The First Pass 

The firs t pass 

parsing, and symbol 

performs lexical 

table maintenance. 

analysis, 

It also 

constructs parse trees for expressions and keeps track 

of the types of the nodes in these trees. Addi tional 

code is devoted to initialization of stati c data 

structures. Machine dependent portions of the first 

pass serve to generate subroutine prologs and epilogs, 

code for switch statements, code for branches , label 

definitions, alignment operations, changes of location 

counter, etc. 
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The porter of the portable compiler has 

relatively few jobs to perform in the first pass. The 

work of lexical analysis, parsing, symbol table 

maintenance, semantic checking, and initialization of 

static data structures are, for the most part, 

completely handled by the machine independent portions 

of the compiler; the porter is left with only minor 

tasks. 

For each machine, the express i on trees built by 

the first pass will need specific ma ssaging. There are 

two major areas where this is important -- NAME nodes 

and conversion operations. In the case of NAME nodes, 

the machine dependent portion of the compiler must 

rewrite the node to ref lect t he physical location of 

the name in the machine. In effect, the NAME node must 

be examined, the symbol table entry found (th rough a 

field in the node), and base1 on the storage cl ass of 

the node, the tree must be transformed. Au tomatic 

variables and 

treating the 

parameters are usually rewrit ten by 

reference to the variable as a str ucture 

reference off the register which holds the stack or 

argument pointer. In the case of LABEL and in ternal 

static nodes, the node will be transformed to place the 

negative of the internal label number in the node. 

Finally, a name of class REGISTER must be conv erted 
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into a REG node, and the encoded register number must 

be placed in the appropriate field of the node for use 

by the second pass. For machines with addressability 

problems (for instance the IBM 370) the work here may 

become fairly involved. 

The conversion operator treatment is rather 

tricky. It is necessary to hand le application of 

conversion operators to constants in machine dependent 

routines in order that all constant expressions can 

have their values known at compil e time. In extreme 

cases, this may mean tha t some simulation of the 

arithmetic of the target machin e might have to be done 

in a cross-compiler. In the most common case, 

conversions from pointer to po i nt e r do nothing. For 

some machines , however, conversions from byte pointer 

to short or long pointer might require a sh i ft or 

rotate operation which would have to be generated here. 

The other machine specific issue involves the 

subroutine prolog and epilog generation. The har d part 

here is the design of the stack frame and calling 

sequence. While code for these jobs may be emit ted in 

part in the first pass, the final stack size and the 

number of register variables is not known unt il the 

second pass, so these values must be referred to by 

assembler constants. 
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C has a finite, but fairly extensive, number of 

storage classes available. One of the compiler design 

decisions was to process the storage class information 

totally in the first pass -- the second pass has no 

access to the symbol table. This means that all of the 

storage allocation must take place in the first pass, 

so that references to automatics and paremeters can be 

turned into references to cells lying a certain number 

of bytes offset from certafn machine registers. The 

first pass of the compiler d e als with all address 

information internally in bits. It is the compiler 

writer's responsibility to convert these values to 

bytes or words, as appropriate. 

4. The Second Pass 

It is difficult to organize a code g ene rator to 

be flexible enough to generate c ode for a large number 

of machines and still be e fficient for anyone of them. 

Flexibility is also important when it comes t ime to 

tune the code generator to improve the output code 

quality. On the other hand, too much flexibil ity can 

lead to semantically incorrect code, and potenti ally a 

combinatorial explosion in the number of cases to be 

considered in the compiler. 
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One goal of the code generator is to have a high 

degree of correctness. It is very desirable to have the 

compiler detect its own inability to generate correct 

code. This goal is achieved by having a simple model 

of the job to be done (e.g. an expression tree) and a 

simple model of the machine state (e.g. which registers 

are free). The act of generating an instruction 

performs a transformation on the tree and the machine 

state. If each of these instruction/transformation 

pairs is correct, and if the machine state model really 

represents the actual machine, and if the 

transformations reduce the input tree to the desired 

single node, then the output code will be correct. 

For most real machines, there is no definitive 

theory of code generation that encompasses all of the C 

operators. Thus, the selection of which 

instruction/transformations to generate, and in what 

order, is necessarily heur istic in flavor. If, for 

some expression tree, no transformation applies, or 

more seriously, if the heuristics select a seque nce of 

instruction/transformations that do not, in fact, 

reduce the tree, the compiler will report its i nability 

to generate code and abort. 

A major part of the code generator is concerned 

with the model and the transformations, most of which 
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is machine dependent or depends on simple code tables. 

The flexibility comes from the heuristics that guide 

the transformations of the tree, the selection of 

subgoals and the ordering of the computation. 

The remainder of this section involves a 

description of the scheme used by the code generator. 

It is based heavily on the machine model imposed by the 

portable compiler, so before the details are discussed, 

this model must be introduced. 

The machine is assumed to have a number of 

registers, of at most 

Within each register 

(temporary) registers 

two different types: A and B. 

class, there ' may be scratch 

and dedicated registers (e.g. 

register variables, the stack pointer, etc.). 

to allocate and free registers involve 

temporary registers. 

Requests 

only the 

Each of the registers in the machine is given a 

name and a number: the numbers are used as indice s into 

various tables that describe the registers, so they 

should be kept small. One such table describes the 

status of each register. The status of each register 

is an expression formed from manifest constants 

describing the type of the register: SAREG for 

dedicated AREG's, SAREGISTAREG for scratch AREG's , and, 
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similarly SBREG and SBREGISTBREG for BREG's. 

The actual code generation is done by a hierarchy 

of routines. Each tree to be processed is first 

scanned for any delayable operations, such as postfix 

++ and ope rat ion s • Also, an attempt is made to 

handle comma operators by computing the left side 

expression first, and then rewriting .the tree to 

eliminate the operator. This is not always possible; 

for example, parameter lists involve the comma 

operator, but their evaluation order may not be 

altered. The code generation process takes as 

arguments a pointer to an expression tree, and a second 

argument that, for socio-historical reasons, is called 

a cookie. The cookie describes a set of goals that 

would be acceptable for the code generation. These are 

assigned to individual bits, so they may be logically 

or'ed together to form a number of possible goals. 

~~ong the possible goals are 

FOREFF 

INTEMP 

Compute for side effects only; don' t worry 
about the value. 

Compute and store the value into a temporary 
location in memory. 

INAREG (INBREG) 
Compute the value into an A (B) register. 

INTAREG (INTBREG) 

FORCC 

Compute the value into a scratch A (B) 
reg ister • 

Compute the expression for the condition 



a 

FORARG 

- 19 -

codes it produces. 

compute the expression as a function 
argument: e.g. stack it if appropriate. 

The first step in the code generation process is 

canonicalization of the expression tree. 

Canonicalization involves searching the tree for 

certain transformations that might be applicable. One, 

which is very common and very powerful, is to fold 

together an indirection 'operator (UNARY MUL) and a 

register (REG): in most machines, this combination is 

addressable directly, and so is similar to a NAME in 

its behavior. The UNARY MUL and REG are folded 

together to make another node type called OREG. In 

fact, in many machines, it is possible to directly 

address not just the cell pointed to by a register, but 

also cells differing by a constant offset from the cell 

pointed to by the register: such cases are also sought. 

Another transformation is to replace bit field 

operations by shifts and masks if the operation 

involves extracting the field. Finally , a machine 

dependent routine is called to calculate Sethi-Ullman 

numbers for the tree. A Sethi-Ullrean number, [25], is 

an estimate of the number of registers requi red to 

evaluate an expression. These numbers are calculated 

in a bottom-up fashion. Each node in the tree has a 

number which is intended to reflect the number of 
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registers required to evaluate the expression rooted at 

that node. 

After the tree has been canonicalized, it is 

perused for subtrees that may be computed and (usually) 

stored before beginning the computation of the full 

tree. The selection of these subtrees is usually a 

result of the full tree requiring more registers 

(according to the Sethi-Ullman numbers calculated) than 

the machine has available. The trees handled in this 

manner must be computable without need for temporary 

storage locations. In effect, the only store 

operations generated while processing the subtree must 

be in response to explicit assignment operators in the 

tree. This division of the job marks one of the more 

significant, and successful, departures from most other 

compilers. It means that the code generator may 

operate under the assumption that there are enough 

registers to do its job, without worrying about 

temporary storage. 

One consequence of this organization is that code 

is not generated by a treewalk. There are theoretical 

results that support this decision [1], [2], [25] . It 

may be desirable to compute several subtrees and store 

them before tackling the whole tree~ if a subtree is to 

be stored, this is known before the code generation for 
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the subtree is begun, and the subtree is computed when 

all scratch registers are available. 

When a tree is ready to be evaluated (i.e. it has 

been stripped of all subtrees that need to be stored) 

it is passed to a routine which handles the evaluation 

of expression trees that do not require tempotary 

locations. This routine may make recursive calls on 

itself, and, in some cases, on routines higher up in 

the hierarchy. For example, when processing the 

operators &&, II, and comma, that have a left to right 

evaluation, it is incorrect to examine the right 

operand for subtrees to be stored. In these cases, a 

recursive call to a higher level routine must be made 

when it is permissible to work on the right operand. A 

similar situation arises with the ?: operator. 

The evaluation of expression trees works by 

matching the current tree with a set of code templates. 

If a template is discoverd that will match the current 

tree and cookie, the associated assembly code is 

generated. The tree is then rewritten, as specified by 

the template, to represent the effect of the output 

instruction(s). If no template match is found, first 

an attempt is made to match with a different cookie: 

for example, to compute an expression with cookie 

INTEMP, it is usually necessary to compute the 
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expression into a scratch register first. If all 

attempts to match the tree fail, the heuristic part of 

the algorithm becomes dominant. Control is_ typically 

given to one of a number of machine-dependent routines 

that may in turn recursively calIon the evaluation 

process to achieve a subgoal of the computation (for 

example, one of the arguments may be computed into a 

temporary register). After this subgoal has been 

achieved, the process begins again with the modified 

tree. If the machine-dependent heuristics are unable 

to reduce the tree further, a number of default 

rewriting rules may be considered appropriate. 

To close this introduction, we will consider the 

steps in compiling the code for the expression 

a += b 

where a and b are static variables . 

The canonicalization and Sethi-Ullman number 

computation are machine dependent, so assume they do 

not alter the tree noticeably. Then, to begin with, 

the whole expression tree is examined with the cookie 

FOREFF, and no match is found. Search with other 

cookies is equally fruitless, so an attempt at 

rewriting is made. Suppose we are dealing with the 
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Interdata 8/32 for the moment (it bears some 

resemblance to the /6 in many of its rewriting rules). 

It is recognized that the left and right hand sides of 

the += operator are addressable, and in pa rticul a r the 

left hand side has no side effects, so it is 

permissible to rewrite the tree as 

a = a + b 

and this is done. No match is found on this tree 

either, so a machine dependent rewrite is done; it 

recognizes tha the left hand side of the assignment is 

addressable, but the right hand side is not in a 

register, so a request is made to place the right hand 

side of the assignment operator into a register. This 

invocation of the code generation scheme searches the 

tree for a match, and fails. The machine dependent 

rule for + notices that the right han~ operand is 

addressable; it decides to put the left o pe r a nd into a 

scratch register. Another recursive call is mad e to 

the code generator, with the tree consisting sol ely of 

the leaf ~, and the cookie asking that the val ue be 

placed into a scratch register. This now matches a 

template, and a load instruction is emitted, and this 

third call to the code generator returns. The s econd 

call now finds that it has the tree 
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reg + b 

to consider. Once again, there is no match, but the 

default rewriting rule rewrites the + as a += operator, 

since the left operand is a scratch register. When 

this is done, there is a match: in fact, 

reg += b 

simply describes the effect of the add instruction on a 

typical machine. After the add is emitted, the tree is 

rewritten to consist merely of the register node, since 

the result of the add is now in the register. This 

agrees with the cookie passed to the second invocation 

of the code generator, so this invocation terminates, 

returning to the first level. The original tree has now 

become 

a = reg 

which matches the template for the store instr uction. 

The store is output, and the tree is rewritten to 

become a single register node. At this point, since the 

top level call to the code generator was interested 

only in side effects, the call returns, and code 

generation for the expression tree is completed: we 

have generated a load, add, and store as might have 
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been expected. 

The effect of machine architecture on this scheme 

is considerable. For example, on the Honeywell 6000, 

the machine dependent heuristics recognize that there 

is an "add to storage" instruction, so the strategy is 

quite different: ~ is loaded into a register, and then 

an add to storage instruction is generated to add this 

register to a. The transformations, involving as they 

do the semantics of C, are largely machine dependent. 

The decisions as to when to use them, however, are 

almost totally machine independent. 

Chapter V will consider much of the code 

generation scheme for the Harris /6. The design of the 

machine dependent tree rewriting rules and Sethi-Ullman 

number computations is extremely difficult; an analysis 

of a specific example should prove useful to future 

porters of the portable C compiler. 



CHAPTER III 

THE HARRIS /6 MINICOMPUTER 

Since many of the design issues involved in the 

writing of a compiler are driven by the target 

machine's architecture, this chapter introduces the 

basics of the /6 machine, and describes their use 

within the implementation of the C language. The 

material in this chapter describing the architecture of 

the Harris /6 is mostly from the /6 reference manual, 

[ 6]. 

1. The Register Set 

The Harris /6 has no general purpose registers in 

the sense of the PDP-II or VAX-II architectures. There 

are five 24-bit registers available to a user in the 

main cpu and additional registe rs ma y be add ed with 

extra features (such as the Scientific Arithmet ic Unit 

SAU, bi t processor, external timer, etc .). The 

register set is composed of three index registe rs and 

two arithmetic accumulators, as illustrated i n Figure 

III-I. The two arithmetic accumulators may al so be 

referenced as a pair, the D register, for double 

precision integer arithmetic; a byte register, the B 
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register, is the lower byte of the A register. 

In the scheme chosen for C, certain registers are 

either dedicated, or heavily used for a specific 

purpose. The K register is used as the frame pointer 

in the stack management scheme (i.e. it is equivalent 

to R5 on the PDP-II, or FP on the VAX-II). The A 

register is used when items must be forced into a 

specific register, as in 

function call. Within 

returning a value from a 

the compiler's machine model, 

the B register is never explicitly referenced, rather a 

need for the B register is effected by a request for 

the A register. 

Two add-on registers are used by the compiler, 

the X register from the SAU, and the V register from 

the bit processor. The X register is the only register 

in which floating point arithmetic may be performed, 

while the V register is used for a temporary storage 

place for the K register while perfo rming structure 

assignments. 

The /6 instruction set forces many re s tr ictions 

on the use of registers. Virtually all complex 

arithmetic operations and all character manipu lations 

must be performed in a fixed register. This problem 

has similarities to the even-odd register pairing 
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problem of the PDP-II, but · forces a much more 

restrictive approach to code generation. For example, 

multiplication, division, shifting, remaindering, and 

extraction of arbitrary bytes from memory all must be 

performed using the A register. While this may seem 

attractive for overlapping operations without register 

to register transfers, in practice it results in just 

the opposite; the A register tends to become a 

bottleneck during expression calculations. 

2. Addressing Modes 

Total memory available to a /6 cpu is 2S6K 24-bit 

words. Because of the cpu's basic architecture and the 

corresponding addressing technique, executable code is 

confined to the lower 64K words of memory. However, 

memory above 64K may be addressed by means of indirect 

references. Figure 111-2 illustrates the memory 

referencing formats available. 

2 .1 . Di rec t Addressing 

The standard memory reference instruction format 

allows the direct addressing of 32K words . The value 

of 32K words is a constraint imposed by the IS-bit 

a~dress field of the instruction word. The add ressing 

logic divides the lower 64K words of memory i nto two 

areas: 0-32K; and 32K-64K. Under this method, t he most 
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op code "* X ""'- IS-bit address 

I 
23 18 14 0 

Direct Addressing 

op code H+ 16-bit -address 

·1 
23 18 15 0 

Long Branch Instructions 

H ~ I~" 1 6 - bit ad d res s l 
19 16 15 0 

Standard Indirect Format (DAC) 

H ~ li~ IS-bit address l 
17 0 

Long Address Format (LAC) 

~--------lS-bit address--------~ 

21 IS 17 o 
Byte Address Constant (BAC) 

Figure III-2. /6 Memory Reference Formats 



- 31 -

significant bit of the program counter is used to bias 

all direct address references. By performing a 

logical-or function between the immediate address 

reference and bit 15 of the program counter, 

instructions may directly address up to 32K words 

within their respective sections of memory. 

Modification of a IS-bit direct address by means 

of indirection (*) and/or indexing (X) can permit an 

instruction to address any memory location up to 256K 

words. 

and 2.3. 

A 

permits 

These provisions are discussed in sections 2.2 

special 

direct 

group of long branch 

addressing up to 64K 

instructions 

words. The 

instruction word format for this group is shown in 

Figure 

mod i fied 

III-2. 

by 

Note 

indirect 

that these 

references 

instructions may be 

(*), but have no 

provision for indexing. Long branch instructions are 

not biased by bit 15 of the program counter . 

2.2. Indirect Addressing 

Indirect address references permit the cpu to 

access up to 256K words of memory. When a memory 

reference instruction is decoded, bit 17 (*) of the 

instruction word is examined. If bit 17 is s e t, an 

indirect address reference is indicated. The word 
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retrieved from memory when the effective address is 

calculated is treated as an indirect address word. 

Consequently, indirect addressing references may be 

chained together. The /6 imposes no restriction on the 

depth of chaining; however, the stall alarm feature may 

be enabled, limiting the total effective memory address 

calculation to 128 machine cycles. 

The standard indirect format, with its l6-bit 

address field, permits access up to 64K words. Up to 

256K words can be accessed by the l8-bit field in the 

long address word. Neither type of indirect address is 

affected by the program counter's address bias. 

Bit 23 (*) of either format may be set to specify 

another level of indirect addressing. Each level of 

indirect reference may be individually indexed to 

provide further a~dress modification. 

2.3. Indexing 

A direct or indirect address reference may be 

modified by indexing. This operation adds the contents 

of a specific index register (I, J, or K) to the 

address in the current instruction or indirect 

reference to determine an effective address. A two bit 

field (X) in the instruction or indirect reference 

specifies which register will be employed in each 
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indexing operation. 

In the lower 32K memory section, direct address 

references may be indexed to access up to 64K words. 

However, instructions in the 32K-64K section of memory 

may not reference the lower section by indexing, since 

all immediate references will be biased by bit IS ' of 

the pc. 

2.4. Byte Addressing 

The byte processing group of instructions permits 

program manipulation of all three bytes within a memory 

location. These instructions are divided into two 

classes: those that operate on a standard address 

format and always reference byte 3 (the right most 

byte), and those that work with a special byte address 

format (see Figure 111-2) to access arbitrary bytes in 

memory. 

Th e set of instructio ns that work with standard 

address formats includes operations t o add a byte to 

the B register, subtract a byte from the B r egister, 

compare a byte to the B register, and transfer a byte 

in memory to/from the B register. The instr uction 

formats permit both indirect address references and 

indexing. 
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The collection of instructions that operate on 

the byte address format is very restricted. They 

consist entirely of instructions to transfer bytes in 

memory to and from the B register, and instructions to 

increment a byte pointer residing in the 1 or J 

register. All arithmetic operations performed on bytes 

inaccessible by a standard address format must be 

carrie~ out in registers. The instruction to fetch a 

byte from memory (emb) uses a byte address constant 

placed in the J register to locate the desired memory 

location, while the replacement of a byte in memory 

(the rbm instruction) employs an address found in the I 

reg i ster • 

3. Data Types 

The /6 architecture supports data types for 

single word integer arithmetic and floating point 

arithmetic. In addition, a double word, double 

precis i on i nteger data type is supported by a small set 

o f instructions. within C, this double wo rd data type 

is used for longs, while the standard data type is used 

for integer types (i.e. unsigned, int, and short). 

Floating point arithmetic is supported by the hardware 

only in double precision. The double word data type, 

shown in Figure 111-3, has a particularly ugly property 

to it: the sign bit in the low word must be ze ro, or 
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unpredictable results may occur. 

conversions and arithmetic operations 

require extensive cleaning up. 

4. Stack Management 

As a result, many 

involving longs 

The /6 instruction set provides no direct support 

for a stack. The architecture is very much FORTRAN 

oriented, unlike most of the previous machines to which 

C has been moved. 

Because of the architecture of the 16, it was 

decide~ that no registers offered to a user process 

were suitable for dedication to a stack pointer. 

Instea~, a memory location was allocated for it. Since 

the stack pointer must reside in data space, to allow 

creation of a pure text segment, the memory location 

can not be fixed, and must be referenced symbolically. 

Also, as a result of the limitations of the direct 

addressing mode, all references to this memory location 

must be indirect to allow its placement anywhere in the 

256K word address space. The cost of adding an extra 

level of indirection for each reference to the stack 

pointer was considered at length. However, to allow 

for the eventual creation of programs of maximum size, 

one must simply pay the price. 



- 36 -

INTEGER 

BYTE INTEGER 

\S \ (byte 11 Is I (byte 21 lsi t' byte 3 2."1 
2.3 2Z ((., IS' l'f i l' " rp 

DOUBLE INTEGER 

Is Iz~ 7l..-C ~l ~tl ~z~ )(~ _2 ----It'l 
~ ~ ~ ~ 
~ 47-bit word--------------~1 

DOUBLE PRECISION FLOATING POINT 
word 1 word 2 

u\L------Ji'1 fJl ~lH· _t41 
Z3 1; ~T 0 
w~~--- 39-bi t mantissa ------"IIPl~ .. exponent ~ 

Figure 111-3. Data Type Representations 
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The C language, as developed on the PDP-II under 

UNIX, has the stack managed by the hardware and the 

operating system. The stack is initialized to the top 

of the user's logical address space and allowed to grow 

downward as needed. A fixed size segment is allocated 

for an initial stack segment, with memory faults 

interpreted by UNIX as an indication of the stack 

needing expansion. This uniform treatment of memory 

faults implies that inadveitant traps, caused by faulty 

user programs, expand the stack need lessly. Under 

UNIX/24V (the official name for the UNIX implementation 

on a 6024/6 cpu) a similar approach was selected. A 

users' stack is treated as on the PDP-II, but the 

maximum stack size is set by the loader and is integral 

to each executable program. The heuristic used by the 

loader to set the stack size is based on the program 

size. The user may override the heuristic and specify 

the stack size. The reason for having the stack size 

va ry i s related to the / 6 virtual memory h a rdwa re; it 

suffices to say that uniformly starti ng the stack at 

the top of the 256K word address space is t oo costly in 

terms of operating system resources. For a complete 

discussion of the UNIX/24V handling of the stack the 

reader is referred to [26]. 
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The implementation of C on the PDP-ll employs two 

general purpose registers to man age the stack. RS is 

used as the frame pointer, and the norm a l hardware 

stack pointer R6 (SP) points to the loc a tion on the 

"top" of the stack. The stack grows down from high 

memory, with local variables being referenced via 

negative offsets from the frame pointer, and function 

arguments, placed on the stack prior to the register 

save area, referenced via positive offsets from the 

frame pointer (see Figur e 111-4). Th e management of 

this stack arrangement is h a n~le1 by a pair of linkag e 

routines, csv (for saving live r egisters on procedure 

entrance) and cret (for cleaning things up on procedure 

ex it) . For the /6, the manag ement scheme is virtually 

identical to tha t used for the PDP-ll. The register 

save area differs in size (the re are no ~gister 

variables on the /6, so only the frame po in ter and 

stack pointer need be s aved) , and the stac k pointer 

points to the next open location on the top of the 

stack (to minimize the number of pushes required when 

passing parameters for procedure calls). At one point 

there was some thought to expanding the ~outine s csv 

and cret in-line, however the eventual coding of these 

routines showed this to be too costly. For a more 

detailed discussion of the C calling sequence c onsult 

[I 7] • 
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CHAPTER IV 

THE PORTING PROCESS 

The porting process basically consisted of three 

steps: 

1) Create a version of the compiler on a PDP-11/45 
running UNIX, which generated symbolic assembly 
code for the /6. 

2 ) Cross-compile the compiler to create a compiler 
running on the /6 under the native /6 operating 
system, VULCAN. 

3) Re-fit the compiler for UNIX/24V. 

While there may appear to be no re ason for step 2), a 

number of major stumbling blocks required the 

intermediate step of going to VULCAN. Some of the 

problems encountered were: 

1) The 11/45 had no compatible physical medium with 
which to communicate with the /6. All files 
transfere~ from the 11/45 to the /6, and vice 
versa, had to be se n t ove r terminal lines at 
300 baud ( /6 = ) 11/45) and 1200 baud (11/45 =) 

/6) • With such an inefficient method for 
communication it became imperative t o minimize 
the amount of work carried out on the 11/45. 
Consequently, little UNIX/24V devel opment was 
carried out on the 11/45. 

2) There were only two people involved in the 
majority of the project, and moving directly to 
a UNIX system would have required a /6 as sembler 
and link-editor running on the 11/4 5, plus 
binary conversion programs to be able t o boot a 
system directly off of tape or disk. By moving 
to VULCAN first we were able to take adv antage 
of the existing assembler, link-editor , and 
debugger. 

- 40 -
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3) The existing VULCAN environment, augmented by 
the C compiler and standard I/O library, allowed 
parallel conversion of user programs such as the 
shell and editor. 

Expanding the first list then, a more detailed list of 

the steps taken in the porting effort would be: 

1) A C compiler was developed on the 11/45. 

2a) A standard I/O library was tailored to · the 
VULCAN operating system. 

2b) UNIX/24V development work was carried out on the 
16. 

2c) The C compiler was cross-compiled and moved 
(numerous iterations) via the terminal link. 

2d) The C compiler was modified to eliminate PDP-II 
dependencies. This mostly involved alterations 
to data structures that required a long on the 
PDP-II, but only an int on the /6. 

3a) A swapping version of UNIX/24V was brought up. 

3b) YACC was moved to VULCAN to make the compiler 
completely self-sufficient under VULCAN. 

3c) A version 7 shell was brought over to UNIX/24V, 
while a UNIX/24V assembler and link-editor were 
being written. 

3d) The C compiler on VULCAN was modified to run 
with the UNIX/24V assembler, then compiled into 
.0 files and moved to UNIX/24V where it was 
linked. 

4) All other necessary user programs, not already 
on UNIX/24V, were moved. 

5) The UNIX/24V kernel development was moved to 
UNIX/24V. 

After the last step, UNIX/24V was completely self 

sufficient. The current programming envir onment 

includes all essential programs, such as the shell, 
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editor, assembler, link-editor, yacc, and compiler, 

plus numerous other tools such as make, sed, etc. 

Because the compiler had to run under the VULCAN 

operating system for a long period of time (during 

kernel development), some compromises in the cross­

compiler had to be selected. The VULCAN assembler' and 

loader were not to be the eventual assembler and loader 

under UNIX, so little effort was put forth to make the 

compiler compatible with these programs. Rather a 

program external to the compiler was constructed to 

massage the assembly language output generated by the 

compiler into a format suitable for input to the VULCAN 

utilities. This post processing program, called cpop, 

was developed by the A. R. Jennings Computing Center in 

accordance with a previous agreement. The decision to 

handle the stay on VULCAN in this manner was caused by 

certain deficiencies in the assembler and loader (see 

chapte r VII for a more detailed discuss i on) • 

The actual process of moving the portable 

compiler from the 11/45 to UNX/24V was fairly painful. 

The step between the 11/45 and VULSAN, over . a 30 0 baud 

terminal line, took a number of weeks. This process 

was complicated by the involvement of cpop. Ea rly on, 

bugs were traced as often to cpop as to the compiler, 

though very quickly the compiler became the standard 
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culprit. Once the compiler initially reached the /6, 

very few trips back to the 11/45 were made. About one 

week after the compiler was deemed "usable" on the /6, 

it began to be fully used for kernel development. The 

trip from VULCAN to UNIX/24V was e asier, but no less 

painful. While files could be moved by magnetic tape, 

the variable here was the assembler. The ass embler was 

initially tested by use of a "mini-loader" (a simple-

minded loader which relocated only a single file into 

the executable a.out format), but many instruction 

table typos and a few misunderstandings of the 

architecure resulted in a numbe r of weeks worth of 

debugging. Once the assembler was stable, it was 

straightforward to move the compiler, and the UNIX/24V 

kernel soon followed. Since it is always interesting 

to look back on the work spent in such a project, 

Figure IV-l has been includ ed to allow compa rison of 

t he ac t ua l time spent on each phase of the porting 

effort to that which was originally expected . This 

figure should be taken lightly, as division of certain 

steps is nearly impossible. 

The initial testing of the compiler involved the 

creation of a "validation suite". This collect ion of 

test cases was used extensively during the early 

debugging phases that took place on the 11/45 . Once 
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Figure IV-I. Development Schdeule for UNIX/24V 
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the compiler was moved to the VULCAN operating system, 

however, regression testing using the test cases was 

virtually abandoned, since the size of the test suite 

(approximately 200 files) required an extraordinary 

amount of compile time. Later testing usually 

consisted of specific test cases, followed by a 

complete recompilation of the compiler and operating 

system. While abandonment of the validation suite is 

not a recommended practice, most bugs encountered at 

this stage were usually as a result of "edge effects" 

in the Sethi-Ullman number calculations, and fixes had 

virtually no affect on unrelated constructs. If the 

compiler had been an order of magnitude more efficient 

(see chapter VIII), the use of the validation suite 

would have been possible. However, due to the large 

number of changes being made to the compiler during its 

stay on VULCAN, lengthy testing of this sort was not 

feasible. 

In addition to the . basic compiler being moved to 

VULCAN, a prerequisite was the creation of a standard 

I/O library to interface to the VULCAN ope rating 

system. The C language provides no I/O support within 

the language. Thus, in order to move the compile r from 

one machine to another, a friendly I/O environment must 

be provided. The standard I/O library was broug ht up 
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in two stages. First, a version of the library was 

implemented under the Wisconsin C compiler. This 

allowed for testing of many of the algorithms involved, 

as well as the development of a small number of useful 

utility programs. When the cross-compiler was ready 

for use, the library was then recompiled on the 11/45 

and moved along with the compiler. The stack design of 

the Wisconsin compiler precluded any possible mixing of 

compiled code. 



CHAPTER V 

MOVING THE PORTABLE C COMPILER TO THE /6 

1. The Machine Model 

As described in chapter II, the portable compiler 

has an abstract machine model to which a target machine 

must be mapped. Unfortunately, the /6 failed to fit 

into this model. The first probl em involved the index 

registers. with only two register classes available in 

the original model, the /6 register set was divided 

such that index registers and arithmetic accumulators 

were in the same class, while the flo a ting point 

register was kept in a class by itself (see 

1). This caused considerable problems, 

Figure V­

the most 

difficult being the allocation of an index register. 

Since the machine model as sumed a ll r egiste rs placed in 

the same class were identical, it was not po ssible to 

guarantee allocation of an index register whe n needed. 

For this reason, and because of problems encountered in 

handling the allocation of the D register , it was 

decided that more than two register classe s were 

necessary. Since the abstract machine model wa s to be 

altered, it was decided to tailor it specifical ly to 

the needs of the /6 (to minimize the work that had to 
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be done in other machine dependent portions of the 

compiler) • The register classes shown in Figure V-I 

were the result of these modifications to the machine 

model. Note that many of the register classes overlap, 

and that the class SDREG contains only the D register. 

The choice of placing the D register in a separate 

class implied that the register allocation scheme no 

longer needed to be concerned with register pairing. 

However, this decision also i mplied that the allocation 

routines were now required to handle the problem of 

physically overlapping registers. Certain of the 

register classes (SIREG and SJREG, in particular) were 

added soley to allow recognition of specific shapes in 

the code tables~ these classes are never requested for 

allocation. 

The modifications that were necessary to 

implement the new machine model were simple. The 

register allocat ion routines were alte r ed t o be aware 

of the new register classes. The low leve l al location 

routines no longer needed to be concerned with register 

pairing, but instead had to handle the physical 

overlapping of the D register. Finally, the shape 

matching routine used in the template ma tching 

algorithm were made aware of the new shapes associated 

with the new register classes. 
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Figure V-l. Original and Final Register Classes 
in the /6 Machine Model 
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2. Address Arithmetic 

By far the most difficult problem in moving the 

compiler involved the handling of address arithmetic. 

The difficulty stemmed from the /6's basic word 

addressable architecture, and the format of the 

pointers used to retrieve bytes from memory. 

To understand some of the difficulties 

encoun ter ed, one must consider how the compiler 

normally forms addresses. Consider the following code 

sample, 

int foo [20] ; 

•• = foo [ ... 1 ; 

On the PDP-II and VAX-II, a portion of the expression 

tree to be passed to the second pass of the compiler 

appears as 

U*, int, 
+, PTR int, 

ICON, foo, PTR int, .•. 
<expression>, int, 

where the expression contains the index i n bytes. 

However, on the /6, the appropriate index should be in 

words, not bytes. The index is formed, in a machine 

dependent manner, by converting the i nternal 
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representation of the offset, maintained in bits, to 

the numeric value it should have for tr a nsmission to 

the code generator. By interpreting the type of the 

node to which an offset is to be added, in most cases 

the conversion from bits to bytes/words is obvious. 

However, not all cases are so obvious. For example, 

consider another sequence of code, 

struct foo { 
int a; 
char b; 

bar[10]; 

= bar[ •. ].a; 
= bar[ .. ].b; 

This example hits at the core of the probl em. The 

structure contains two members, one a character, the 

other an integer. The natural addressing structure on 

the /6 for each of these items is very different; one 

may be accessed by indexing, while the other requires a 

byte pointer. Consequently, all offset s const ructed in 

addressing the integer member must be in wo rd s, while 

offsets for the character should be in byte s (in order 

to optimize the address calculations) • If one 

considers the address formation as the trees are built, 

both have the common base 
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+, PTR strty, ••. 
ICON, bar, PTR strty, •.. 
PMCONV-;- int, ••• 

<index expression), int, 
ICON, <width of structure>, int, 

The PMCONV none refects the semantics of addition to a 

pointer in C. The addition results in the index 

expression being multiplied by the width of . the 

structure, so that one may point to the appropriate 

element of the aggregate. At this point in the address 

formation, the tree building routines do not know which 

element of the structure will be accessed (if, indeed, 

an element will be adrlressed at all). Thus, a decision 

as to which type of calculation (byte or word) should 

be performed for the offset is impossible. 

The problem of rleciding between byte and word 

offsets permeates much of the machine dependent portion 

of the first pass of the compiler. As shown above, 

t he r e are cases whe r e the compi ler c a n not, in a 

straightforward manner, decide whether t o c reate an 

address offset in bytes or words. This r a ises the 

possibil ity of leav ing all offsets i n bytes. 

Unfortunately, this is far too expensive to be a viable 

solution. Assume all address offsets are mai n t ained in 

bytes. If one now considers the first example of this 

section, the original tree used to form the array index 

would appear as 
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U*, int, ..• 
+, PTR int, 

ICON, foo, PTR int, •.. 
PMCONV~ int, ... 

<expression), int, 
ICON, 3, int, 

The 3 in the last line indicates th a t each e l ement of 

the array is 3 bytes wide (since the /6 ha s a 24-bit 

word). Because the offset is ma inta ined in byte s, the 

PMCONV node can not be collapsed to the previous form 

for the tree. Without intervention be fore the s e cond 

pass of the compiler to convert the byte count to a 

word count, this expression tree will have incorrect 

code generated for it. Th e probl em of intervening in 

instances such as this is very difficult, thus one may 

conclude that maintaining all add r e ss offse ts in bytes 

is impractical. 

Since it has been shown that both byte and word 

offsets are required, a logical question to ask is how 

they might be distinquished? within the original 

scheme of the compiler it was not possible. In most 

cases, offsets are merely integer constants ICON 

nodes. However, the only distinguishing characteristic 

of an ICON node is its type . To handle the 

id entif ication problem , a new characteris t ic wa s added 

to all ICON nodes describing their "offset- t ype ". That 

is, a new node element, sym x, was added t o all ICON 
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nodes. Sym! has one of the values BYTES, WORDS, or 

NOTYPE to indicate that the ICON is an offset in bytes, 

an offset in words, or a constant introduced outside of 

the compiler (e.g. a program constant). 

By using this added information, the problem of 

forming the appropriate offset type (bytes or wo"rds) 

may be delayed, in the most difficult cases, until 

information is available to make a decision. When a 

decision is formed, a pass is made through the 

expression tree to convert appropriate expressions. 

For instance, if we reconsider the structure reference, 

we find that the partial tree from before takes the 

form, 

+, PTR strty, ... 
ICON, bar, PTR strty, •.. 
PMCONV~ int, ••. 

<index expression>, int, 
ICON, 2 (WORDS), int, ... 

The size of the structure is maintained in words, as 

all structures are aligned to word boundaries according 

to the semantics of C. Now, if the expression refers 

to the integer member of the structure, the resultant 

expression tree is, 
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U*, int, .•. 
+, PTR int, 

ICON, bar, PTR int, ..• 
* . -, lnt, .•. 

<index expression), int, 
ICON, 2 (WORDS), int, .•• 

While the "intermediate" tree for the characte r member 

is, 

U*, char, ••• 
+, PTR char, 

PCONV, PTR char, 
+ , PT R s t r t y, •.. 

ICON, bar, PTR strty, ..• 
PMCONV-; in t , .•. 

<index expression), int, 
ICON, 2 (WORDS), in t, •.. 

ICON, 1 (BYTES), int, ... 

This tree is intermediate because the word offset has 

yet to be converted to a byte offset. To create the 

final tree we must consider first what ha ppens to the 

PMCONV node. For the /6, this is always transformed to 

straight multiplication: 

U*, char, ..• 
+, PTR char, 

PCONV, PTR char, 
+, PTR s t r t y, .•. 

ICON, bar, PTR strty, ••. 
* int-; ••• 

<index expression), int, 
ICON, 2 (WORDS), int, ... 

ICON, 1 (BYTES ), int , • • • 

However, a machine independent local optimi zation will 

normally convert this to a left shift (see sec t i on 3 of 
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this chapter), since one of the operands is a constant 

and a power of two. Thus, the true form of the 

intermediate tree is, 

U*, char, ••. 
+, PTR char, 

PCONV, PTR ch ar, 
+, PTR s t r t y, ... 

ICON, bar, PTR str ty, •.. 
«, int, ... 

<ind ex expr ession), int, 
ICON, 1 (WORDS), int, ... 

ICON, 1 (BYTES), int, •.. 

Now, to convert this to a suitab le byte ad dr e ss, a pass 

is made through the tree, converting all word offsets 

to byte offsets. The construct involving the « node 

is recognized as the result o f an optimization, and 

converted to the appropriate byte c a lculation. The 

result of the transformations is, 

U*, char, .•. 
+, PTR char, 

PCONV, PTR char, 
+, PTR strty, ... 

I CON, bar, PT R s t r t y, .•. 
* int-; ... 

<index expression), int, 
ICON, 3 (BYTES), in t, .•. 

ICON, 1 (BYTES), int, •.• 

The following list summarizes the reasoning 

behind the design of the eventual scheme for handling 
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address calculations: 

1) The first pass of the compiler must handle the 
machine dependent translation of all offsets from 
bits to bytes/words; the second pass of the 
compiler expects all this work to be previously 
performed. 

2) Since the /6 has two distinct techniques for 
addressing memory, one for word-oriented items, 
the other for bytes, offsets must necessarily be 
maintained in both bytes and words. 

3) The simple cases are handled with little trouble 
by interrogating the type of the expression to 
which an offset is to be a~d ed; the only 
difficulty exists in the formation of add resses 
for structures. 

4) The interme~iate address calculations involving 
structures are always performed in words since 
the constants involved will all be offsets to a 
word-aligned memory location, and because the 
resultant address calculation may not be used for 
the addressing of an element of basic type (e.g. 
bar[3], for the above example, is a perfectly 
legal construction). 

5) All references to items of ch a racter type (char 
and unsigned char) that involve address offsets 
have these offsets maintained in bytes (with the 
exception of NAME nodes, which will be described 
shortly) . 

The result is that the second pass of the compiler may 

assume any address construction involving a word-

oriented item will involve only word offsets, while 

offsets for byte items are almost always in bytes. 

The r eade r ma y be a s king why a ll offse ts involved 

in byte address calculations must be ma intained in 

byte s ? In the previous example dealing with the 

structure, it appears that a more viable approach to 
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the calculation of the byte pointer i s to form the word 

address, convert to a byte pointe r, then add the byte 

offset left over. Clearly this approach woul d result 

in the same address as the approach tak e n. There are 

two problems with such an attack. First, the cost in 

manipulating byte pointers, both in conv e rsion and 

calculation, is enormous: this approach t ends to 

increase the number of such c a lcul a tions. Second, the 

compiler attempts to minimize the numb er of byte 

pointer calculations by combining constants wh e rever 

possible: by maintaining offsets in both words and 

bytes in the same expression subtree, such 

optimizations are greatly complicated. In g e ne ral, the 

resulting code for byte point e r calcul a tions has been 

found to be very good. This i s d ue ma inly to the 

approach taken in handling addr ess offsets. 

In the previous discussion, it was a ssumed that 

the character item the compiler was a ttempting to 

address was in an arbitrary memory location. In many 

instances this is not the case, and the compiler may 

use an alternate form of addressing which is far 

c he a pe r t han crea ting a byte pointer . For t hose items 

located in the third byte of a word, the character may 

be retrieved by supplying only the word addres s of the 

word it is contained in. In addition, while arbitrary 
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bytes may only be brought to or from memory when byte 

pointers are used, bytes addressable in this special 

case may be used in limited arithmetic calculations 

(add it ion and subtr act ion). As a resul t, the compil er 

trys, whenever possible, to establish the feasability 

of this word addressable format. Cases where bytes may 

be retrieved in this manner include those bytes at 

constant offsets within aggregate structures (both on 

the stack and in "main" memory) . When such an 

addressable byte is recognized, if possible, the 

address offset is folded to form a NAME node. The 

second pass understands that all NAME nodes of 

character type are examples of this special addressing 

form. 

Further candidates for the above addressing 

format are single characters allocated static storage. 

However, some problems arise in performing address 

calculations in this manner. The portable compiler has 

a simple notion of the way bytes are laid out in a 

machine word. One may specify only that bytes are 

always placed left to right, or right to left. Since 

the /6 is word addressable, the a ttachment of a label 

to a memor y l oc ation (in the assembl e r) allocates a 

wo rd o f storage, not a byte as the portable compiler 

likes to believe. Consequently, the c omp il e r assumes 
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that a statically allocated character is a llocated a 

memory cell (on the /6 a word) and placed in the first 

byte of a word (on the /6 the left most one ). Thus, if 

one is to arbitrarily assume th a t statically a llocated 

bytes are situated in the third byte (to aid in 

addressing), inconsistencies may appear. 

if the user attempts to inittalize 

allocated character or take the addr e ss 

For example, 

a sta tically 

of such a 

variable (using the & oper a tor), 

reflect the notion that the v alue is 

first, rather th an th i rd , byte 

the r e sul t will 

loca ted in the 

of the word. 

Consequently, to optimize addressing of static 

character items, some modifications (speci a l case s) 

were necessary to bypass the compiler's id ea of byte 

layout in statically allocated characters. 

3. Sethi-Ullman Number Computations 

The movement of the portable C compiler to a new 

machine requires the creation of a number of machine 

dependent modules which are hooked into the machine 

independent portions of the compiler. Examples of 

these modules include those used to hand le tree 

conve r s ions, the transformations in processing type 

generation of code for subroutine 

switch statements, etc., and 

expressions. In the process of 

prologs , epilogs, 

the compila tion of 

compiling expr essions 
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one of the most important routines calculates Sethi-

Ullman numbers for parse trees. As described in . 

chapter II, Seth i-Ullman numbers are intended to 

reflect the minimal number of registers needed to 

evaluate an expression. The numbers are calculated 

when a tree is initially handed to the second pass of 

the compiler (be it from an interme~iate file or 

directly), and after every transformation is performed 

on the tree (e.g. after a code sequence has been 

emitted) Each node of an expression tree has a 

Sethi-Ullman number stored in it to reflect the 

relative difficulty of evaluating the tree rooted at 

that node. This section will describe the algorithms 

employed in the /6 compiler for calculating Sethi­

Ullman numbers. It should be noted that the problem of 

cal c u 1 at in g " pe r f e c t" Sethi-Ullman numbers (i. e. 

estimating the minimal number of registers required to 

ev al ua te an expr ess ion tree) for any but the simplest 

machines is NP-complete [3]. Thus, the algorithms found 

in almost all versions of the portable compiler are 

swamped in heuristics, and the creation of such 

algorithms should be considered at best an art. 

The Sethi-Ullman computations nor mally create a 

numb e r for a node dependent on the numbe rs of each 

descendent, and the operator of the nod e under 
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consideration. 

op, <type>, su, .•. 
left, <typel>, suI, 
right, <typer>, sur, 

That is, the calculation of ~~ i s de pe nde nt on £E , suI, 

and sur. In ad d ition, in mos t cases, the type of 'e ach 

node involved may corne into the calcul a tion. For a 

leaf node, the values for suI and sur ar e a s sumed to be 

zero. For machines with an orthogona l a rchi tecture, 

computations may normally be grouped accord ing to 

operator classes or by the ope rand type s. For instance, 

for the PDP-II and VAX-II virtual ly a ll simpl e 

arithmetic operations have id en t ic al add r e ssing mod e s 

and allowable source and destina tion locations, 

allowing computations to be id entic al. Howev e r, the /6 

instruction set has numerous speci a l case restrictions 

and supports a highly iregular collection of operand 

addressing modes. Thus, the Sethi-Ullma n computa tions 

for the /6 tend to be extermely complex, with almost 

every operator having separate calculation rules. 

Further, the many restrictions on register usage often 

requires computation for an operator be overes timated, 

to guarantee the availability of a necessary r egister. 

For instance, all operations involving longs must have 

the 0 register available for use. If the Sethi -Ullman 
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number computed for that node were to specify it needed 

only two registers (the size of the D register), the 

code generation scheme could conceivably be l e ft with 

the I and J register which would s a tisfy its 

requirements, but prevent it from g ene rating code. 

Therefore, in many instances, ope rations involving a 

long must 

registers 

specify 

to insur e 

a requirem ent 

that the D 

for all of the 

r egiste r wil l be 

available for allocation. Thi s a iff i culty in r e s e rving 

registers required the handling of flo at ing point 

operations, and operations involving longs to tr eat the 

16 almost as if it were a single accumulato r machine . 

All directly address abl e items con s t ants, 

static memory locations, indirect refe r enc e s, etc. -­

are assigned a value of zero. I nd irection ope rators 

(U*) normally require one extra register to hold the 

address. Certain indirect references, such a s those 

requiring character extractions, will always require a 

register. Assignment operations are manipulated to 

insure that the right hand side is placed in a register 

when the expression is not addressable. Care must be 

taken in handling assignmen t sta tements to ma ke sure 

that the right hand side isn't placed in a register 

before the right hana side is addressable . For example, 

the construct 
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*f(a) = b 

if handled as previously specified, would r e sult in the 

right hand side being placed in a regist e r be fore the 

function call was made, but function calls r equire all 

the registers to insure all scratch r eg iste rs will be 

free. 

Logical operations (Le. compari s ons) ha ve the 

most compact calculation rules of any cl as s of C 

operators. Depending on the size of the object 

involved in the comparison, the follow i ng c a lcul a tion 

is used: 

su = min (max (suI, sur+size), 
max (sur, sul+size )) 

The size is the number of r egis te rs requ i red to hold an 

item to be compared: 1 for an integer or character, 2 

for a long or float. The calculation rule r e flects an 

attempt to evaluate the more difficult side first. 

Storage conversion operations are spe cial-cased 

to recognize certain of the more difficult 

possibilit ies. The conver s i on of a poi n t e r to an 

integer type is a no-operation, with the except ion of a 

byte pointer. This conversion is very ex pensive, 

requiring all but one of the scratch registers . Since 
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the resource requirements are so great, and certain 

specific registers are needed to perform the operation 

(the A and E registers), an SCONV node involving a byte 

pointer is reserved all the registers. The handling of 

conversions to a long format requires the D register. 

However, as described at the beginning of this section, 

the allocation of the 0 register proved to be a 

difficult problem, so storage conversions to a long 

also require all the registers. 

Assignment operators (i.e. +=, -=, etc.) are very 

difficult to evaluate, beca~se the /6 has virtually no 

instruction support for them. Consequently, the machin~ 

dependent rewriting routines almost always transform 

these operations to their equivalen t form, 

el op= e2 =) el = el op e2 

after any side effects in the left hand side have been 

"weeded out". Thus, the calculations for assignment 

operators are used mainly in guiding Sethi-Ullman 

calculations higher up in the tree. In general, the 

handling of these operators is broken into two classes: 

those involving single word items, and all others. The 

la t t e r c ategory encompa sse s character item s and double 

word items (longs and floats). If the assignment 

operator involves word-addressable items, the 
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calculation is identical to a simple assignment 

operation (=). This allows the 16 instructions to add 

a register to memory, add a constant to memory, etc. to 

be used without penalty. Those operations that will 

require rewriting, as discussed previously, will be 

transformed and recalculated to reflect the true nature 

of the work which must be performed. All other cases 

fall into the difficult category tha t must be handled 

very carefully, and thus are specified to require all 

registers. One should note tha t the condition implied 

by the latter decision, while appearing to be costly, 

exists for only a "short period of time", since the 

operator is almost immed iately rewritten. Thus, the 

difficulty in performing the operation is merely for 

the benefit of calculation at a higher level in the 

expression tree. 

The handling of normal arithme tic operations (+, 

I, %, * etc.) involves the most complexity since 

the quality of code generated for these operators has a 

heavy impact on the quality of code generated for many 

other operators (due to the way assignment operators 

are handled). The operations *, I, %, «, and » all 

r e quire the A and E regi ste r , D r egi ster, or just the A 

register . After a number of months of tryi ng various 

heuristics to optimize usage for these opera t i ons, it 
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was decided to reserve all of the registers when 

hand ling the se operators. This causes complex 

expressions involving one or more of the operators to 

invariably require a s~ore into memory, but guarantees 

that compilation of expressions involving the operators 

will be successful (i.e. won't result in an inability 

to allocate the needed register). The d ifficulty in 

approximating register needs for these operators 

indicates that expressions involv i ng the operators are 

good targets for future optimization (see chapter VI). 

The remaining operators, + and require close 

scrutiny of the types involved. This is because, for 

instance, the addition of two integers requires far 

less wc:k than the addition of an integer to a byte 

pointer. A myriad of heuristics are involved in 

computing estimates for operations involving byte 

pointers; the actual code is the definitive source for 

an exact description of what goes on. The overall 

approach to handling these operators, when word-

addressable items are involved, closely resembles that 

used for logical operations. The rule applied to 

expressions where the left hand operand is directly 

address able is 

su = max (size+size, 
min (max (suI, size+sur) , 

max (sur, size+sul))) 
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This calculation, as for logical operators, reflects an 

intent to place the more difficult expression in a 

register first, then the easier. The possibility of 

both operands having to be placed in registers is 

reflected in size+size. For expressions whose right 

hand operand is addressable, the simple estimate 

su = max (size, suI) 

suffices. This usually causes th e left hand 

(unaddressable) side to be plac ed in a register before 

the operation takes place. 

The remaining calculations of interest handle 

PACONV and PSCONV nodes. The work here involves 

checking to see wh~ther the oper ands will require a 

full calculation, or whether an optimization may be 

performed (see chapter VI). If th e offset operand is a 

constant, the code emitted will not require all the 

registers to perform the calculation, so fewer 

registers are needed, and fewer stores into memory will 

be generated. 

The rules described comprise the majority of the 

Se th i -U llman calculation procedure . However, certain 

side effects may also take place a s a result of 

calculations. An attempt is made to place the tree in 



- 69 -

a canonical form, to insure consistent tree shapes may 

be expected in the rewriting routines. These canonical 

shapes normally are meaningful only when dealing with 

commutative operators, such as +. The rules employed 

in canonicalizing the trees are: 

if a float and double are involved, place the 
double on the right 

if a character and a word item are involved, 
place the character on the left 

if a long and something other than a long are 
involved, place the long on the right 

if two longs are involved, place the more complex 
one on the right 

if the right hand side has a larger Sethi-Ullman 
number than the right, swap the operands 

The code should be consulted for further elaboration on 

this simplified description. The result of these 

transformations is to place the more difficult operand 

on the left of an operator. Rewriting routines may 

then assume this without checking the Sethi-Ullman 

numbers. (One shold note that once a quantity has been 

placed in a register it is never moved about in the 

tree by a canonicalizing transformation; this avoids 

destructive interference between the Sethi-Ullman 

computations and the machine dependent rewriting 

rules.) 
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4 . Register Allocation Strategies 

The register allocation str a tegy in t he portable 

compiler is divided into two sect i ons - - a machine 

independent portion and a 

The machine independent 

machine 

port ion 

depend ent 

of the 

por t ion. 

str ateg y 

involves keeping track of those r egisters which are 

busy, allocating registers within a certa in class, and 

other bookkeeping-type chores. The machine dependent 

portion allows a designer to spec i fy, in a more exact 

manner, register needs or pr e ferences. Each node in an 

expression tree has a member, ra Il , which is used by 

the machine dependent allocation strategy to indicate 

if a specific register is needed or pr e ferr ed in the 

calculation of the expression rooted a t that node. 

Thus, if an expression must be calculated into, say, 

the A register, the designer may communicate this need 

to the machine indep(:ndent allocation routines by 

placing the code for the A register in raIl and or-ing 

in a flag that specifies the result of the calculation 

must be placed there (a MUSTOO flag). When code is 

generated for the tree rooted at the node, the machine 

independent routine which allocates regi s ter s will take 

this information into account. If the re sult of 

compiling the expression is not the required register, 

a transfer will automatically be generated to satisfy 
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the MUSTDO condition. Should this t r ansfer fa i l due to 

the register being busy, the compi ler will abort. The 

specification of a register preference a llows the 

designer to "steer" expression calculations away from 

needed registers, or allow possible optim i zat ions to 

take place (e.g. keeping things in the A r egi ste r on 

the /6 for an &, I, or operation). This section will 

describe the strategies invol ved in ha nd ling the 

machine dependent portion of the registe r al loc a tion 

scheme. As in the Se thi-Ul l man com puta tions, 

algorithms provide~ here are tota lly heuristic, driv en 

by an attempt to minimize the cost of compiling each 

expression. 

The A and E registers, alte rnatively the D 

reg ister , have al ready been mentioned as ma jor 

bottlenecks in code generation. Consequently, a large 

portion of the register allocation strategy is involved 

in steering operands away from these registers. For 

instance, calculation of the expression ~+~, where a is 

a character pointer and b is a byte offset, may best be 

done by placi ng ~ i n t he A regi s ter a nd b in the I or J 

register before performing the actual c a lculation. 

Should b end up in the A or E register, it wo uld have 

to be moved before ~ could be placed in the A register 

and manipulated (shifted and divided). Hence, the 
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register allocation routine tries to steer ~ away from 

the A register, though it is not always possible 

(suppose ~ were actually !1l, then the value returned 

from the function call would necessarily reside in the 

A register). Further work involves the requirements of 

the emb and rbm instructions. These instructions, for 

extracting and replacing bytes in memory, respectively, 

require one of their operands, the byte pointer, be 

placed in the J and I registers (J for an ~mb, I for an 

rbm) • 

Requirements of floating point operations are 

fairly simple, because of the simple structure of the 

floating point unit. Division requires that the left 

side be placed in the X register, while the right 

resides in the 0 register. Negation (U-) operations 

act on values only in the X register. All other 

requirements are handled in the code tables by explicit 

cases that perform register interchanges when the 

operands are incorrectly situated. 

Function calls, where the function is not 

directly addressable (i.e. a pointer to a function is 

involved) , must have the address placed in an index 

register. Arbitrarily, the I register was selected. 
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are 

Exclusive-or, bit-or, bit- and, and multiplication 

most efficiently performed when one of the operands 

is placed in the A register. Therefore, both operands 

of these operators show f a pre erence to be placed 

there . 

Division and remaindering must have the left 

operand in the A register and the right not in either 

the A or E registers. Thus, the left operand is 

MUSTDO'd into the A register and the right into the I 

register. Most of the time the right operand will not 

have to be placed in a register, but in case it 

requires evaluation prior to the right hand side (a 

function call, for instance), this requirement will 

keep the A and E registers free for allocation. 

Variable left and right shifts cause some 

problems on the /6 because the instruction set supports 

only shifts of a constant number of bits. To handle 

this weakness and insure reentrancy, tables of shift 

instructions are available in the C run-time library. 

A variable shift, then, performs an "execute memory", 

exm instruction, after placing the value to be shifted 

in the A or D register. To execute the correct shift 

instruction out of the tables, the amount to be shifted 

must be placed in an index register and then used to 

index into the shift tables. Thus, register allocation 
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requires the left operand be placed in the A or D 

register (MUSTDO'd in) and the right operand plac ed in 

an index register. 

Assignments involving characters require tha t the 

character to be manipulated be place~ in the B register 

and that the pointer to the memory location resid ~ in 

the I register. Since the B register is never 

allocated by the allocation routines, the A register is 

requested instead. To steer intermediate calculations 

away from the I register, assignment operators force 

the left hand side's address to always be placed in the 

I register and the right hand sid e's address in the J 

register. The specification of I and J registers for 

addresses involved in character pointer manipul a tions 

often results in extraneous register transfers. This is 

because the decision to place an address in the I or J 

register is made at the assignment operator level in an 

expression tree, and forcing this decision on lower 

level calculations in the same tree often results in 

previous allocation decisions being reversed. 

Addition, subtraction, PACONV, and PSCONV 

ope rations are primar il y concer ned with steering 

express ions into the most cost efficient configuration. 

The handling of character pointers i s best done by 

placing the byte pointer (word address f o r PACONV and 
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PSCONV nodes) in an index register and the byte offset 

in the A register. If one 0 f r more 0 the operands 

fails to be situated correctly special cases in the 

code tables will have to gener ate register transfers or 

interchanges to set the operands up correctly before a 

calculation is performed. Usually, something of this 

sort occurs only when an operand is tied to a register 

by a previous register allocation (for instance a 

function call) • 

Storage and pointer conversions require the left 

operand be placed in the A or D register when a byte 

pointer or long is involved. These are MUSTDO 

situations. 

The overall scheme of register allocations can 

best be seen in the handling of the assig nment 

operators. The compiler attempts to maintain address 

type operands lying to the left of an assignment 

operator in the I register and those lying on the right 

in the J register. Much of the reasoning behind this 

scheme is due to the handling of characters, but it 

also is applicable to word oriented items (in forming 

OREG nodes by indexing off the I or J regi sters). 

Register transfers or stores into a compiler-ge nerated 

temporary may arise when expressions cross the 

"borders" imposed by the assignment operators. This may 
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be seen in expressions like 

*(p = q + n) -= a * b 

Where nested assignment statements are involved, 

incorrect placement of the operands is often observed. 

The resultant register transfers are very difficult to 

optimize out, since they reflect a belief, on the part 

of the compiler, that an expression should go in a 

specific register, and it doesn't recognize its error 

until deep into the calculation. Thus, to eliminate 

the register transfer, it is usually required to rework 

many previous calculations to insure the final result 

will reside in the correct register, thus eliminating 

the register transfer. 

5. Machine Dependent Rewriting Rules 

Whenever a search of the code tables for a match 

of the current expression tree fails, the tree is 

handed to a machine dependent rewriting routine. The 

routine is expected to manipulate the tree in such a 

way that another search of the code tables may result 

in a match. Manipulations usually take the form of 

evaluating a portion of the tree into a register or 

compiler 

of these 

temporary, though it is not required that one 

actions take place. Further, the 
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transformation on the t d ' ree ne e n t be of a "global" 

nature. Rather, only a small portion of the tree may 

be manipulated. Should further rewriting be r equired, 

the same routine, or a similar one may be call ed again. 

The process of rewriting tre e s involves close 

cooperation between all the rewriting rules a s we ll as 

cooperation with the Sethi-Ullman calculation routine 

and the register allocation strategy. Since the 

rewriting of trees may not b e suc c e ssful, t he compiler 

maintains a count of the number of recursive calls it 

make s to the rewriting rules to avoid infinite 

recursion. 

The rewriting routines are divided acc?rding to 

the class of operators on which they act. For 

instance, routines must be supplied to rewrite binary 

operators, assignment operators (both =, and op= 

types), increment and decrement operators (++ and --), 

structure assignment operations, etc. This section 

will consider the work performed by the rewriting 

routines used in the /6 compiler. The focus will be on 

the general "attack" used in handling an expression 

tree: each rewriting rout i ne will be considered 

s eparately . 

The routine offstar -- is called whe never an 

indirection (U*) operator is to be rewritten. Offstar 
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tries to form an OREG node whenever possible. This may 

be done if a tree of the form 

U *, < type), •.• 
+/-, <type>, 

<expression1), 
ICON, •••. 

is present. The subtree labeled eXE£e ssionl must be 

placed in an index register to allow ind e xing to be 

used with the constant offset. The types involved are 

important, as a character pointer may not be used in an 

indexed addressing format. Howev er, should a PACONV or 

PSCONV node lie under the U* operator, indexing is 

possible if a constant offset is present and the offset 

is "well formed" (the constant must be a number, say n, 

with n+1 mod 3 = 0). If it is not possible to form an 

OREG node (i.e. no +, PACONV, or PSCONV is a 

descendent), the subtree is forced into a reg ister to 

allow a straight indirection to be performed. 

The routine setasop is used to handle op= 

constructs. In most instances, the /6 instruction set 

is not equipped to efficiently handle these operators, 

so rewriting transforms the tree to an equivalent form: 

e1 op= e2 =) e1 = el op e2 

after any side effects have been removed fr om the left 
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might expect, 

chore. The 

heavily on 

recognizing side 

scheme used to 

the Sethi-Ullman 

calculations. The routine assume s that a Se thi-Ullman 

number greater than zero ind icate s some c alculation 

must be performed on the left hand s ide . Co nseque ntly, 

it tries to "evaluate out" any side effects before 

transforming the tree. Unfortun a tely this is not 

always possible. Consider the expression 

*(p+3) op= f() 

Should the left hand side be par t i a lly evalua ted into a 

register before rewriting, the function calIon the 

right may be executed with one or more scratch 

registers occupied with temporary calculations. The 

choice here is to hold off evaluating the left hand 

side, causing 

place it in a 

it to be evaluated twice, or to try to 

temporary memory location. The code 

generator won't place the expression in memory on its 

own, since it can't possibly have a Sethi-Ullman number 

greater than the number of free registers (the 

requirement to form a store operation), so setasop 

would have to make a decision for itse lf . Since most 

instances do not require a store, arbitraril y storing 

everything would be very costly. However , the work 
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involved in optimizing store selection is also very 

costly. Thus, the routine chooses the first approach 

described: when a complex calculation is being 

performed on the right hand side that might possibly be 

a function call, the left hand side is not evaluated 

until after the tree has been rewritten. This approach 

leads to instances where poor code will be generated , 

but avoids adding a great deal of complexity to the 

rewriting process. 

The remainder of setasop deals with optimizing 

those operations which may be performed with the add 

register to memory and add operand to memory 

instructions. To allow use of these instructions the 

right hand side is scrutinized for constants, 

registers, etc. If use of one of these instructions is 

possible, setasop delays forcing full evaluation of the 

right hand side, attempting instead to make the left 

hand side addressable, in the hopes that one of the 

instructions described may be applied. 

Straight assignment operations are handled by the 

routine setasg. This routine, and the routine to handle 

binary operators, plays an important role in the 

overall rewriting scheme since most ass ignment 

operators are rewritten to form a binary operator and a 

simple assignment. Therefore, this routine is fairly 
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complex. The /6 has no memory to memory transfer 

instructions, so the right hand side of an a ssignment 

operator must always be placed in a r egiste r (wi t h the 

exception of an assignment of zero or -1). While 

placing the right hand side in a register is the main 

priority of the routine, it must be careful no t to tie 

up a register needed for an add r ess calculation on the 

left hand side. For instance, the expr ess i on 

foo[a*b] .bar = c 

will probably require the A, and possibly the E, 

register to perform an address c a lculation for the 

structure reference. Th e refor e , seta sg can not 

immediately place the right hand side in a register. 

Fortunately the Sethi-Ullman numbe rs may be used to 

decide when the left hand side is complicated enough to 

require an approach different th an simply placing the 

right hand side in a register. The result is that the 

left and right hand sides are scanned for indirection 

operations and the like, with calculation priority 

going to the one with highest Sethi-Ullman number. 

This approach is clearly not infallible and has led to 

a fe w c ase s where a partial evaluation o f one side has 

resulted in the other being untenable (the compiler 

reacts to such a situation by aborting) • 
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The other difficulty in hand ling assigment 

operations stems from the poss ibility of cascaded 

assignment operators, i.e. 

a = b = c = d = = expression 

In this case one must be careful not to move too 

quickly to place the left hand side in a reg ister , 

because too many registers may be tied up in 

calculating addresses for the memory locations 

associated with ~, £, etc. Since the right hand side 

will occupy at most 2 registers room must always be 

left for its placement in a register. To avoid filling 

up registers a check is always made on the right hand 

side, to insure it requires no extra registers to be 

made available before acquiring new registers for the 

left hand side. 

The final routine that will be considered is 

setbin. Setbin handles rewriting of binary operators. 

As mention previously, setbin plays a major role in 

producing quality code because other rewriting rules 

often introduce new binary operators. 

Setbin must handle two classes of operations: 

log ical and arithmetic. The handling of logical 

t t a "compare memory to operators attempts 0 genera e 
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addressable "a little at a time". That is, the routine 

tries to bounce back and forth between the operands, 

evaluating each side piece by piece, until eventually 

both are addressable. When this occurs, one of the two 

is selected to be placed in a register, and a 

comparison is performed with the other in memory. This 

scheme can be very dangerous, since the partial 

evaluation of the component expressions, if done in the 

wrong order, may result in both sides holding registers 

which are needed for the completion of the calculation 

of the other side (a deadlock of sorts). Consequently, 

checks are present to recognize cases where it is clear 

which side should be placed in a register first (e.g. a 

function call must be performed before a 

multiplication). In addition to the "rocking" scheme 

described, setbin may also reverse the sense of a 

comparison when one side is placed in a register. This 

is beca use the code tables were only made aware of 

comparisons where the left hand side h~s been placed in 

a register. Thus, when the right hand side is the 

first to make it into a register, setbin must reverse 

. and flip the tree to allow the sense of the comparlso n , 

a match in the code tables. 

The handling of arithmetic binary operator s is 

guided mainly by the Sethi-Ullman numbers . As 
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described in section 3 of this chapter, a by product of 

the Sethi-Ullman number calculations is that the left 

hand operand almost always has a higher Sethi-Ullman 

number than the right (i.e. it is "harder" to evaluate 

than the right). Setbin uses this to good effect, by 

usually working on the left hand side, going to the 

right only if the left hand side is addressable. This 

work is complicated by longs, since the routine assumes 

it can, in the worst case, place both operands in 

registers. Longs may be placed only in the D register, 

so simultaneous placement of long operands in registers 

is not feasible; setbin must handle this case 

specially. 

6. Machine Independent Modules 

The compiler, as distributed with release 7 of 

UNIX, had two "bugs" in it. One, more a machine 

dependency than a bug, involved the lexical scanner. 

Within the routine that hand led recognition and 

conversion of numeric cons tants, a PDP-II depe ndency 

had crept in. The C language specifies that those 

fl't l'n a single wo rd are constants too large to 

automatically typed long. In the original routi ne, the 

test per formed to check overflOW was based on a 

constant fitting in a 16-bit number. 

resulted in the machine dependency being 

A trivi al fix 

removed from 



- 85 -

this supposed machine independent module. 

A second bug was more serious in nature. The 

machine independent routine which handles the building 

of expression trees performs constant collapsing 

whenever both operands of the expression are suitably 

formed. However, in collapsing the tree the rou'tine 

failed to correctly coerce type s. This resulted in 

expressions such as lL+l being turned into (integer)2. 

The fix for this problem required a fair amount of code 

to be added. The problem appears to be basic to all 

versions of the compiler, since it was present in both 

PDP-ll and VAX-ll/780 versions of the portable 

compiler. 

7. The 64K Word Boundary 

As discussed in chapter III, the only way for a 

program to address memory abo ve 64K words is via an 

indirect reference through a memory location which has 

bit 20 set (a lac in the /6 terminology). Since this 

the has a major impact on the code generation scheme , 

current version of the compiler supports only programs 

less than or equal to 64K words in total size. Because 

this appears to be a detraction from the compiler, a 

b h ' d the restriction discussion of the reasoning e ln 

seems in order. 
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Since a lac is requl"red to a ccess memory, this 

implies that code can not be generated which performs 

any indirect references through user defined pointers 

stored in memory. That is, if one considers the 

construct *p in C, in order to insure the memory cell 

pointed to by E is addressable, the contents of E must 

first be placed in an index register, then an indirect 

reference must be made through a lac. For programs 

restricted to at most 64K words this is not required. 

Indirect references through a memory location of any 

type allow addressing memory in the lower 64K words of 

the address space, so the retrieval of *p is possible 

by an indirect reference through the memory location 

where E is stored. In terms of /6 assembly language the 

two code sequences that would be required to retrieve 

*p, assuming E is a pointer to an integer, are 

64K words 

tma 

256K words 

t mj 
tma 

! p 
!I,j 

It i s not feasible to maintain all pointer s i n a lac 

f h " would l"mply that addres s ar ithmetic, ormat, since t IS 

comparisons, etc. would require special 

To handle programs of maximum size, 

necessary that the compiler always place 

cal culations. 

then , it is 

user -defined 

pointers in an index register before pe r f orming an 
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indirection. Having to place all pointers in an index 

register has a significant impact on the code 

generation scheme. Whereas before, certain expressions 

might have been addressable without any registers, to 

handle the expression under the restriction of a full 

address space requires at least one register. Thus, to 

handle a full 256K word address space the Sethi-Ullman 

number computations must be reworked. This portion of 

the compiler is by far the most difficult to construct 

and tune; any major modifications such as this, 

requires extensive work. In addition to adding 

complexity to the code generation scheme, code size and 

efficiency suffer when the address space is expanded. 

For these reasons the decision to limit program size to 

64K words appears to be sound. 



CHAPTER VI 

AN EVALUATION OF CODE EFFICIENCY 

This chapter furnishes qua lita tiv e and 

quantitative observations concerning the code gene rated 

by the /6 C compiler. One must remember th a t the 

current version of the compiler has had very little 

tuning performed on it. In add ition, almost all C 

compilers running on other mach i nes have a later pass 

which performs peephole optimizations. Later sections 

of this chapter contain observat i ons concerning the 

impact a peephole optimizer will have on code qua lity. 

The feasability of a mach i ne i ndepe ndent global 

optimizer is also considered , something along the lines 

of the optimizer built into the BLISS-II compiler [32]. 

When considering code qua lity produced by the 

portable compiler, one mus t take i nto cons ide ration the 

delicate b a l ance between generation of eff i cient code 

and the reliability of the compiler. As men t i oned in 

chapter II, the code generation scheme used by the 

compiler is very simple and takes great care t o insure 

the compiler is consistent. When squeezing eff icient 

code out of such a scheme, one must be careful not to 

cause the compiler to lose the ability to generate code 
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for expressions it was previously able to handle. The 

tuning of the Sethi-Ullman computation routine tends to 

have a major impact both on code quality and compiler 

reliability. Thoughtless alterations to this routine to 

generate better code for a class of expressions may 

cause the resource calculations for related expressions 

to be underestimat~d. 

Finally, since the co~piler views ind ividual 

expressions as disjoint objects, the generation of code 

is inherently limited to optimization within a single 

expression. The notion of cross-statement 

optimizations, or even cross expression optimizations, 

are out of the realm of the basic code generation 

scheme. Consequently, when vi ewing the qu ality of code 

generated by the portable compiler, one must localize 

it to individual expressions. At this level, the most 

notable item is the number of unnecessary stores that 

are generated. 

1. Overview 

At the highest level, the code gene rated by the 

compiler leaves a lot to be desired. This i s d ue almost 

encountered with redundant entirely to the problems 

loads and stores that appear when indiv i dual code 

~ However, with r espect to sequences are juxtapose~ . 
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individual expression trees, the code appears to be 

very good. This opinion is based on nearly 6 months of 

viewing assembly code generated by the compiler for the 

UNIX/24V operating system and its utilities. 

The manipulation of mUltiple characters appears 

to be the most difficult area for the compiler to 

handle. This is true because nearly all character 

arithmetic must be perform~d in registers, and there is 

normally a great deal of pressure placed on the 

compiler to simultaneously stuff multiple characters in 

registers. Unfortunately, the complexity of this 

problem tends to overwhelm the compiler's simple-minded 

notion of the 16 architecture. The result is that 

stock code sequences must be used to insure multiple 

characters are placed in registers. When this is 

combined with the bottleneck imposed by the I and J 

registers for operations dealing with byte pointers, 

d tends to be Of a "worst case" the code generate 

variety. For example, the construct 

char *p, *qi 

while (*p++ 1= *q++) 

is very common in C programs. The code the compiler 

generate, assuming the characte r pointers 
will normally 
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are statically allocated, is 

----------
bbj . +1 
imj 1_p 

emb 10 
esb 

bbj • +1 
imj ! q 

tae 
emb !0 
esb 
iae 

cae 
bnz Lnnn 

The dotted lines serve to separate individual code 

sequences generated. Th e code created for the 

expression is fairly good. Th e d ifficult task of 

getting both characters into registers is handlej 

nicely by the register interchange. With the exception 

of the interchange near the bottom, this code is nearly 

optimal when only local information is taken into 

account. Clearly, the looping nature of the construct 

would warrant the pointer E being maintained in a 

register througout the loop. However, enhanced register 

allocation strategies such as this are not possible 

within the scheme used by the portable compile r. 
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A more difficult situatl"on f or the compiler is an 

assignment operator dealing with characters. Consider 

char *p, c; 

*p++ 1= Ci 

the resultant code would be 

bbi • +1 
imi !_p 

tij 
emb !0 
esb 

tae 
tmb ! c 
esb 
iae 

oea 

rbm ! 0 

Once again, this code is fairly good , aside from the 

register shuffling that must inevitably occur when two 

characters are brought from memory. The most notable 

step in the evaluation of the expression is that the 

pointer E was brought from memory only once. and the ++ 

operation was performed early on, t hus minimizing the 

numbe r of memory-register transfers that had to take 

place. With more context availabl e t o the code 

generation scheme it is possible to expect the code 



- 93 -

might be improved to the following. 

tmi ! P 
bbi .+1 
imi ! p 
tij -
emb ! 13 
tae 
tmb ! c 
oea 
rbm ! 0 

To generate code of this q~ality, the cod e gene rator 

would have to know that the result of the bitwise-or 

was to be used for assignment to a character data type. 

This would allow deletion of the conversions from 8-bit 

quantities to 24-bit quantities (the es~ instructions) • 

Rearranging the values in the A and E registers would 

be not be necessary if the cod e generator knew their 

values would be discarded after the bitwise-or was 

performed. 

2. Optimization of Address Calculations 

The original scheme for generation of code 

optimized word address calculations fairly well. 

However, the handling of addresses for character items 

left quite a bit to be desired. To improve the code 

that was generated f or byte manipulations, 

mod if i c atio ns were made to the intermediate language; 

two ne w node types were added, specifically for 
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character pointer manipulations. These nodes, new 
PACONV and PSCONV, are formed by squashing trees as 
shown in Figure VI-I. This collapsing process must 

perform the appropriate coersions to word quantities 

wher e need ed • The form of the node corresponds to 

converting the expression 

(char *)word address+byte offset 

to a single operation. 

The result of adding the se new nodes is a 

compaction in the height of a tree which is passed to 

the code generator. With more information stored in a 

single node, code sequences may be tailored to handle 

operations in a more efficient manner. The 

introduction of these new nodes had a major impact on 

the complexity of the code generator; a number of 

machine independent modules had to be modified to be 

aware of their existence. However, the ben e fits, in 

terms of code quality, far outweighed the difficulties 

encountered in aug~enting the intermediate language. 

3. Machine Independent Local optimizations 

Th e compiler performs a small number of machine 

indepe ndent local optimizations on t he expression trees 

in the first pass. These optimi za t ions primarily 



PCONV, PTR char 
+, -PTR char 

<base-address> 
<word offset> 

PCONV, PTR char 
, -PTR char 

<base-address> 
<word offset> 

+, PTR char 
PCONV, PTR char 

<subtree> 
<byte offset> 

PTR char 
PCONV, . PTR char 

<subtree> 
<byte offset> 
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PACONV, PTR char 
<base-address> 

=> <byte offset> 

PSCONV, PTR char 
=> <base-address> 

<byte offset> 

PACONV, PTR char 
<subtree> 

~> <byte offset> 

PSCONV, PTR char 
<subtree> 

=> <byte offset> 

Figure VI-I. Definition of PACONV and PSCONV Nodes 
for the Intermediate Language 
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involve constant folding and variations on this theme. 

Some of the optimizations which were assumed to be 

machine independent turned out not to be applicable to 

the /6, while certain optimizations, inspired by the 

addition of the PACONV and PSCONV nodes, were added 

especially for the /6. Rather than give elaborate 

detail of the optimizations performed, a tree 

transformation will be shown, followed by an 

explanation of any fine points. 

U*, <type>, .•• =) NAME, < type>, .•• 
ICON, PTR <type), 

This sort of cOllapsing reflects the addressability of 

arbitrary memory locations on a machine. For the /6, 

word this optimization may be performed for any 

addressable item, but only in special instances for 

character items. 

U&, =) ICON, PTR (type), 
NAME, (type), 

This optimization is t he inverse t o t be previous 

tran sformation . 



*, < type>, •.• 
<expression>, 
ICON, n, ••• 
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=> 
< <, < type>, •.. 

<expression>, 
ICON, log2 n, 

This standard transformation requires the constant n be 

a power of two, as is easily verified by the condition, 

n >= 0 and n&(n-l) = 0 =>'s a power of 2 

This transformation also checks for mUltiplication by 

one. 

+1-1* 1\, ... 
<expression>, 
ICON, 0, ••• 

Operations with zero are tra nsformed or eliminated. 

Since these transformations ar e applied only to integer 

expressions, one needn't worry about eliminating 

operations with 0 that mig ht be performed for their 

side effects, e.g. normalization of a floating point 

number by adding 0.0. 

I, < type), ••• 
<e xpr ession), 
I CON, 1, • •• 

<expressi on>, 
=) 

Division by the constant one is removed. 
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The previous optimizations are very simple. The 
remaining optimizations involve tree 

tr ansformations to 
combine constants. 

+, 
, .... 

<expression), 
ICON, n1, •.• 

ICON, n2, ..• 

This corresponds to 

=) 

+ , ••• 
<expression), 
ICON, n2-nl, 

(e1-e2) + e3 =) e1 + (e3- e 2) 

when e2 and e3 are constants. 

+, PTR char, •.• 
PSCONV, PTR char, 

<word add ress), .•. 
ICON, n1 (BYTES), 

ICON, n2 (BYTES), 

PSCONV, PTR char, .•. 
<word ad d ress), .•. 

=) ICON, n2-nl (BYTES), 

This optimization is similar to the previous one, 

except it deals with collapsing address calculations 

for character pointers. The optimization corresponds 

to 

«char *) (el-e2) + e3) =) (char *) (el - (e2 -e3» 

For the /6, this optimization and others like it are 

very powerful. The result of this transformation may be 
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a halving of the code generated for the tree. Note 

that there is no need to check that the constants 

involved are byte quantities because the PSCONV node 

always has a byte offset as its right son, and, since 

the PSCONV node appears below the addition, one knows 

the type must be "PTR char." A similar transformation 

is performed for trees with PACONV nodes. 

PACONV, PTR char, •.• 
+/-, <type>, •.• 

<expression>, 
ICON, nl, 

ICON, n2, ... 

PACONV, PTR char, ... 
<expression>, ..• 

=) ICON,? (BYTES), ... 

This is the first optimization in which the offset-type 

of a constant must be checked. Since a PACONV node is 

formed by collapsing a PCONV node into a PLUS node, the 

operations performed underneath it may be perf0rmed 

with word offsets (e.g. in structures). Hence, when 

calculating the new ICON node one must coerce byte and 

word quantities. without the offset-type attribute 

added, this would not be possible. A similar 

transformation is performed for PSCONV nodes. 

<op>, ••• 
<op> , 

<expression), •• • 
ICON, n1, •• • 

ICON , n2, .• • 

<op), . . . 
<exp r es sion), 

=) ICON , n1 <op> n2, 
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This transformation may be carried out only for 

commutative operators. 

4. Machine Dependent Local Optimizations 

While the previous section described 

optimizations that would normally be carried out for 

any machine at the intermediate language level (by 

transformations to expression trees), this section 

concerns itself with varLous optimizations performed 

just before generating code. As such, these 

optimizations should properly be considered machine 

dependent. 

4.1. Switch Statements 

The code generated for switch statements attempts 

to optimize the operation based on the range of case 

values. Two different types of switch statements are 

generated: a direct switch through a table of 

addresses, and a test and branch sequence. It would be 

simple to add further variations such as hashed 

switches, looped table lookup, etc. 

4.2. Parameter Passing 

A by-product of the stack design is t ha t a free 

mal'ntal'ned at the top of t he stack. location is always 

This implies that function calls with a sing Ie 
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parameter (of one word) may be performed without a 

"push" of the stack pOl"nter. h" T lS was taken from the 

Ritchie compiler for the PDP-II [24]. 

4 . 3. Structure Assignments and Structure Parameters 

Depending on the size of the structure to be 

moved, either a series of moves is emitted, or a loop 

is built. Currently, all structures of six words or 

less are moved without a loop. In certa in cases the 

building of a loop requires three index registers (to 

use a bwk, bwi, or bwi instr uc t ion). When th i sis 

necessary, the K register is saved in the bit 

processor's V register, and reused for the loop. 

4.4. Byte Pointer Additions and Subtractions 

Checks are performed to de termine whether the 

byte offset involved in the calcula t ion is a constant. 

In this case, two possibilities arise. If the constant 

is a multiple of three, the operation may be performed 

without placing the pointer in a register. Otherwise, 

the operation may be performed by an add ition and a 

(using bb i or b __ b_j seri es o f byte pointer increments 

instructions) . Should the offset be unk nown at 

" " "full" calculation must be per formed. complle-tlme, a 
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4.5. PACONV and PSCONV Calculations 

These opti~izations are similar to those used for 

byte pointer arithmetic. In the case of PACONV and 

PSCONV, nodes the word address must always be placed in 

a register. However, if the offset is a constant, the 

operation may be performed using an addition ' and 

sequence of byte pointer increments. 

4.6. Special Instructions' 

The code tables special case certain expressions 

to allow use of many low cost special purpose 16 

instructions. For example, the assignme nt of the 

constants -1 and o may pe rformed by a single 

instruction. The placement of constants in a register 

may often be performed by instructions using an 

immediate addressing mode, e.g. toi, tna, etc. 

instructions. 

5. Statistics 

Up to this point, the claims made co ncerning the 

compiler ' s effectiveness have been o f a qualitative 

nature. 

have been 

To substantiate them, a number of s t atistics 

collected on the performance of the compiler. 

. lt t pinpoint weaknesses While it is somewhat difflcu 0 

with simple 
. h s program size and execution thlngs suc a 
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time (the latter being somewhat dependent on the 

operating system, and the former being inconclusive 

when compar ing widely differ ent arch i tec tur es), they 

still merit some thought and explanation. 

Figure VI-2 shows relative size, in words, of 

certain programs found on the 16, PDP-II, and VAX-

11/780. The numbers for the VAX come from London and 

Reiser [18] and represent the state of the VAX compiler 

early in its development. The figures are fairly 

misleading. While the compilers are based on the same 

program, internally they are vastly different. The 

fairest comparison is the C preprocessor, since it is 

virtually identical at the source code level across all 

machines; however, figures for the C preprocessor were 

not available. Worjs were chosen for comparison 

( ins tead 0 f bytes) since it tend s to even out the 

differences in instruction sets and word sizes. One 

should note that output for the PDP-II and VAX-Il/780 

were produced using a peephole optimizer, while the 16 

compiler is s ans optimize r. The editor s considered are 

id ent i c a l for the PD P-II , VAX-II, and Inte r da ta 8/32. 

The 16 editor, em, is a superset of the ed editor, and 

as such would be expected to be somewhat l arger. The 

d t ' d'ff l'n sl'ze of the second pass of the 16 ras IC 1 erence 

C compiler can be attributed to the extra work that 
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must be carried out in handling the irregular 

instruction set. That is, a large portion of the extra 

size is due to the code tables. Since the /6 requires 

many special cases in the code tables, their size grows 

significantly. It has been estimated that a peephole 

optimizer, equivalent to that found on the PDP-ll or 

V~X-ll, may result in a 10-20% savings in code size. 

However, even if this estimate is applied to the 

figures collected, the text sizes presented for the /6 

will still be larger that those for othe r machines. 

This is due mainly to the other machines being byte 

addressable. C is a heavily byte oriented language, 

word addressable architectures such as the /6 make 

implementation of C difficult and costly. 

Figure VI-3 shows execution t i mes for the 

compilers. The numbers for the /6 were collected on a 

swapping system with three other large compilations in 

progress and a compute-bound artificial intelligence 

program running. The file pftn.c contains the symbol 

table management routines for the first pass of the 

·1 The secon~ table shows execution portable compl er. ~ 

times for other portions of the portable compiler. 

h ·s poor since Once again the black box appr oac 1 , 

externa l factor s play an important r ol e in the numbers 

co l l ected . Figure VI - 4 shows a more detai led timing of 
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I l ~ Size (words) I I Progr am I System , -, I 
Tex t I Da ta I Bss '-Total­

t--------~~~~=rr- =~~~[j~~-,~~JrJ~,--~~_,-j7r~~~1 
I I VAX-II I 9380 I 7373 I 5378 I 22631 I 
IC ' passl I Interdata 8/32 115152 18048 I 6230 129430 I 
I I Harris /6 122096 16102 110463 I 38661 I 
t ~PDP-l1 I 10624 Ii3rrr-1--2623-~374-1 
I I VAX-II I 5852 12273 I 1888 I 10013 I 
IC, pass2 I Interdata 3/32 : 8913 12258 I 1890 113061 : 

t ~ Harris /6 -+~~~~_§.~~~~-4~~§.~~96~-1 
I I PDP-II I 5376 I 151 I 2195 I 7722 I 

/ I VAX-II I 2888 I 53 I 1139 I 4080 I 
I ed em Interdata 8/32. I 5471 11144 I 6735 I I ! _____ ! Harris /6 8549 341 2945 11835 i I PDP-II ~-2368-1-204-+--953--I-25251 
I I VAX-II : 1216 I 119 I 484 : 1819 : 

grep I Interdata 3/32 I 2987 : 290 : 484 I 3761 I L --.J Ha r r is /6 ~_.22. 61 ---l--~~~-_l-!.~~~_l-~~~~ I 
I -- I PDP-II I 3552 I 384 I 1928 I 5864 I 
I I VAX-II I 1721 I 285 I 1441 I 3447 I 
lIS I In t e r d a t a 8/3 2 I 3915 I 480 I 1442 I 5837 I 
I I Harris /6 I 4713 389 _2~~~ __ ~~~~_1 -------------------------------

Figure VI-2. Representative Program Sizes 
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selected compilations on the 16. The values were 

calculated without the benefit of floating point 

arithmetic, so roundoff errors are significant. The 

figures for the assembler seem to indicate that an 

inordinately large part of the compilation process is 

spent here. The C preprocessor appears to be very 

efficient, while the first and second passes of the 

compiler are heavily compute-bound (a result of 

extensive table searching and a heavy use of 

recursion). Since the C preprocessor deals almost 

entirely with characters, it appears the added effort 

devoted to optimizing code for character manipulations 

has paij off. 

6. Further Optimization for the Portable Compiler 

It has become very clear that the use of the 

portable compiler as a production compiler is possible 

only with some sort of optimizer. The major reason for 

this statement is that the code generation scheme does 

not consider possible cross-statement optimizations or 

local common subexpression eliminations. As a result, 

while isolated expressions are ~ormally . of a high 

quality, the juxtaposition of code sequences often 

results in poor code. 
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T Machine IExecutlooTTme (secon7.fs)1 
, t--Rea-r~user-r-sys-I trn1T=rr7711-------·--..-------t--S'b:-'Cf-'---4"'.r~-_r_ .. I'r:r-1 
I (Ri tchie Compiler) I I I I 
IVAX-11/780 , 82 0 I I I 
I • 64.0 10.5 (portable compiler) I I I I 

I'PDP-11 /70 1153.0 I 114.6 I 16.6 I 
(portable compiler I I I I 

I for Interdata 8/32) I I I I 
IHarris /6 1975.0 I 318.3 I 51..9 I 
I (portable compiler I I I I 
I without optimization) I I I I -----_._-
Figure VI-3a. Execution Times For the Compilation of the 

Fi Ie pftn.c (cc -c -0 pftn .c) 

I 
Command 1 Execution-Tlme-(seconas)-I 

I "I Rear""-T User I Sys I 
tcc -c t'6'cal.c -1-Z~'--~--r-~17~-1 
Icc -c opt im.c I 497.0 , 99.8 I 26.4 I 
Icc -c scan .c I 324.0 I 158.4 I 33.2 I 
Icc -c trees.c 1740.0 I 291. 6 I 48.3 I 
Icc -c xdefs.c I 72.0 I 14.4 I 16.7 I 
Icc -c address.c 1176.0 I 41.4 I 19.3 I 
Icc -c aIlo.c , 314.0 I 107.8 I 27.5 I 
Icc -c comm2.c I 94.0 I 27.1 I 20.0 I 

Figure VI-3b. Execution Times For Selected Compilations By 
the Harris /6 C Compiler 
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T Command i Phase h ExecutlonTlme---1 
+===,..--=~~====:o==' Real I User I Sys I 
I I cPP-'==rb~~'--r~g-1-~7g-1 
, I c0 , 471.0 1104.4 '14.5 I 
, c c - c c gram. c ,C 1 , 678 • 0 '167. 1 I 14. 8 , 
, , as '510.0' 109.8 '17 6 , 
, ,(total) '1828.0 1397.2 182:7 I 
, I cPP : 61. 0---1 8.5 TI2:"g-' 
Icc -c clocal.c ,c0 I 105.0 ,I 27.3 I 5.5 I 
I ,c1 I 186.0 47.5 I 5.7 , 
I I as 132.0 I 30.9 I 7.2 , 
I I (total) J_~84.! '114.3 131.4 I 
, I cPP . I 81. 0iT 0 -l-12 . 5-: 
I I cel I 95.0 20.8 I 4.8 
ICC -c code.c I c1 I 106.0 , 29.5 I 3.6 I 
I I as ,159.0' 33.0 , 6.8 ' 
L- I (total_) -!-~~~~-J--~~.:.~-J 27.8 : 
I , cPP , 64. 0 I 7.4 ,10T I 
, ,c0 I 80.0 I 15.7 4.4 
'CC -c comm1.c ,c1 I 86.0 17.7' 2.6 I 
, ,as, 104.0 ' 19.6 ' 5.7 I 
1 , (to ta 1 ) I 334 . 0 J-~.:..§.-l~~.:.!_l 
I , cPP I 63. 0 , 6. 3 I 9. 8 I 
I I c0 I 52. 0 I 8. 5 I 4 . 6 I 
ICC -c local.c I c1 I 60.0 I 12.0 I 2.4 I 
, I as I 63.0 I 11.2 I 4.9 I 
1-- I (to tal) I 2 3 ~.:.!~ 38. 1 I 21. 9 I 
, I c PP I 74 • 0 I 8 . 1 I 11. 3 I 
I I c0 I 121.0 I 25.4 , 4.6 I 
Icc -c optim.c I c1 I 201.0 I 44.1 I 4.8 I 
I I as I 101.0 I 22.0 1 5.5 I 
I I (total) I 497. 0 I 99.8.-J 26.4 I 
I I cpp l 199. 0 I 15:-J 124-:0 I 
I I c0 I 206.0 I 77.6 I 8.4 I 
Icc -c pftn.c I c1 I 287.0 1 120 . 1 I 7.1 I 
I I as I 283.0 1165.3 1 12 • 2 I 
I I (total) I 975.0 I 318.3 1 51.9 , 
r- I cpp -r--i9:0-l 12.8 I 14.9 I 
I I c0 - I 47.0 I 38.6 I 5.2 I 
Icc -c scan.c , c1 I 124.0 I 56:5 I 5.9 I 
I I as I 124 . 0 I 50 .4 , 7.0 I 
I I (total) I 324 . 0 1158 .4 133.2 I 

Figure VI-4. Detailed Execution Profile For the /6 C Compiler 
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To enhance the quality of code generated, there 

are two alternatives. The t l' . mos appea lng is the 

development of a machine independent global optimizer 

that could be incorporated somewhere in the first pass, 

or between the two present passes. For such an 

optimizer to be implemented, the first pass of the 

compiler would have to undergo major modifications. 

The modifications would be nec essary to ma intain global 

context for the expression' trees constructed during the 

first pass of the compiler. In the current code 

generation scheme, each expression is treated as a 

separate entity. For a global flow analysis to be 

performed on a program, expression trees would have to 

be maintained within context, implying a significantly 

different treatment of the expression tree as a data 

structure. A second problem with the scheme used in 

the portable compiler, assuming a global optimizer is 

to be added, is that the first pass generates certain 

portions of code. For a flow analysis to take place, 

an entire "block" of context would have to be formed 

and analyzed before any code cou l d be emitted. This 

sort of treatment impl i e s that cons t r uc t s presently 

pr oc e ssed in the first pass would have t o be handled in 

a significantly different manner. 
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The second al ternat l' ve, ..:l th an'J e one presently 

found in many C compilers, l' h s a separate peep ole 

optimizer that processes the assembly code produced by 

the compiler. For most appl i cations, this approach 

appears to be the most vi able. As mentioned 

previously, the portable compil e r can prod uce high 

quality code for individual expr e ssions. The ins t ance s 

where it breaks down are gener al ly due to a l ack of 

context with which to make ~ecision s . Th i s lack of 

context normally results in red undant l oads and stor e s 

being generated. By performing a backwa rd s pass 

through the assembly code to cal cu la t e regis t er usage 

information, problems such as r ed undant opera tions may 

be easily recognized (the VAX-ll/780 pee phol e optimizer 

presently works this way). Even ""i thout a backwards 

register pass through the code , an opt i mize r of this 

sort may employ a fairly smal l "window" into the 

assembly code to locate red un :'lancies of the sort 

mentioned. 

To choose between the alterna tiv es presented, one 

must consider the appl ications for which the compiler 

is to be used, as well as the target machine on which 

the compiler is to be run. The cost of performing a 

global flow analysis on a program can be very high, 

both in compiling speed and in memory overhead . The 
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fact that context must be maintained to perform a 

global flow analysis normally implies those expression 

trees involved must be maintained "tied together" in 

core until the en~ of a block is reached, at which time 

the full analysis may be performed. For machines with 

a small address space this is probably not feasible. 

Further, the results of performing global analysis, as 

opposed to a li~ited local analysis, quite often are 

not significant. Since c was developed for 

minicomputers, and presently is found mostly on 

minicomputers, the problem of a limited address space 

appears to have been a determining factor in the 

selection of peephole optimizers. ~ similar analysis 

tends to indicate that further optimization for the /6 

minicomputer might best be done in a peephole fashion. 

Previous chapters have alluded to possible candidates 

for optimization on the /6 (see sections 3, 4, and 5 of 

chapter V). 



CHAPTER VIr 

THE INTERACTION BETWEEN COMPILER, ASSEMBLER, AND LOADER 

The C programming environment provided under 

UNIX/24V is dependent on the facilities provided by the 

utilities supporting the compiler -- in particular, the 

assembler and loader. The major impact of the 

assembler and loader is in the treatment of statically 

allocated global data structures. This chapter will 

discuss the interaction between the /6 C compiler and 

its assembler and loader. The problems encountered in 

developing a si ng Ie compiler for mUltiple 

assembler/loader combinations will also be discussed. 

1. An Overview of the Assembler and Loader 

The UNIX/24V assembler, as, bears some 

resemblance to the PDP-II UNIX assembler of the same 

name. re total ly different However, the two programs a 

internally. The assembler fo r t he /6 is totally 

written in C a n1 use s t he parser generator ya~~, [8], 

to ha ndle syntax analysis, while the PDP-I I assembler 

is written in assembly language . The UNIX/24V 

assembler is two passes, and generates only r el ocatable 

the 
output. That is, ' k the POP-II as sembler, unll e 

- 112 -
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output produced by as must b ______ e processed by the loader, 

l~ , t o create an executable program. This departure 

from the normal convention of producing executable 

output when possible was due to the addressing 

structure of the /6. S' 1 h 1mp y, t e necessity to support 

literal constructions in the assembler would have 

required a third pass to cre ate executable output. 

Since the third pass would have simulated the loader's 

actions, there was little reason to include this 

ability in the assembler. 

The UNIX/24V assembler syntax is very compatible 

with the VULCAN assembler. The instruction mnemonics 

remain the same, and all of the addressing ~odes may be 

expressed identically. The major a~d itions to the 

UNIX/24V assembler, which the compiler uses, are: 

1) A uniform handling of numeric constants as 
operands. The VULCAN assembler had a limited 
notion of what values could be used as an 
operand. In particular, negative numbers were 
not allowed where the operand was intended to be 
an unsigned (positive) value. This precluded the 
use of negative numbers as offsets in forming an 
i nd ex ed add r ess i ng mode. All va lues tha t 
overflow an operand fi eld are t r unc a ted to fit by 
as: an option on the assembler all ows t he user to 
be noti fied of t h i s action. 

2) A nicer handling of externally defined symbols. 
In the VULCAN assembler all refer e nces to 
external symbols requires the symbol be prefaced 
by a "$" (to distinguish the symbol from a c<;>mmon 
symbol). This is impractical for th: complIer, 
as it is impossible to have t~ls sort of 
information at the time the complIer outputs 
symbolic names. 
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3) Temporary labels as introduced by Knuth [14]. 
Temporary labels were found most useful in 
simplifying the logic needed to construct loops 
for structure assignments and passing structures 
as parameters. 

4) A more complete set of storage allocation 
directives. In particular, the ability to 
initialize memory locations by bytes. 

5) An additional literal construct to handle byte 
address constants as operands. 

As discussed in chapter IV, before the UNIX/24V 

assembler was written, so~e of the deficiencies in the 

VULCAN assembler were so difficult to work with that a 

post-processing program was required to massage the 

assembly language output. If one counts the time spent 

in this program as time spent assembling, the assembly 

process was more than halved by moving from the VULCAN 

assembler to as. Further information concerning the 

assembler may be found in (16]. 

The UNIX/24V loader was created by partially 

rewriting the PDP-II UNIX loader, ld. As such, the 

semantics of the loading process are nearly identical 

to that found on the PDP- I !. For the most part, the 

e f fort i nvo l ved in moving the loader wa s in converting 

byt e -o r i e n ted portions to be word -ori en ted. For 

th PDP-ll wa s done in a example , I/O buffering on e 

byte-oriented which was most ineffi c ien t on the 
manner 

/6, converted to be performed in word 
so it was 

porting of the loader turned out to be 
quantities. The 
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very easy; the loader virtually worked on the second 
try, and required only about two or three days of 

effort to get entirely working under UNIX/24V. It W3.S 

originally expected tha the loader would require more 

time to get working than the assembler (even though the 

assembler was being written from scratch), but little 

more than a week of real time was spent on it. 

2. Incompatabilities With VULCAN 

As designed and implemented, there are a few 

noticeable incompatabilities between the programming 

environment foun~ on VULCAN and that found under 

UNIX/24V. The significance of these differences stems 

from the porting path taken. Since many of the 

programs moved to UNIX/24V carne from the PDP-II, via 

VULCAN, considerable effort was expended to minimize 

the amount of work necessary to move programs along 

this path. The differences noted were due to the 

VULCAN assembler and loader, and as such, resolving 

them was not within the scope of this pr oj ect. 

and 

The first problem was that the VU LCAN as sembler 

loat) er 1 b 1 symbol s to be a t most six allowed goa 

characters long. Under the scheme chosen for C, all 

d ( " ") symbols defined in a C program have an un er sc or e 

prepended to them to avoi-:3 name collisions with 
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assembly language routines. 
As a result, the six 

character limit really imposed a five character limit 

on C variables. This applied to all C variables, not 

just globally defined ones, since the compiler cannot 

easily distinguish between local and global symbols. 

Hence, all programs that were originally written . for 

the PDP-II had to be checked for name conflicts within 

the first five characters (the PDP-II assembler and 
. 

loader handle eight characte r symbols). In most cases, 

the fix for conflicts involved using the C preprocessor 

define statement to map the conflicting names into 

distinct symbols. It was originally hoped that the 

program lint, [10], would be he lpful in locating the 

offending symbols, because it has an option to pe rform 

checking of this sort. HOW21er, lint checks for 

conflicts only within the first six characters because 

its application was targeted for the Honeywell 6000 

machine. 

The second problem dealt with the notion of 

common storage. VULCAN trea ts common a s a separate 

segm ent d uri ng assembl y and linkage . Henc e , all 

b 1 t d common must be identified as such. sym 0 s ype 

Further , externally referenced symbols are in a 

different segment than common, implying t hat a 

reference to a symbol must specify if the symbol is 
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common or external. Under UNIX, common is formed at 

linkage time by merging all external references to 

symbols of the same size (though it may also be 

explicitly declared). This allows a reference to an 

external symbol that may be merged common to be 

identical to a reference to a symbol which is 

explicitly common. The latter scheme greatly 

simplifies the compiler's task of creating symbol 

references. Figure VII-1"shows program segment layout 

under UNIX/24V and how common is handled to remain 

compatible with this scheme. 

The result of this second problem is that global 

declarations in C programs must be carefully matched 

across files. If a global variable is initialized at 

compile time, the variable is placed in po~~ space 

under VULCAN. To compatibly merge other files with 

this declaration, all references to the variable in 

other files must be as an external variable. A 

globally defined variable whi ch is uninitialized is 

placed i n c ommo n, requi r ing reference s and declarations 

i n other files to be common also. Almost all programs 

written for the PDP-11 fail to mainta in this 

t ' allowl'ng the loa~er to merge common and conven lon, J 

resolve the incompatibilities in declarations . 
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Explicit 
Common 

" ------+------1- -' - -"-
Bss "" '" '" ............... " -- ..................... . " 

...... 

~ 
- _ ......... . 

-.:::::--Data 

+-------+ - - ----- - ---- ----
Text 

o 
+-------+--- -----

Stack 
I 
V 

Bss 
Segment* 

(Bss + 
Merged 

Common + 
Explicit 

Common) 

Data 
Segment 

Text 
Segment 

(pure code) 

Initialized 
?t execu­
tion time 
by UNIX 

a.out file 

* Paged file formats may result in a 
being placed in the data segment. 
when rounding the size of the data 
page boundary. 

portion of bss 
Th is occur s 
segment to a 

Figure VII-I. Program Segment Layout Under UNIX/24V 
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Since the UNIX/24V assembler and loader maintain 

conventions compatible with the PDP-ll assembler and 

loader, the problems mentioned fail to arise in moving 

programs directly to UNIX/24V. The maximum symbol 

length supported by as was chosen to remain compatible 

with the PDP-li (it could easily have been extended to 

allow a nine character limit). 



CHAPTER VIII 

DEFICIENCIES AND FEATURES OF THE COMPILER 

Since the compiler was moved to UNIX/24V, there 

has been minimal opportunity to evaluate the 

programming environment. Little, if any, software 

development has been undertake n except in the area of 

the operating system. Nevertheless, some fairly solid 

opinions have been formed concerning the facilities 

available, as compared to the other UNIX systems with 

which the author has had exper i ence. 

1. Compiling Efficiency 

The most notable item in the software development 

cycle on the /6, is that the compiling process is very 

slow. This observation is colored somewhat by the 

inefficiency of the system as a whole. The time spent 

in compiling C programs is more than do ubled under 

UNIX/24V. Table VI-3 shows statistics collected under 

the swapping version of the system. Disec ting the 

compilation process has shown that an abnormal 

percentage of the time is spent assembling prog rams. 

The two passes of the compiler and the preprocessor 

appear to be fairly efficient, though some 
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consideration has been given to improving the 

compiler's performance by merging the two passes into a 

single pass. 

Possible reasons for the poor performance of the 

assembler are directly related to its design. The 

focus behind the assembler devlopment was to get it 

working as quickly as possible. This is not to imply 

that efficiency was totally neglected, merely that it 

was considered secondary in importance. The 

assembler's two passes are driven uniformly by the 

parser. The first pass involves the normal scanning 

and parsing of the input file, while the second pass 

eliminates rescanning the input file by reading tokens 

from a binary intermediate file (created in the first 

pass) • It appears that the decision to reparse the 

file in the second pass was costly. The decision was 

based on the handling of expressions within the 

assembler. A common technique in assemblers is to 

handle, as much as possible, expressions in the first 

pass of the assembler, and backpatching undefined 

expressions in a subsequent pass. This is possible if 

the expressions are limited enough to allow a symbol 

table entry to completely describe all partially 

defined expressions (alternatively storing this 

information in the intemediate/output fi Ie) • 
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Unfortunately, with the myriad of types, operators, and 

most importantly, literals allowed in ~, such a scheme 

is not feasible. The reason being that partial 

expression evaluation, on which this sort of scheme 

relies, requires that values for items such as literals 

be known in the first pass. However, since literals 

are placed at the end of the text segment, this 

precludes definition of literal and data values until 

the end of the first 
. 

pass. Consequently, to define 

partial values for expressions in the first pass would 

require a tree representation of the expression, most 

likely in the symbol table. The cost of such a scheme 

was believed higher than making values defined only in 

the second pass via a second parsing. 

In profiling the assembler, an inordinately large 

portion of its execution time appears to be involved in 

handling character input. The input routine is fairly 

complex because the assembler suports the inclusion of 

text files. This feature has not been heavily used, 

a nd i t s removal may result in a speed impr ovement. 

2 . User Feedback 

1 l'ng attributes of the One of the most peas 

portable compiler is the comprehensive error checking 

performed. Unlike previous C compilers encountered, 
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the portable compiler produces excellent diagnostics in 

the area of type incompatibilities. Two of the most 

nonportable constructs are type punning (an implicit 

type conversion carried out by an assignment) and 

illegal pointer uses (e.g. using pointers to point to 

members of a structure other than their own). The 

portable compiler gives warnings in each of these 

cases. It is interesting to note that the Ritchie 

compiler, which has been firmly entrenched on the PDP-

11 for nearly as long as UNIX has been, does not 

produce dignostics for equivalent constructs. 

The "noise" created by the portable compiler has 

proved instrumental in aiding in the porting of 

programs. In many cases, the d i agnostics produced by 

the C compiler led to the de tection of nonportable 

constructs. The most notable example of this was the 

Release 7 shell. The original shell compiled under the 

Ritchie compiler without any diagnostics, while the 

portable compiler produced hundr ed s of lines of 

messages. A large number of these message s we re traced 

bl construc ts in the implement ation of back to nonporta e 

the shell. 



- 124 -

3. Expand abi lity 

The por table compiler has been found very easy to 

work with i n integrating run-time and compile-time 
facilities. The compiler currently supports the 
standard UNIX run-time profiling, as well as an 

e ntirely ne w feature designed to a id in debugging 

programs on a system without a debugger. 

Run- time procedure t racing has been added to 

allow a use r to specify tha t proc ed ure invok a tions 

shoul d be communicated to the user. Th i s fa c il i t y 

allows fo r r un-time select i on of which functions to 

trace. The output produced by the tr acing shows the 

symbolic name of the function, as well as the 

parameter s passed to the function. The run-time 

selection of which functions to trace is communicated 

via a s hel l variable stored in the environment. Once a 

f ile ha s been compiled with a tracing option, a user 

ma y man ipulate the tracing of functi ons conta ined in 

the file by setting the shell variable TRACE ac cording 

to the syntax 

TRACE=[onloffll [all] I [all-]fl,f2, •.• 

This allows a user to selectively trace a class of 

functions, all but a class of functions, etc. The 
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facility has proven useful, particularly in the absence 

of a debugger. Approxl'mately 15 l' lnes of code were 

added to the compiler to support t ' raclng; the majority 

of the work went into designing and building the run-

time support. 

The one facility the compiler/assembler system 

does not support is the simulation of floating point 

arithmetic. This is due t? the architecture of the /6. 

Most machines without an optional floating point unit 

treat floating point instructions as illeg al 

instructions. Under UNIX, this allows a program to 

trap the instructions and interpret them. 

Unfortunately, a /6 without an SAU treats floating 

point instructions as no-operations. Thus, if floating 

point simulation is to be performed some other approach 

must be taken. The usual alternatives are: have a 

non-floating point compiler which generates different 

code than produced for float i ng-po i nt machines 

(presumably function call to library routines) , or have 

the assembler map the floating point instructions into 

some set of illegal instructions which UNIX may catch 

and return control to a simulation package. The latter 

approach b the mos t appealing, since it is appears to e 

expected that changing the compiler is a more difficult 

proposition than altering the assembler. 
Further, the 
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implementation in the assembler of the latter scheme 

can be done trivially by insertl'ng , a speclal trap 

before each floating-point instruction in the assembler 

co-:3e tables. While the methods needed to handle the 

lack of an SAU have been explored, nothing has been 

implemented, since the effort required to write a 

floating-point simulation package for the /6 is quite 

large. 

4. Current Status 

The prog ramming env ironment developed for 

UNIX/24V was created on a /6 cpu that lacked a floating 

point unit. As noted above, the simulation of floating 

point arithmetic is not currently supported. 

Consequently, little, if any, real testing has been 

performed on the floating point facilities provided by 

C. The compiler generates floating point code: 

however, a number of bugs are certain to be present. 

The initial validation of the compiler on the PDP-ll/45 

included numerous floating point test cases, but since 

the compiler has been moved to UNIX/24V no further 

testing has taken place. 

The assembler was developed under similar 

circumstances and lacks only one routine to be able to 

support floating point constants (the .float dir ective, 
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see [16]) • All floating point instructions are 

assembled correctly, and the syntax of floating point 

constants is supported. Th t ' e rou lne that is missing, 

realizeO, has the following calling sequence : 

long 
realize(whole, frac, exp) 

long whole, fr ac; 
int exp; 

The routine is passed the thre e po r t ions of a floating 

point number, the mantis sa (whole.frac) and the 

exponent (exp), and is expected t o construct the binary 

representation for the number, returning it as its 

result (a do~ble type is the s ame size as a long in C 

on the /6). This rout ine wa s left unimpl emented 

because of the lack of an SAU on the test machine ; its 

implementation is straightforward. 

Other than the floating point deficiencies noted 

above, the compiler and its supporti ng utilit i e s have 

undergone extensive testing. All features of the C 

programming language described in (13] are supported 

and tested. In ad~ition, the compiler suppor ts many 

features added to Release 7 of the C prog ramming 

language. These features include st ructure 

ass ig nmen ts , passing structures as paramete rs and 

returning them from functions, enumerated type s (they 
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are packed as tightly as possible), extensive bit field 

arithmetic and typing (i.e. a bit field may be defined 

of "enumerated type" , for instance) , and the 

initialization of structures containing bit fields. 

The portable compiler, in general, supports a dialect 

of C that is more advanced than that provided by the 

Ritchie compiler. All syntactic constructs deemed 

legal by the portable compiler are supported on the /6, 

except for fields of character type. 

The supporting utilities a re likewise fairly 

advanced. The assembler, aside from the floating point 

caveat noted previously, has been employed to write the 

machine language assists for UNIX/24V, and the system 

call library and portions of the standard I/O library. 

Besides a flexible syntax, the assembler supports a 

number of "frills" to support the future addition of a 

macro preprocessor. The assembler supports constructs, 

similar to those of the C preprocessor, to allow the 

de fini t ion o f the c urr ent source line number and input 

fi l e. Should a macro preprocessor be needed , these 

feat ures will allow consistent diagno s t ics to be 

generated by the assembler. 
The link ed itor, Id, 

supports the loading of normal assembler output files 

( type 4 0 7), a s we 11 as lib r a r i e s 
(handled by the ar 

0b ° (managed by ranl ib). The 
program, and random 11 rar1es ------



- 129 -

loader can cre a te fil e s i n a variety of formats (see 

Figure VIII-I) • Al l other program development 

utilities moved t o UN IX j24V (make, ar , ranli~, size, 

nm, syms, etc.) function exactly (or in a logically 

equivalent manne r ) as specified in the UNIX Programmers 

Manual, Rele as e 7 , [29]. Appendix A contains a list of 

all utilities available under UNIXj24V. 
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Magic ilDe sco. pt ion ---nCOp-fIons' 
\ 0 5 ==rp=ag=ed==- ov er-raY":==Normal=--=--nNIx-i_o=-.:z====, 
: loverlay , except text and data have' , 

been rounded to page (IK words) , , 
, Iboundaries as in 413. Not' , 
, 'supported by UNIX/24V. , , 
~~iReIocatable 1oacfer-l.nput. PrOClucea-t - , 
, 

'

by assembler not executable,' , 
except by early versions of' , 

I IUNIX/24V. Header sizes are exact' , 
______ ~_Z!S of text, data, and bss.' , f10 ,pa~ea reentrant. Text segment is t-n -z 

, ,wrlte protected and shared. Text, 
and data are rounded to a page 

, 'boundary after bss is merged into' 
: ldata segment. Maximum program size: 
h ~ indicated in a.out,header.-._.-._.--h 
f-12 ,NO stack. Program Slze speclfled ,-K0 
, ,in a.out header does not include, 
I Istack allocation. Unsupported by I 
1 lUNIX/24V. ...,-1-_____ _ 
~13 ,Paged executable. Text segment 1S ,-z 
I Iwritable. Size of text plus data, 
, Isegment is rounded to a page, 
, Iboundary after bss has . been merged, 
I linto data segment. MaXlmum program, 
~. Isize is indicated in a.out header~._~, ________ __ 
p.. 7TS45 IArchive or random llbrary. Loader, 
, ,input. ~I __ 

Figure VIII-I. Loader File Formats for UNIX/24V 



CHAPTER IX 

C ON A WORD-ADDRESSABLE MACHINE 

The /6 architecture has had a noticeable impact 

on the C programming environment. That is, the 

implications of a word addressable machine have had a 

tendency to filter into the programs written on it. 

The byte pointer representation used on the /6 implies 

that conversions between word and byte pointers may 

result in a loss of information. Hence, the common 

practice, at least on the PDP-II, of using a character 

pointer as the "common denom i nator of all types" is not 

possible on the /6. In add i t ion, a lack of attention 

to parameter type compatabilities across function calls 

can cause problems. A more detailed discussion of 

these problems follows. 

1. Handling Data Types 

With multiple representations ex i sting for 

po inters and with one of these represent a t ions, the 

byte pointer, being vastly different fr om normal 

numeric representations, 
a number of basic rules must 

be established to understand the consequences of 

conversion operations. 
In addition, in C, numerous 
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storage conversion operations take place, and their 

semantics must be understood. 

All po inter conversion rules designed for the /6 

are based on two underlying assumptions: 

1) The val ue stored in a pointer to a word oriented 
item is always assumed to contain the number of 
~ords the item is offset from zero. 

2) The v a l ue stored in a byte pointer contains the 
number of bytes the item is offset from byte 
zero. 

If one use s these two basic assumpt ions, conversion 

operations between pointers may be "consistently" 

defined. Table IX-l summarizes the rules for 

convers i on between pointers, as well as the storage 

conversion r ules involving pointers. One should note 

tha t while conversions are defined in all instances, 

some conver sions may result in a loss of information. 

Th e l oss o f information across certain conversions is 

un avo i d able i n the case of the /6. Despite this 

information problem, the design of conversion rules 

must be as consistent as possib l e. In a byte 

addressable ar chitec ture, where the r epresentations for 

pointe r s and numeric items is identical , 

a r e usually t rivial (i.e. they do nothing) • 

these rules 

For the /6 

the r ules defined appear to minimi ze 
inconsistencies 

while remaining logical. 
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To 1 Rul.e-------, 
iCha-r~==i=Int====-======='=convert==for;at==to=~~r;e~' 
, , unsigned , byte number of memory , 
, , short 'location pointed to, e.g. , 
I , unsigned short '3 * (number of words) + , 
, ' long , number of bytes., ' 
, ' -unsigned long I 
+char * l in t * --i-Return address of word , 
, , s t ruct * 'pointed to, e.g. mask' 
, , l ong * ',With 17777777 (octal). I 
' , char ** 
, , etc . , __ I 

-+ i n t * ---i- char-;- : Return adaress ~f ITr st , 
'struct * , . I byte in word pOlnted to, , 
' l ong * , ,e.g. or with 20000000, 
'char** , ,(octal). , , , e c • ~ , , 
,1nt~- ,-s nort , Copy. , 
,struct * , unsigned, , 
,long * , short, , 
, char * * , etc., , 
I etc. I .--J ..-____ , 
.J....~-t~-----I l o ng , Treat pointer as unslgned , 
, 1n, . ro fi 11 , s t ruct * ,unsigned long ,lnteger, 7. g . ze 
' I * ,from 24-bl t number to ,-
, ~ n g * * , , 4 7 _ bit n urn b e r . , 'C a r , , 
, e tc. , ~I ___________ __ 

Figur e I X-I. C Pointer Converion Rules for the /6 
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The storage conversion rules are fairly standard. 

The /6 numeric representati'ons and ' instruction set 

all ows these conversions to be one or two instructions 

normally, and fail to require the extra thought 

neces s ary in the case of pointer conversions. 

IX- 2 summarizes these conversion rules. 

Figure 

One notable exception to the scheme presented 

above is the handling of a NULL pointer. The C 

language definition states that "it is guaranteed that 

assignment of the constant e to a pointer will produce 

a null pointer distinguishable from a pointer to any 

object" [13] . The natural conversion operations, 

outlined above, imply that an assignment of this sort 

fails to follow this convention. In addition, rules 

found in most other C compilers, for the storage 

conversion of a character pointer to an integer, 

specify that a straight copy is carried out. This also 

conflicts with the rules for conversion set forth for 

the /6. Consequently, to maintain compatability with 

other C c ompilers, the /6 compiler handl es the null 

po i n ter as a special case. The decision t o ma ke this 

exception to the general conversion rules resul ted from 

experiences in porting various user pr ograms 
(in 

h 11) A resul t of thi s special 
particular the Bourne s e • 

. de sequences genera ted for 
casing is that certaIn co 
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I From I To I 
~ *--.... ====Iin= === ~ Rule I 
r,·ar rnt. leturn the-bytenumbe7""or l 

I 
unsigned he . I bh hn memory locat ion 

I G o:-t f,~inted to, e.g. 3 * I 
I ~nSlgned short (number of words) + I 
I Gon~ I(number of bytes) . I 
I I nSlgned long Res~l t is treated as an I 
I I bbnSlgned value when I 
1r;ru;r _____ I~~~-----f:-'=0~n:..:v-'=e:..':r-':t::i~n~g~ to long S • I 

ong nt runcate 41=Eit value to I 
nsigned long truct * 4 b' I - it value, then copy. I 

har ** 
tc. I I 

~~~----------+~~------. ong fhar ""- r unca te to 8-bi t va lue'-II 
ns igned long I hen copy. I 
nt 
hort I I 
nsigned I I 
n~igned short L------ I I ~n fong ~engthen 24-bit value to: 

~nsigned pnsigned long F 47-~it value by sign I 
fnt * I f:xtenslon or zero I 
ftruct * I ~illing. I 
ftc . L I I 
~nt ""~-:-l-o-a~t----~~~. a-c"""'h-lr-· n-e-?' efined - ~ I 
f5hor t pouble p.nstructlon. I 
long --jITOat -----;f'1~a-c-.hine defined - t~-I 
pnsigned long ~ouble !instruction. - I 
llns ignea !float ~ero fill to a 4 7-bi t I 
tJ.ns ig ned shor t t:Jouble number, then treat as a I 
I I ~bove. I 
rloa t ---rrnt Machine defined by fxa I 
tliouble bnsigned !instruction. Characters I 
I char ere truncated following I 
I bnsigned char conversion. I 
~loat liong Convert to 24-bit number I 
Bouble lmsigned long by fxa instruction, then I 
I I ~ign extend/zero fill to I 
I I ~7-bit value. I 

Figure IX-2. C Storage conversion Rules for the /6 
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storage conversions must perform a check for the null 
pointer. In add i tion, the handling of the null pointer 
raises the complexi ty of the code used for hand ling 

constants within the compl'ler. It h appears t at the 

language definition is lacking here. An improvement 

might be the introduction of an explicit null pointer 

to the language definition, as found in Pascal, ADA, 

etc. 

2. The Impact of the /6 on Programming in C 

As mentioned previously, the C compiler for the 

/6 employs two different representations for pointers. 

The byte a~cress format is employed for any pointer to 

a byte oriented object. All non-byte storage items 

(longs, fields, enumerations, etc.) are manipulated 

with a word address format. As one might expect, the 

impact on C goes beyond the compiler's difficulty to 

generate code. Because the conversion between these two 

formats is not a one-to-one mappi ng there are cases 

where statements in C may res ult in information 

h k " In part icul ar, consider "slipping between t e crac s • 

the foll owing statements: 
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~har *p, foo[20]: 
Int *q: 

p = &foo: 
p++: 
q = (int *)p: 
p = (char *) qi 

While this code probably won't occur in practice, one 

should notice that the assl" t gnmen to S results in a 

"rounding" of the address to a word boundary. If one 

considers the values that are " 1 d h lnvo ve ere, the 

following will be seen (assume the array foo is placed 

at location octal 1000): 

Statement 

p = &foo; 
p++; 
q = (int *)p: 
p = (char *) q; 

Value for p 

020001000 
040001000 
040001000 
020001000 

Value for q 

<undefined> 
<undefined> 
00001000 
00001000 

The information transfer from E to S, and back to E 

again, results in the byte position being lost. This 

is to be expected, since it is not possible to maintain 

this information across the assignment statements. 

Occurences of this sort can not occur on the PDP-II, 

since byte and word pointers are treated as objects 

hav ing an identical format (i.e. all conve rsion 

operations have no effect on the internal value of a 

pointer) • 
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A more serious problem with the differences in 

data type representations is the handl ing of 

parameters. While word pointers and integ er items are 

identically formatted, the shape of a byte pointer 

causes the interchange of a byte pointer and an integer 

to have drastic effects on oper a t ions. While 

conversions may be applied when a type cast takes place 

in-line, parameter passing may hide the need for a 

conversion. Since the . C language definition 

specifically avoids checking ac t ual parameters against 

formals (in fact the syntax of t he languag e doesn't 

always supply enough informat i on to allow this to be 

done), the prograllmer must be held at faul t when 

something of this sort occurs. Once ag ain, 

incompatabilities of this type have no impact on a byte 

addressable machine, since the representation for 

pointers will be equivalent. 

A final problem caused by the data type 

representations for the /6 involves longs. This 

p rob lem is independ ent of a word addressable 

architecture; it is particular to the /6. There is a 

large temptation on many machines to treat longs as 

something other 
than an indivisible storage location. 

be used to allocate storage, but in 
That is, a long may 

are per formed on 
some instances operations 
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subcomponents of the long. Since the /6 representation 

of a long requires that the sl'gn bl't l'n the low word be 

zero, the manipulation of a long as two separate words 

may result in inconsistent results. ~d' M mlttedly it is 

poor programming practice to use a trick such as this, 

but, when porting programs, one must be awa re of the 

problem. 

3. The C Programming Environment 

From a users' standpoint, programming in C on the 

/6 is little different from any other machine to which 

C has been moved. As noted above, a user must be aware 

of certain machine problems tha t preclude the "free" 

programming style exemplified on mach i nes such as the 

PDP-ll and VAX-ll. The deficiencies in the /6 in fact 

tend to improve the portability of C code written on 

the /6. Since a user must follow the typing 

conventions in C more closely than on most other 

machines, programs written on the /6 tend to move quite 

easily. A user must be car e f ul to consider the 

consequence s o f poin ter conversions, match parameter 

type s i n function calls, and treat data structures at 

"face value". 
When all the pitfalls of byt e pointers 

are treated carefully, the result is a pr ogram that 

very readable, and most importantly, very por table. 

is 
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For efficiency , a user programming in C on the /6 

will usually s tee r clear of unwarranted use of 

character var i ables. Since the cost of accessing 

arbitrarily aligned bytes via an indexing ope ration is 

quite high, the use o f pointers i s i mportant. That is, 

when deciding whether to implement an algorithm with 

indices or po inters, the use of pointe rs is 

recommended, because there is a l a rge cost involved in 

forming byte addresses by add ing an ind ex t o a byte 

pointer. Thus, the 
, , 

ope r ato r for structur e s tends 

to be used less than the '-)' operator, a nd array 

indexing (' []') tends to be used less th a n straight 

pointer manipu lations. As an ex ample of t he relative 

cost of index ing and pointer ma ni pulations, consider a 

simple loop to step through a cha r acter array and 

initialize each e ntry to zero. 

char f oo [20], *p: 
int i: 

for (i 

for (p 

= ": i < 20: i ++) 
foo[ iJ = 0: 

= foo: P < &foo[20]: 
*p = 0: 

p++) 

The code for each loop is displayed below, side by 

side. Note I'nvolved in using arr a y the added cost 

, nipulations. indexing versus pOInter rna 
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Indexing Pointers -------- --------
tzm ! i tma f _foo,0 L0 : tam ! p tma ! i L0: -
cma $20 tma ! p 
bon L1 tme *=foo,20 tmi ! i kea 
tma ! -- P bon L1 
tze tma ! p 
lId 2 toa 0 -
rIa 2 rbm ! 0 
aei tmj ! p 
myo 3 bbj .+1 
aia buc L0 
dvo 3 L1: 
aoe 1 . 
lla 2 
rId 2 
tai 
toa 0 
rbm ! 0 
aum ! i 
buc L0 

Ll: 

Similar comparisons may be made for other pointer/index 

related operations with equivalent results. 



CHAPTER X 

CONCLUSIONS 

The previous chapters of this document have 

detailed work carried out in establishing a C 

programming environment under UNIX/24V. Most of these 

discus sions have been concerned with the target 

machine, the Ha rris /6. However, the work carried out 

has served to illuminate several issues that are 

pertinent to a large class of machines and which need 

further study. These issues will be tied together with 

a summary of some of the impor t an t points brought out 

in earlier chapters. 

1. The Portab le C Compiler 

The portab le C compiler has proven to be an 

excellent vehic le whereby a C compiler may be 

effectively boot s trapped onto a new target machine. 

The compiler is clearly equipped for machines with a 

byte addressable a rchi t ecture, while i t s adaptation to 

word addressable architectures is less obvious. The 

, bl s encountered in moving the maJ or reason for pro em 

compiler to a word addressable architecture is the 

d 'ff t types of addr es s 
necessity to maintain two 1 eren 
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offsets. The po rtable C compl'ler d ' oes not dlrectly 
support such a not1'on, add' lng a great deal of 

complexity to the handling of address arithmetic. The 

underlying assumption in the design of the compiler is 

that all address arithmetic will be performed in bytes, 

with conversion to words being performed at the last 

possible instance, or that all addresses will be 

maintained in words. Handling al l addresses in bytes 

is impractical if efficient code is to be generated, 

while the consequence of using onl y word addresses is 

that packing o f aggregate structures may not be 

performed -- very costly on machines with a large word 

size. A par allel /6 C compiler project, [31], chose 

the latter route, packing one character pe r 24-bit 

word. They reported that packing one character per 

word simplif i e d code generation, but proved costly when 

performing i nput/output (packing and unpacking of data 

structures wa s required). The Wisconsin C compiler 

packs cha rac ter arrays, but does not pack structures. 

This c ompiler is structured complete l y 

the portable compil e r . 

different from 

t ypes 

The q uestion of how to handle mul t i ple offset 

1'n th1's /6 C compiler, within ha s been addressed 
tion scheme of 

the f ramework of the normal code genera 

the po rtable compiler. 
The resultant implementation 
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has proven satisfac tory in that it generates correct 

code, and of a decent quality, but has been 

unsatisfactory with respect to compilation efficiency. 

The first pass algorithms used to build expression 

trees can be very slow when numerous passes must be 

made over the trees to investigate possible byte 

pointer problems. It appears that a closer integration 

of the machine dependent byte/word offset calculation 

algorithms and the machine' independent tree building 

algorithms would result in a more efficient compiler. 

The reason this was not immediately done was to 

maintain the structure of the compiler during 

development stages. The alterations required to carry 

out such a plan are not straightforward, and the 

greatest need during the development was a working 

compiler. Should the compiler be considered for 

further use closer study of its internal structure is 

clearly warranted. 

The other significant problem encountered in 

adapting the portable compiler to the /6 was in mapping 

the compiler's abstract machine model to the target 

machine. The notion of an abstract machine to which a 

d is quite old and has target machine may be mappe , 

definitive model for undergone many studies: as yet no 

machl'ne has been constructed. The a universal abstract 
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earlier work on the Janus abstract machines [5], LSD 

programming language [4], BCPL programming language 

[22], IBM S/360 FORTRAN (G) compiler [7], Pascal P-code 

[20] and EM-l [28] abstract machines, and the original 

portable C compiler (27] have been enlightening, but by 

no means conclusive. The abstract machine defined for 

S. C. Johnson's portable C compiler borrows a number of 

ideas from Snyder's portable C compiler, [27], and 

appears to be suitable for most all machines presently 

being designed. The machine model assumes collections 

of homogeneous general purpose registers, a stack of 

some sort (either in software or hardware), and a 

uniform addressing scheme of memory cells. It 

tolerates some deviation from a purely orthogonal 

architecture through the machine dependent register 

allocation scheme and flexibility in constructing the 

code generation tables. Unfortunately, it fails to 

handle severe deviations from this model, as found in 

the /6. There appears to be little reason for the 

compiler to support a wider range of architectures. If 

a designer d enough of the internal can under stan 

workings of the compiler, the modifications necessary 

to tailor the abstract model to a given architecture 

are not di ffic ult . Greater general ization of the 

(for instance t o support more 
abstract mach ine model 

than two register classes) would r esult in a 
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degradation in t he performance of the compile r at 

little benefit. Thus, it seems fair to say the mac hi ne 

model is satisfactory f or most implementations. That 

this model has been so succesful implies that its 

properties should be closely studied before future 

attempts at new a n1 imp roved abstract machine models 

are made. 

2. The C Language As a Portable Implementation Language 

One may cons ider the C language on its merits as 

an implementation tool for portable software systems. 

In particular one may ask how C stacks up against other 

languages normally considered in implementing large 

software systems. In short, this author believes C is 

one of the bes t , if not the best, language for 

implementing large so ftware systems that are to be used 

on many different machines. While this opinion is 

heavily colored by a lengthy exposure to the language , 

the statement is no t made without some justification. 

There appear t o be a number of qualities required 

of a language t o be successful as an implementation 

tool. The first is that it should support the basic 

constructs to program in a structured manner. These 

constructs include those used for control flow and 
the 

abstraction of data types. 
Secondly, the programme r 
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shouldn't be overly burdened ' wlth "syntactic sugar". 

This fault, common to many of the programming languages 

currently in vogue, tends to stifle programmer 

creativity. Third, recursion should be available. The 

notion of recursl'on ' f 1S one 0 the most powerful 

programming concepts available. Its use tends to 

enhance the correspondence between "natural" algorithms 

and their implementation. Finally, pointer data types 

must be supported. Similar to recursion, pointers are 

usually the natural tool to use in implementing 

algorithms; their presence tends to allow 

implementation to correspond closely to a paper 

algorithm. Needless to say, the C programming language 

supports all these notions, as do many other 

programming languages. However, C is virtually the 

only programming language to support address arithmetic 

in a comprehensive form that meshes quite naturally 

with the remainder of the language. C has its 

detractions, the most common complaint is its weak type 

checking. In truth, saying C performs weak type 

checking is fairly charitable. There are many good 

reasons for having strong type checking in a language, 

'd heck1' ng environment, but how to enforce a rigl type c 

when h sort of extensive address 
combined with t e 

arithmetic 

understood. 

possible in C, is not currently well 

The lack of type checking performed in C 
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allows faster compilation, and promotes a "robust" 
environment in which arbitrary memory cells may be 

used. Some of the bad points of weak type checking are 
consider later. Overall, it appears C is an excellent 

tool for implementing software. In a very short period 

of time C has distinguished itself through its use in a 

large number of software projects (operating systems, 

compilers, graphics packages, text processing systems, 

etc. ) 

The question of portability in a language can, 

for the most part, be separated from an analysis of its 

usefullness as an implementation tool. In considering 

why C has been so successful as an implementation 

language, one invariably recognizes the rich set of 

mechanisms offered a programmer. However, it is also 

this rich collection of mechanisms which can inhibit 

portability of a program. certain high level languages 

promote portability through restrictions on the 

operations which may be performed on a data structure, 

while others attempt to supply an abstract machine for 

the user. The former technique (e.g. Pascal) tends to 

be unduly costly for the progr ammer. To perform a 

"natural" operation within the s tructure of the 

language one must resort to subterfuge (i.e. use an 

assembly l anguage assist), or work a round it (for 
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instance, use indices instead of pointers) • The latter 
approach to portability (APL for instance) requires a 

simulated environment be moved with each new 
implementation of the language, so penalizes the 

language's implementer . C h , on t e other hand, is easy 

to implement and program in. It allows a user to 

directly employ the power of the target machine. This 

ability to "touch" the bare machine also allows the 

creation of totally nonportable constructs. 

In considering C as a portable language, a number 

of specific reasons have been recognized. The ability 

to abstract data structures avoids the simulation of a 

natural aggregation. For instance, a need for a 

collection of heterogeneous items needn't be simulated 

within an array. Because the constructs needed for the 

representation of a natural data structure are present 

in the language, moving a program from one machine to 

another may depend on the atomic operations expected of 

the language. 

Secondly, while C supports extensive address 

calculation features, problems involved in word size 

differences, data type incompatabilities, etc. are, for 

the most part, eliminated by natur al operator 

d e f i nitions and built-in primitives. 
In particular, 

t he no tions of addl'tion and subtr action have pointer 
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the possibility of being completely nonportable. 

However, by consistently def' , 1n1ng their semantics, C 

avoids requiring a programmer to know the width of 

aggregate structures when working with pointers to such 

obj ects. Further, when constants of this sort are 

necessary, the sizeof operator is very useful in 

maintaining a portable program. 

On the negative side, C's notorious l y weak type 

checking allows highly nonpor t able constructs to be 

created without any noise from the compiler. London 

and Re iser [181 have listed four problems they 

encountered during their experiences in moving UNIX and 

C to the VAX-ll/7 80. Two of the four suggestions they 

make are directly related to the weak type checking 

performed in C. 

1) The actual arguments in a procedure call should be 
type checked against the procedure declaration, and 
a "dummy" declar ation which spec i fies type s be 
permitted, even if the cal l ed procedure is not 
actually declared in the same compilation. 

2) The '-)' operator should be checked to insure that 
the structure element on the right is a member of a 
structure to which a pointer on the left may point. 

3) A structure element should be declarable with any 
name, as long as the name is unique within the 
immediately surrounding structure. (The c~rrent 
requirement tha t a s t ructure element must un1quely 
correspond t o an offset from the beg i nning of the 
structure , across all structures in a compilation, 
creates naming problems, and frequen t ly leads to 
errors of the type noted in item 2 above.) 

4) The issue of alignment to an even-byte (or other) 
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be brought into the open, so that 
struc tures can be accurately 

Of the suggestio~ s no ted above, the problem addressed 

in the first was f ound to be the most difficult to deal 

with in experiences with the /6. The second item is a 

by-product of the Ritchie C compiler, the portable 

compiler produces diagnostics for constructs of this 

sort. The third is definitely a worthwhile suggestion, 

and warrants further consideration. The last item 

suggests a view o f aggregate data structures similar to 

that found in BLISS, [33], and in this author's opinion 

diverges from one of the nicer facilities of C. The 

issue of alignment normally comes up only when trying 

to model mach ine dependent data structures (i.e. 

byte/word/bit l ayout of a particular structure). As 

such, the the que st ion of representing a structure in a 

portable fashio n is a moot point. The notion of an 

aggregate struc ture in C is to group together items in 

" 1 "t If specl"fl"C layout is required, a single log l ca unl • 

bit fields, and the like, may be employed to construct 

a structure of arbitrary shape. Thus, the latter 

suggestion appears to introduce unnecessary complexity 

into c. 

In summary, the C prog r amming language seems to 

be a success f ul tool for i mpl ementing portable software 
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systems because it has a rich set of primitives which 
allow a programmer to use the full power of an 

underlying arChitecture . It is also this ability to 

get at the basic machine which allows introduction of 

nonportable constr t C uc s. onsequently, unlike many other 

programming languages, portabil1°ty l°n ° C 1S easily 

possible, but mostly up to th e programmer. It is 

interesting to note that the consideration of 

portability is subject to· consideration, most other 

languages force "portability" on a programmer by 

techniques of the sort noted previously in this 

section. 

3. Portability Between Widely Different Architectures 

The question of portability, in general, is 

currently not fully understood. Most people can 

recognize a program, language construct, or the like, 

as being nonportable, but few can pinpoint exactly what 

makes a program or programming language "portable". 

Further, when considering portability between machines 

specifics of the particular architectures invariably 

enter into any consensus formed. The basic . variants of 

word size, data types, and addressability playa major 

part in forming conclusions, but are, by definition , of 

little consequence when considering portability between 

machines with similar architectures (for instance a 
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PDP-II and VAX-II). 
Thus, if one is to formulate 

opinions about portabil ity it seems appropriate to 
consider a worst case phenomenon. Since the /6 
architecture lOS so h dO muc Ifferent from the PDP-II 

architecture, it is worthwhile to consider the 

experiences garnered from this research (the porting 

project originated on a PDP-II, and had the /6 as its 

target machine) • 

Word size, in and of itself, posed few problems. 

Rather, the specific size of a word on the /6 

introduced incompatibilities. A 24-bit word, with an 

8-bit byte, invariably introduces the number 3 into 

many calculations: while progra~s developed for the 

PDP-II, where a 16-bit word and 8-bit byte are used, 

introduce the constant 2. Worse, since 2 is a power of 

2, division by 2 was often removed in favor of a right 

shift. A portable construct of the form 

(sizeof int/sizeof char) 

quickly became standard in programs developed on the 

/6. If the /6's word size had been a . power of 2, 

further problems migh t have been eliminated, or more 

easily dealt with . A machine with a word s i ze which is 

ny optl"ml"zatlOons a power of 2 offers rna 
of the sort 

portable expression involving 
mentioned. Constructing a 
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a constant, as shown above, will be the rule of thumb 

only if the compiler will f per orm the optimization from 

a division to a shift. For a signed number, an 

optimization is not possible (conslOder -1 dO ° lVlded by 2 

and -1 right shifted 1 bit). Thus, at least in C, it 

seems worthwhile to recommend expressions be created as 

above, and that compilers be aware of their existence 

as common practice and optimize accordingly (this 

requires the expression be" unsigned in type) • 

Data type incompatibilities cause problems mostly 

when a programmer assumes no side effects will be 

created when mixing them. In a language such as Pascal 

mixing types is illegal, or well defined. C, on the 

other hand, has been developed on a machine where 

mixing types normally has no effect on the value of an 

object. Consequently, many programs misuse this 

property of the PDP-II architecture. The recent 

introduction of "type casts" to C was of major 

importance in handling the multiple data type formats 

of the /6. It appears portability between machines 

Wl
o th d t formats must be handled incompatible ata ype 

° by a strongly typed language, or with either implicltly 

much foresight, 
and constructs like type casts, in a 

weakly typed language. 
The straight-line interpolation 

of type conversions, 
in a weakly typed language, is 
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simple when compared to the . nlghtmares introduced by 
parameter pass i ng. Handling parameter 

incompatibilities i s by far the most difficult problem 

to manage in porting p b rograms etween architectures 

with multiple data type formats: at the very least the 

language support mus t be present to handle conversions. 

A final problem is the method by which a target 

machine addresse s main memory. Most modern . 
architectures support the notion of byte 

addressability , a nd some even allow bit str ing s to be 

directly addressable. When considering the problems 

introduced by movement from a machine which is byte 

addressable to a machine which is not, the first thing 

that comes to mind is how to handle the inevitable 

incompatability be t ween pointers. Should the language 

being used not allow mixing of types of this sort, the 

problem is nonexi s tant. However, should it be possible , 

the architecture has a major impact on the portability 

of a program. As discussed in chapter IX, there is 

bound to be an information loss when converting between 

formats. This problem appears, as much as anything, to 

motivate a need for type checking, for at least some 

. 1 t' s Strong type checking 
cases of pointer manipu a 10n • 

shouldn't be 
. d but at the very least a require , 

must be not ified of an irregularity. 
programmer r 
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APPENDIX A 

UNIX/24V UTILITIES 

This appendix lists the user utility programs 

that have been ported to UNIX/24V. Most all programs 

were taken from the PDP-II Release 7 distribution of 

UNIX. In some instances the utility runs under both . 

the VULCAN operating system and UNIX/24Vi these are 

marked with a * A list of the major utilities not 

provided under UNIX/24V is also included. Items in the 

latter list were not moved because their implementation 

was highly nonportable, or because they were of little 

utility to the project. 
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Current Utilities 

ar arithmetic as (*) at 
basename cal cat (*) cb 
chgrp chmod chown clri 
cmp comm cp date(*) 
dcheck dd df diff 
du dump dumpd ir echo 
em (*) fgrep file getty 
grep (*) icheck init kill 
Id learn In login 
lpd lpr 1 s (*) mail(*) 
make mkdir mkfs(*) mknod 
mount mv (*) ncheck newgrp 
nice nm (*) od (*) passwd 
pr ps pwd ranlib 
restor rm(*) sed sh 
size (*) split strip stty 
su sum syms sync 
tail tar(*) tee test 
time tr tsort tty 
umount uniq update wall 
wc who write(*) wump 
ya~c(* ) 
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adb 

awk 

bc & dc 

lex 

lint 

sort 

tp 

eqn, ptx, 
pubindex, 
roff, tb l , 
nroff, trof f, 

f77, m4, 
ratfor, s truct 

uucp , uux, 
uuc ico , e tc. 

Major Missing Utilities 

requires ptrace system call 

requires lex. 

bc requires dc which is 
complicated, and as yet hasn't 
been looked at for portability 

highly nonportable 

r~quires sort 

tried to port it, but still 
buggy 

no need for it, always use tar 

Text Processing Programs 

etc. 

must have nroff/troff to 
useful, and nroff/troff 
highly nonportable 

Fortran Processors 

be 
is 

f77 uses the portable 
compiler, 
must be 
changes 
language 

so careful study 
made regarding the 

to the intermediate 

Uucp utilities 
low priority, and require 
conversion of a packet driver 
at kernel or user level 
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