Last update:
Fri Oct 13 09:03:22 MDT 2017
Martine Queffélec Front Matter . . . . . . . . . . . . . . I--XV
Martine Queffélec The Banach Algebra $ M(T) $ . . . . . . 1--19
Martine Queffélec Spectral Theory of Unitary Operators . . 21--48
Martine Queffélec Spectral Theory of Dynamical Systems . . 49--86
Martine Queffélec Dynamical Systems Associated with
Sequences . . . . . . . . . . . . . . . 87--124
Martine Queffélec Dynamical Systems Arising from
Substitutions . . . . . . . . . . . . . 125--160
Martine Queffélec Eigenvalues of Substitution Dynamical
Systems . . . . . . . . . . . . . . . . 161--192
Martine Queffélec Matrices of Measures . . . . . . . . . . 193--207
Martine Queffélec Matrix Riesz Products . . . . . . . . . 209--224
Martine Queffélec Bijective Automata . . . . . . . . . . . 225--242
Martine Queffélec Maximal Spectral Type of General
Automata . . . . . . . . . . . . . . . . 243--264
Martine Queffélec Spectral Multiplicity of General
Automata . . . . . . . . . . . . . . . . 265--280
Martine Queffélec Compact Automata . . . . . . . . . . . . 281--291
Martine Queffélec Back Matter . . . . . . . . . . . . . . 293--351
J. W. Neuberger Front Matter . . . . . . . . . . . . . . i--xiii
J. W. Neuberger Several Gradients . . . . . . . . . . . 1--4
J. W. Neuberger Comparison of Two Gradients . . . . . . 5--13
J. W. Neuberger Continuous Steepest Descent in Hilbert
Space: Linear Case . . . . . . . . . . . 15--17
J. W. Neuberger Continuous Steepest Descent in Hilbert
Space: Nonlinear Case . . . . . . . . . 19--34
J. W. Neuberger Orthogonal Projections, Adjoints and
Laplacians . . . . . . . . . . . . . . . 35--51
J. W. Neuberger Ordinary Differential Equations and
Sobolev Gradients . . . . . . . . . . . 53--55
J. W. Neuberger Convexity and Gradient Inequalities . . 57--61
J. W. Neuberger Boundary and Supplementary Conditions 63--78
J. W. Neuberger Continuous Newton's Method . . . . . . . 79--83
J. W. Neuberger More About Finite Differences . . . . . 85--97
J. W. Neuberger Sobolev Gradients for Variational
Problems . . . . . . . . . . . . . . . . 99--102
J. W. Neuberger An Introduction to Sobolev Gradients in
Non-Inner Product Spaces . . . . . . . . 103--107
J. W. Neuberger Singularities and a Simple
Ginzburg--Landau Functional . . . . . . 109--111
J. W. Neuberger The Superconductivity Equations of
Ginzburg--Landau . . . . . . . . . . . . 113--121
J. W. Neuberger Tricomi Equation: a Case Study . . . . . 123--127
J. W. Neuberger Minimal Surfaces . . . . . . . . . . . . 129--145
J. W. Neuberger Flow Problems and Non-Inner Product
Sobolev Spaces . . . . . . . . . . . . . 147--152
J. W. Neuberger An Alternate Approach to Time-dependent
PDEs . . . . . . . . . . . . . . . . . . 153--158
J. W. Neuberger Foliations and Supplementary Conditions
I . . . . . . . . . . . . . . . . . . . 159--169
J. W. Neuberger Foliations and Supplementary Conditions
II . . . . . . . . . . . . . . . . . . . 171--175
Vicent Caselles and
Pascal Monasse Introduction . . . . . . . . . . . . . . 1--7
Vicent Caselles and
Pascal Monasse Introduction . . . . . . . . . . . . . . 1--7
Vicent Caselles and
Pascal Monasse Front Matter . . . . . . . . . . . . . . 1--14
Vicent Caselles and
Pascal Monasse Front Matter . . . . . . . . . . . . . . 1--14
Vicent Caselles and
Pascal Monasse Back Matter . . . . . . . . . . . . . . 1--18
Vicent Caselles and
Pascal Monasse Back Matter . . . . . . . . . . . . . . 1--18
Vicent Caselles and
Pascal Monasse The Tree of Shapes of an Image . . . . . 9--34
Vicent Caselles and
Pascal Monasse The Tree of Shapes of an Image . . . . . 9--34
Vicent Caselles and
Pascal Monasse Grain Filters . . . . . . . . . . . . . 35--73
Vicent Caselles and
Pascal Monasse Grain Filters . . . . . . . . . . . . . 35--73
Vicent Caselles and
Pascal Monasse A Topological Description of the
Topographic Map . . . . . . . . . . . . 75--102
Vicent Caselles and
Pascal Monasse A Topological Description of the
Topographic Map . . . . . . . . . . . . 75--102
Vicent Caselles and
Pascal Monasse Merging the Component Trees . . . . . . 103--113
Vicent Caselles and
Pascal Monasse Merging the Component Trees . . . . . . 103--113
Vicent Caselles and
Pascal Monasse Computation of the Tree of Shapes of a
Digital Image . . . . . . . . . . . . . 115--140
Vicent Caselles and
Pascal Monasse Computation of the Tree of Shapes of a
Digital Image . . . . . . . . . . . . . 115--140
Vicent Caselles and
Pascal Monasse Computation of the Tree of Bilinear
Level Lines . . . . . . . . . . . . . . 141--153
Vicent Caselles and
Pascal Monasse Computation of the Tree of Bilinear
Level Lines . . . . . . . . . . . . . . 141--153
Vicent Caselles and
Pascal Monasse Applications . . . . . . . . . . . . . . 155--171
Vicent Caselles and
Pascal Monasse Applications . . . . . . . . . . . . . . 155--171
Torsten Linß Introduction . . . . . . . . . . . . . . 1--4
Torsten Linß Introduction . . . . . . . . . . . . . . 1--4
Torsten Linß Front Matter . . . . . . . . . . . . . . 1--10
Torsten Linß Front Matter . . . . . . . . . . . . . . 1--10
Torsten Linß Back Matter . . . . . . . . . . . . . . 1--18
Torsten Linß Back Matter . . . . . . . . . . . . . . 1--18
Torsten Linß Layer-Adapted Meshes . . . . . . . . . . 5--29
Torsten Linß Layer-Adapted Meshes . . . . . . . . . . 5--29
Torsten Linß Front Matter . . . . . . . . . . . . . . 31--31
Torsten Linß Front Matter . . . . . . . . . . . . . . 31--31
Torsten Linß The Analytical Behaviour of Solutions 33--76
Torsten Linß The Analytical Behaviour of Solutions 33--76
Torsten Linß Finite Difference Schemes for
Convection-Diffusion Problems . . . . . 77--149
Torsten Linß Finite Difference Schemes for
Convection-Diffusion Problems . . . . . 77--149
Torsten Linß Finite Element and Finite Volume Methods 151--182
Torsten Linß Finite Element and Finite Volume Methods 151--182
Torsten Linß Discretisations of
Reaction-Convection-Diffusion Problems 183--231
Torsten Linß Discretisations of
Reaction-Convection-Diffusion Problems 183--231
Torsten Linß Front Matter . . . . . . . . . . . . . . 233--233
Torsten Linß Front Matter . . . . . . . . . . . . . . 233--233
Torsten Linß The Analytical Behaviour of Solutions 235--246
Torsten Linß The Analytical Behaviour of Solutions 235--246
Torsten Linß Reaction-Diffusion Problems . . . . . . 247--256
Torsten Linß Reaction-Diffusion Problems . . . . . . 247--256
Torsten Linß Convection-Diffusion Problems . . . . . 257--307
Torsten Linß Convection-Diffusion Problems . . . . . 257--307
Michel Broué Front Matter . . . . . . . . . . . . . . I--XI
Michel Broué Preliminaries . . . . . . . . . . . . . 1--9
Michel Broué Prerequisites and Complements in
Commutative Algebra . . . . . . . . . . 11--33
Michel Broué Polynomial Invariants of Finite Linear
Groups . . . . . . . . . . . . . . . . . 35--56
Michel Broué Finite Reflection Groups in
Characteristic Zero . . . . . . . . . . 57--96
Michel Broué Eigenspaces and Regular Elements . . . . 97--118
Michel Broué Back Matter . . . . . . . . . . . . . . 119--138
Immanuel M. Bomze and
Vladimir F. Demyanov and
Roger Fletcher and
Tamás Terlaky Front Matter . . . . . . . . . . . . . . i--xiii
Immanuel M. Bomze Global Optimization: a Quadratic
Programming Perspective . . . . . . . . 1--53
Vladimir F. Demyanov Nonsmooth Optimization . . . . . . . . . 55--163
Roger Fletcher The Sequential Quadratic Programming
Method . . . . . . . . . . . . . . . . . 165--214
Imre Pólik and
Tamás Terlaky Interior Point Methods for Nonlinear
Optimization . . . . . . . . . . . . . . 215--276
Imre Pólik and
Tamás Terlaky Back Matter . . . . . . . . . . . . . . 277--289
Serge Bouc Front Matter . . . . . . . . . . . . . . I--IX
Serge Bouc Examples . . . . . . . . . . . . . . . . 1--11
Serge Bouc Front Matter . . . . . . . . . . . . . . 14--14
Serge Bouc $G$-Sets and $ (H, G)$-Bisets . . . . . 15--40
Serge Bouc Biset Functors . . . . . . . . . . . . . 41--51
Serge Bouc Simple Functors . . . . . . . . . . . . 53--72
Serge Bouc Front Matter . . . . . . . . . . . . . . 74--74
Serge Bouc The Burnside Functor . . . . . . . . . . 75--95
Serge Bouc Endomorphism Algebras . . . . . . . . . 97--119
Serge Bouc The Functor $ \mathbb {C}R_{\mathbb {C}}
$ . . . . . . . . . . . . . . . . . . . 121--134
Serge Bouc Tensor Product and Internal Hom . . . . 135--152
Serge Bouc Front Matter . . . . . . . . . . . . . . 154--154
Serge Bouc Rational Representations of $p$-Groups 155--181
Serge Bouc $p$-Biset Functors . . . . . . . . . . . 183--213
Serge Bouc Applications . . . . . . . . . . . . . . 215--240
Serge Bouc The Dade Group . . . . . . . . . . . . . 241--292
Serge Bouc Back Matter . . . . . . . . . . . . . . 293--299
Filippo Gazzola and
Hans-Christoph Grunau and
Guido Sweers Front Matter . . . . . . . . . . . . . . i--xviii
Filippo Gazzola and
Hans-Christoph Grunau and
Guido Sweers Models of Higher Order . . . . . . . . . 1--25
Filippo Gazzola and
Hans-Christoph Grunau and
Guido Sweers Linear Problems . . . . . . . . . . . . 27--60
Filippo Gazzola and
Hans-Christoph Grunau and
Guido Sweers Eigenvalue Problems . . . . . . . . . . 61--98
Filippo Gazzola and
Hans-Christoph Grunau and
Guido Sweers Kernel Estimates . . . . . . . . . . . . 99--146
Filippo Gazzola and
Hans-Christoph Grunau and
Guido Sweers Positivity and Lower Order Perturbations 147--185
Filippo Gazzola and
Hans-Christoph Grunau and
Guido Sweers Dominance of Positivity in Linear
Equations . . . . . . . . . . . . . . . 187--226
Filippo Gazzola and
Hans-Christoph Grunau and
Guido Sweers Semilinear Problems . . . . . . . . . . 227--370
Filippo Gazzola and
Hans-Christoph Grunau and
Guido Sweers Willmore Surfaces of Revolution . . . . 371--392
Filippo Gazzola and
Hans-Christoph Grunau and
Guido Sweers Back Matter . . . . . . . . . . . . . . 393--429
Alberto Parmeggiani Front Matter . . . . . . . . . . . . . . i--xi
Alberto Parmeggiani Introduction . . . . . . . . . . . . . . 1--5
Alberto Parmeggiani The Harmonic Oscillator . . . . . . . . 7--13
Alberto Parmeggiani The Weyl--Hörmander Calculus . . . . . . 15--53
Alberto Parmeggiani The Spectral Counting Function $
N(\lambda) $ and the Behavior of the
Eigenvalues: Part 1 . . . . . . . . . . 55--66
Alberto Parmeggiani The Heat-Semigroup, Functional Calculus
and Kernels . . . . . . . . . . . . . . 67--77
Alberto Parmeggiani The Spectral Counting Function $
N(\lambda) $ and the Behavior of the
Eigenvalues: Part 2 . . . . . . . . . . 79--92
Alberto Parmeggiani The Spectral Zeta Function . . . . . . . 93--110
Alberto Parmeggiani Some Properties of the Eigenvalues of $
Q_{\left ({\alpha, \beta } \right)}^{\rm
w (x, D)} $ . . . . . . . . . . . . . . 111--120
Alberto Parmeggiani Some Tools from the Semiclassical
Calculus . . . . . . . . . . . . . . . . 121--147
Alberto Parmeggiani On Operators Induced by General
Finite-Rank Orthogonal Projections . . . 149--159
Alberto Parmeggiani Energy-Levels, Dynamics, and the Maslov
Index . . . . . . . . . . . . . . . . . 161--190
Alberto Parmeggiani Localization and Multiplicity of a
Self-Adjoint Elliptic $ 2 \times 2 $
Positive NCHO in $ \mathbb {R}^n $ . . . 191--238
Alberto Parmeggiani Back Matter . . . . . . . . . . . . . . 239--260
Pandelis Dodos Front Matter . . . . . . . . . . . . . . i--xi
Pandelis Dodos Basic Concepts . . . . . . . . . . . . . 1--8
Pandelis Dodos The Standard Borel Space of All
Separable Banach Spaces . . . . . . . . 9--35
Pandelis Dodos The $ \ell_2 $ Baire Sum . . . . . . . . 37--56
Pandelis Dodos Amalgamated Spaces . . . . . . . . . . . 57--70
Pandelis Dodos Zippin's Embedding Theorem . . . . . . . 71--88
Pandelis Dodos The Bourgain--Pisier Construction . . . 89--114
Pandelis Dodos Strongly Bounded Classes of Banach
Spaces . . . . . . . . . . . . . . . . . 115--126
Pandelis Dodos Back Matter . . . . . . . . . . . . . . 127--167
Árpád Baricz Front Matter . . . . . . . . . . . . . . i--xiv
Árpád Baricz Introduction and Preliminary Results . . 1--22
Árpád Baricz Geometric Properties of Generalized
Bessel Functions . . . . . . . . . . . . 23--69
Árpád Baricz Inequalities Involving Bessel and
Hypergeometric Functions . . . . . . . . 71--186
Árpád Baricz Back Matter . . . . . . . . . . . . . . 187--212
Alexander Y. Khapalov Front Matter . . . . . . . . . . . . . . i--xv
Alexander Y. Khapalov Introduction . . . . . . . . . . . . . . 1--12
Alexander Y. Khapalov Front Matter . . . . . . . . . . . . . . 14--14
Alexander Y. Khapalov Global Nonnegative Controllability of
the $ 1 - D $ Semilinear Parabolic
Equation . . . . . . . . . . . . . . . . 15--31
Alexander Y. Khapalov Multiplicative Controllability of the
Semilinear Parabolic Equation: a
Qualitative Approach . . . . . . . . . . 33--48
Alexander Y. Khapalov The Case of the Reaction-Diffusion Term
Satisfying Newton's Law . . . . . . . . 49--65
Alexander Y. Khapalov Classical Controllability for the
Semilinear Parabolic Equations with
Superlinear Terms . . . . . . . . . . . 67--80
Alexander Y. Khapalov Front Matter . . . . . . . . . . . . . . 82--82
Alexander Y. Khapalov Controllability Properties of a
Vibrating String with Variable Axial
Load and Damping Gain . . . . . . . . . 83--104
Alexander Y. Khapalov Controllability Properties of a
Vibrating String with Variable Axial
Load Only . . . . . . . . . . . . . . . 105--119
Alexander Y. Khapalov Reachability of Nonnegative Equilibrium
States for the Semilinear Vibrating
String . . . . . . . . . . . . . . . . . 121--145
Alexander Y. Khapalov The $1$-D Wave and Rod Equations
Governed by Controls That Are
Time-Dependent Only . . . . . . . . . . 147--156
Alexander Y. Khapalov Front Matter . . . . . . . . . . . . . . 158--158
Alexander Y. Khapalov Introduction . . . . . . . . . . . . . . 159--164
Alexander Y. Khapalov A ``Basic'' $2$-D Swimming Model . . . . 165--170
Alexander Y. Khapalov The Well-Posedness of a $2$-D Swimming
Model . . . . . . . . . . . . . . . . . 171--193
Alexander Y. Khapalov Geometric Aspects of Controllability for
a Swimming Phenomenon . . . . . . . . . 195--217
Alexander Y. Khapalov Local Controllability for a Swimming
Model . . . . . . . . . . . . . . . . . 219--236
Alexander Y. Khapalov Global Controllability for a ``Rowing''
Swimming Model . . . . . . . . . . . . . 237--262
Alexander Y. Khapalov Front Matter . . . . . . . . . . . . . . 264--264
Alexander Y. Khapalov Multiplicative Controllability for the
Schrödinger Equation . . . . . . . . . . 265--274
Alexander Y. Khapalov Back Matter . . . . . . . . . . . . . . 275--290
Thomas Lorenz Front Matter . . . . . . . . . . . . . . i--xiv
Thomas Lorenz Introduction . . . . . . . . . . . . . . 1--29
Thomas Lorenz Extending Ordinary Differential
Equations to Metric Spaces: Aubin's
Suggestion . . . . . . . . . . . . . . . 31--101
Thomas Lorenz Adapting Mutational Equations to
Examples in Vector Spaces: Local
Parameters of Continuity . . . . . . . . 103--179
Thomas Lorenz Less Restrictive Conditions on Distance
Functions: Continuity Instead of
Triangle Inequality . . . . . . . . . . 181--330
Thomas Lorenz Introducing Distribution-Like Solutions
to Mutational Equations . . . . . . . . 331--384
Thomas Lorenz Mutational Inclusions in Metric Spaces 385--438
Thomas Lorenz Back Matter . . . . . . . . . . . . . . 439--515
Markus Banagl Front Matter . . . . . . . . . . . . . . i--xvi
Markus Banagl Homotopy Theory . . . . . . . . . . . . 1--106
Markus Banagl Intersection Spaces . . . . . . . . . . 107--189
Markus Banagl String Theory . . . . . . . . . . . . . 191--209
Markus Banagl Back Matter . . . . . . . . . . . . . . 211--223
Marco Abate and
Eric Bedford and
Marco Brunella and
Tien-Cuong Dinh and
Dierk Schleicher and
Nessim Sibony Front Matter . . . . . . . . . . . . . . i--xiii
Marco Abate Discrete Holomorphic Local Dynamical
Systems . . . . . . . . . . . . . . . . 1--55
Eric Bedford Dynamics of Rational Surface
Automorphisms . . . . . . . . . . . . . 57--104
Marco Brunella Uniformisation of Foliations by Curves 105--163
Tien-Cuong Dinh and
Nessim Sibony Dynamics in Several Complex Variables:
Endomorphisms of Projective Spaces and
Polynomial-like Mappings . . . . . . . . 165--294
Dierk Schleicher Dynamics of Entire Functions . . . . . . 295--339
Dierk Schleicher Back Matter . . . . . . . . . . . . . . 341--348
Hans Schoutens Front Matter . . . . . . . . . . . . . . i--x
Hans Schoutens Introduction . . . . . . . . . . . . . . 1--6
Hans Schoutens Ultraproducts and \Lo\'s' Theorem . . . 7--27
Hans Schoutens Flatness . . . . . . . . . . . . . . . . 29--50
Hans Schoutens Uniform Bounds . . . . . . . . . . . . . 51--63
Hans Schoutens Tight Closure in Positive Characteristic 65--80
Hans Schoutens Tight Closure in Characteristic Zero.
Affine Case . . . . . . . . . . . . . . 81--95
Hans Schoutens Tight Closure in Characteristic Zero.
Local Case . . . . . . . . . . . . . . . 97--112
Hans Schoutens Cataproducts . . . . . . . . . . . . . . 113--125
Hans Schoutens Protoproducts . . . . . . . . . . . . . 127--148
Hans Schoutens Asymptotic Homological Conjectures in
Mixed Characteristic . . . . . . . . . . 149--169
Hans Schoutens Back Matter . . . . . . . . . . . . . . 171--210
Harry Yserentant Front Matter . . . . . . . . . . . . . . i--viii
Harry Yserentant Introduction and Outline . . . . . . . . 1--11
Harry Yserentant Fourier Analysis . . . . . . . . . . . . 13--26
Harry Yserentant The Basics of Quantum Mechanics . . . . 27--50
Harry Yserentant The Electronic Schrödinger Equation . . . 51--58
Harry Yserentant Spectrum and Exponential Decay . . . . . 59--85
Harry Yserentant Existence and Decay of Mixed Derivatives 87--116
Harry Yserentant Eigenfunction Expansions . . . . . . . . 117--125
Harry Yserentant Convergence Rates and Complexity Bounds 127--140
Harry Yserentant The Radial-Angular Decomposition . . . . 141--176
Harry Yserentant Back Matter . . . . . . . . . . . . . . 177--188
Thomas Duquesne and
Oleg Reichmann and
Ken-iti Sato and
Christoph Schwab Front Matter . . . . . . . . . . . . . . i--xiv
Ken-iti Sato Fractional Integrals and Extensions of
Selfdecomposability . . . . . . . . . . 1--91
Thomas Duquesne Packing and Hausdorff Measures of Stable
Trees . . . . . . . . . . . . . . . . . 93--136
Oleg Reichmann and
Christoph Schwab Numerical Analysis of Additive, Lévy and
Feller Processes with Applications to
Option Pricing . . . . . . . . . . . . . 137--196
Oleg Reichmann and
Christoph Schwab Back Matter . . . . . . . . . . . . . . 197--204
Christian Pötzsche Front Matter . . . . . . . . . . . . . . i--xxiv
Christian Pötzsche Nonautonomous Dynamical Systems . . . . 1--36
Christian Pötzsche Nonautonomous Difference Equations . . . 37--94
Christian Pötzsche Linear Difference Equations . . . . . . 95--185
Christian Pötzsche Invariant Fiber Bundles . . . . . . . . 187--316
Christian Pötzsche Linearization . . . . . . . . . . . . . 317--343
Christian Pötzsche Back Matter . . . . . . . . . . . . . . 345--405
Kai Diethelm Front Matter . . . . . . . . . . . . . . i--viii
Kai Diethelm Front Matter . . . . . . . . . . . . . . 1--1
Kai Diethelm Introduction . . . . . . . . . . . . . . 3--12
Kai Diethelm Riemann--Liouville Differential and
Integral Operators . . . . . . . . . . . 13--47
Kai Diethelm Caputo's Approach . . . . . . . . . . . 49--65
Kai Diethelm Mittag-Leffler Functions . . . . . . . . 67--73
Kai Diethelm Front Matter . . . . . . . . . . . . . . 75--75
Kai Diethelm Existence and Uniqueness Results for
Riemann-Liouville Fractional
Differential Equations . . . . . . . . . 77--83
Kai Diethelm Single-Term Caputo Fractional
Differential Equations: Basic Theory and
Fundamental Results . . . . . . . . . . 85--132
Kai Diethelm Single-Term Caputo Fractional
Differential Equations: Advanced Results
for Special Cases . . . . . . . . . . . 133--166
Kai Diethelm Multi-Term Caputo Fractional
Differential Equations . . . . . . . . . 167--186
Kai Diethelm Back Matter . . . . . . . . . . . . . . 187--253
Wen Yuan and
Winfried Sickel and
Dachun Yang Front Matter . . . . . . . . . . . . . . i--xi
Wen Yuan and
Winfried Sickel and
Dachun Yang Introduction . . . . . . . . . . . . . . 1--19
Wen Yuan and
Winfried Sickel and
Dachun Yang The Spaces $ B_{p, q}^{s, \tau
}({\mathbb {R}}^n) $ and $ F_{p, q}^{s,
\tau }({\mathbb {R}}^n) $ . . . . . . . 21--48
Wen Yuan and
Winfried Sickel and
Dachun Yang Almost Diagonal Operators and Atomic and
Molecular Decompositions . . . . . . . . 49--64
Wen Yuan and
Winfried Sickel and
Dachun Yang Several Equivalent Characterizations . . 65--135
Wen Yuan and
Winfried Sickel and
Dachun Yang Pseudo-Differential Operators . . . . . 137--146
Wen Yuan and
Winfried Sickel and
Dachun Yang Key Theorems . . . . . . . . . . . . . . 147--175
Wen Yuan and
Winfried Sickel and
Dachun Yang Inhomogeneous Besov--Hausdorff and
Triebel--Lizorkin--Hausdorff Spaces . . 177--250
Wen Yuan and
Winfried Sickel and
Dachun Yang Homogeneous Spaces . . . . . . . . . . . 251--269
Wen Yuan and
Winfried Sickel and
Dachun Yang Back Matter . . . . . . . . . . . . . . 271--288
Emilio Bujalance and
Francisco Javier Cirre and
José Manuel Gamboa and
Grzegorz Gromadzki Front Matter . . . . . . . . . . . . . . i--xx
Emilio Bujalance and
Francisco Javier Cirre and
José Manuel Gamboa and
Grzegorz Gromadzki Preliminaries . . . . . . . . . . . . . 1--20
Emilio Bujalance and
Francisco Javier Cirre and
José Manuel Gamboa and
Grzegorz Gromadzki On the Number of Conjugacy Classes of
Symmetries of Riemann Surfaces . . . . . 21--32
Emilio Bujalance and
Francisco Javier Cirre and
José Manuel Gamboa and
Grzegorz Gromadzki Counting Ovals of Symmetries of Riemann
Surfaces . . . . . . . . . . . . . . . . 33--63
Emilio Bujalance and
Francisco Javier Cirre and
José Manuel Gamboa and
Grzegorz Gromadzki Symmetry Types of Some Families of
Riemann Surfaces . . . . . . . . . . . . 65--90
Emilio Bujalance and
Francisco Javier Cirre and
José Manuel Gamboa and
Grzegorz Gromadzki Symmetry Types of Riemann Surfaces with
a Large Group of Automorphisms . . . . . 91--143
Emilio Bujalance and
Francisco Javier Cirre and
José Manuel Gamboa and
Grzegorz Gromadzki Appendix . . . . . . . . . . . . . . . . 145--149
Emilio Bujalance and
Francisco Javier Cirre and
José Manuel Gamboa and
Grzegorz Gromadzki Back Matter . . . . . . . . . . . . . . 151--158
Jean-Louis Colliot-Thél\`ene and
Peter Swinnerton-Dyer and
Paul Vojta Front Matter . . . . . . . . . . . . . . i--xi
Jean-Louis Colliot-Thél\`ene Variétés presque rationnelles, leurs
points rationnels et leurs dégénérescences.
(French) [Nearly rational varieties,
their rational points, and their
degenerations] . . . . . . . . . . . . . 1--44
Sir Peter Swinnerton-Dyer Topics in Diophantine Equations . . . . 45--110
Paul Vojta Diophantine Approximation and Nevanlinna
Theory . . . . . . . . . . . . . . . . . 111--224
Paul Vojta Back Matter . . . . . . . . . . . . . . 225--232
Areski Cousin and
Stéphane Crépey and
Olivier Guéant and
David Hobson and
Monique Jeanblanc and
Jean-Michel Lasry and
Jean-Paul Laurent and
Pierre-Louis Lions and
Peter Tankov Front Matter . . . . . . . . . . . . . . i--x
Areski Cousin and
Monique Jeanblanc and
Jean-Paul Laurent Hedging CDO Tranches in a Markovian
Environment . . . . . . . . . . . . . . 1--61
Stéphane Crépey About the Pricing Equations in Finance 63--203
Olivier Guéant and
Jean-Michel Lasry and
Pierre-Louis Lions Mean Field Games and Applications . . . 205--266
David Hobson The Skorokhod Embedding Problem and
Model-Independent Bounds for Option
Prices . . . . . . . . . . . . . . . . . 267--318
Peter Tankov Pricing and Hedging in Exponential Lévy
Models: Review of Recent Results . . . . 319--359
Peter Tankov Back Matter . . . . . . . . . . . . . . 361--366
Catherine Donati-Martin and
Antoine Lejay and
Alain Rouault Front Matter . . . . . . . . . . . . . . i--xi
Catherine Donati-Martin and
Antoine Lejay and
Alain Rouault Front Matter . . . . . . . . . . . . . . 1--1
Jean Picard Representation Formulae for the
Fractional Brownian Motion . . . . . . . 3--70
Catherine Donati-Martin and
Antoine Lejay and
Alain Rouault Front Matter . . . . . . . . . . . . . . 71--71
Jean Picard Front Matter . . . . . . . . . . . . . . 71--71
Marc Arnaudon and
Koléh\`e Abdoulaye Coulibaly and
Anton Thalmaier Horizontal Diffusion in $ C^1 $ Path
Space . . . . . . . . . . . . . . . . . 73--94
Marc Arnaudon and
Koléh\`e Abdoulaye Coulibaly and
Anton Thalmaier Horizontal Diffusion in $ C^1 $ Path
Space . . . . . . . . . . . . . . . . . 73--94
Jay Rosen A Stochastic Calculus Proof of the CLT
for the $ L^2 $ Modulus of Continuity of
Local Time . . . . . . . . . . . . . . . 95--104
Ayako Matsumoto and
Kouji Yano On a Zero-One Law for the Norm Process
of Transient Random Walk . . . . . . . . 105--126
Stéphane Laurent On Standardness and $I$-cosiness . . . . 127--186
Claude Dellacherie On Isomorphic Probability Spaces . . . . 187--189
Markus Riedle Cylindrical Wiener Processes . . . . . . 191--214
Maurizio Pratelli A Remark on the $ 1 / H $-Variation of
the Fractional Brownian Motion . . . . . 215--219
Maurizio Pratelli A Remark on the $ 1 / H $-Variation of
the Fractional Brownian Motion . . . . . 215--219
Matthieu Marouby Simulation of a Local Time Fractional
Stable Motion . . . . . . . . . . . . . 221--239
Blandine Bérard Bergery and
Pierre Vallois Convergence at First and Second Order of
Some Approximations of Stochastic
Integrals . . . . . . . . . . . . . . . 241--268
Gilles Pag\`es and
Afef Sellami Convergence of Multi-Dimensional
Quantized SDE's . . . . . . . . . . . . 269--307
Ciprian A. Tudor Asymptotic Cramér's Theorem and Analysis
on Wiener Space . . . . . . . . . . . . 309--325
Joseph Lehec Moments of the Gaussian Chaos . . . . . 327--340
Nicolas Bouleau The Lent Particle Method for Marked
Point Processes . . . . . . . . . . . . 341--349
Paul Bourgade and
Ashkan Nikeghbali and
Alain Rouault Ewens Measures on Compact Groups and
Hypergeometric Kernels . . . . . . . . . 351--377
Stéphane Attal and
Ion Nechita Discrete Approximation of the Free Fock
Space . . . . . . . . . . . . . . . . . 379--394
Christoph Czichowsky and
Nicholas Westray and
Harry Zheng Convergence in the Semimartingale
Topology and Constrained Portfolios . . 395--412
Christoph Czichowsky and
Martin Schweizer Closedness in the Semimartingale
Topology for Spaces of Stochastic
Integrals with Constrained Integrands 413--436
David Baker and
Marc Yor On Martingales with Given Marginals and
the Scaling Property . . . . . . . . . . 437--439
David Baker and
Catherine Donati-Martin and
Marc Yor A Sequence of Albin Type Continuous
Martingales with Brownian Marginals and
Scaling . . . . . . . . . . . . . . . . 441--449
Francis Hirsch and
Christophe Profeta and
Bernard Roynette and
Marc Yor Constructing Self-Similar Martingales
via Two Skorokhod Embeddings . . . . . . 451--503
David Baker and
Catherine Donati-Martin and
Marc Yor Back Matter . . . . . . . . . . . . . . 505--510
Francis Hirsch and
Christophe Profeta and
Bernard Roynette and
Marc Yor Back Matter . . . . . . . . . . . . . . 505--510
Paul Frank Baum and
Guillermo Cortiñas and
Ralf Meyer and
Rubén Sánchez-García and
Marco Schlichting and
Bertrand Toën Front Matter . . . . . . . . . . . . . . i--xvi
Paul F. Baum and
Rubén J. Sánchez-García $K$-Theory for Group $ C*$-algebras . . 1--43
Ralf Meyer Universal Coefficient Theorems and
Assembly Maps in $ K K $-Theory . . . . 45--102
Guillermo Cortiñas Algebraic v. Topological $K$-Theory: a
Friendly Match . . . . . . . . . . . . . 103--165
Marco Schlichting Higher Algebraic $K$-Theory (After
Quillen, Thomason and Others) . . . . . 167--241
Bertrand Toën Lectures on DG-Categories . . . . . . . 243--302
Bertrand Toën Back Matter . . . . . . . . . . . . . . 303--308
Angiolo Farina and
Axel Klar and
Robert M. M. Mattheij and
Andro Mikeli\'c and
Norbert Siedow Front Matter . . . . . . . . . . . . . . i--xi
J. A. W. M. Groot and
Robert M. M. Mattheij and
K. Y. Laevsky Mathematical Modelling of Glass Forming
Processes . . . . . . . . . . . . . . . 1--56
Martin Frank and
Axel Klar Radiative Heat Transfer and Applications
for Glass Production Processes . . . . . 57--134
Norbert Siedow Radiative Heat Transfer and Applications
for Glass Production Processes II . . . 135--171
Angiolo Farina and
Antonio Fasano and
Andro Mikeli\'c Non-Isothermal Flow of Molten Glass:
Mathematical Challenges and Industrial
Questions . . . . . . . . . . . . . . . 173--224
Angiolo Farina and
Antonio Fasano and
Andro Mikeli\'c Back Matter . . . . . . . . . . . . . . 225--227
Ben Andrews and
Christopher Hopper Front Matter . . . . . . . . . . . . . . i--xvii
Ben Andrews and
Christopher Hopper Introduction . . . . . . . . . . . . . . 1--9
Ben Andrews and
Christopher Hopper Background Material . . . . . . . . . . 11--47
Ben Andrews and
Christopher Hopper Harmonic Mappings . . . . . . . . . . . 49--62
Ben Andrews and
Christopher Hopper Evolution of the Curvature . . . . . . . 63--82
Ben Andrews and
Christopher Hopper Short-Time Existence . . . . . . . . . . 83--95
Ben Andrews and
Christopher Hopper Uhlenbeck's Trick . . . . . . . . . . . 97--113
Ben Andrews and
Christopher Hopper The Weak Maximum Principle . . . . . . . 115--135
Ben Andrews and
Christopher Hopper Regularity and Long-Time Existence . . . 137--143
Ben Andrews and
Christopher Hopper The Compactness Theorem for Riemannian
Manifolds . . . . . . . . . . . . . . . 145--159
Ben Andrews and
Christopher Hopper The $ \mathcal {F}$-Functional and
Gradient Flows . . . . . . . . . . . . . 161--171
Ben Andrews and
Christopher Hopper The $ \mathcal {W}$-Functional and Local
Noncollapsing . . . . . . . . . . . . . 173--191
Ben Andrews and
Christopher Hopper An Algebraic Identity for Curvature
Operators . . . . . . . . . . . . . . . 193--221
Ben Andrews and
Christopher Hopper The Cone Construction of Böhm and Wilking 223--233
Ben Andrews and
Christopher Hopper Preserving Positive Isotropic Curvature 235--258
Ben Andrews and
Christopher Hopper The Final Argument . . . . . . . . . . . 259--269
Ben Andrews and
Christopher Hopper Back Matter . . . . . . . . . . . . . . 287--296
Alison Etheridge Front Matter . . . . . . . . . . . . . . i--viii
Alison Etheridge Introduction . . . . . . . . . . . . . . 1--3
Alison Etheridge Mutation and Random Genetic Drift . . . 5--32
Alison Etheridge One Dimensional Diffusions . . . . . . . 33--51
Alison Etheridge More than Two Types . . . . . . . . . . 53--64
Alison Etheridge Selection . . . . . . . . . . . . . . . 65--87
Alison Etheridge Spatial Structure . . . . . . . . . . . 89--107
Alison Etheridge Back Matter . . . . . . . . . . . . . . 109--119
Alexander I. Bobenko Introduction to Compact Riemann Surfaces 3--64
Alexander I. Bobenko Front Matter . . . . . . . . . . . . . . 65--65
Bernard Deconinck and
Matthew S. Patterson Computing with Plane Algebraic Curves
and Riemann Surfaces: The Algorithms of
the Maple Package ``Algcurves'' . . . . 67--123
Jörg Frauendiener and
Christian Klein Algebraic Curves and Riemann Surfaces in
Matlab . . . . . . . . . . . . . . . . . 125--162
Jörg Frauendiener and
Christian Klein Front Matter . . . . . . . . . . . . . . 163--163
Markus Schmies Computing Poincaré Theta Series for
Schottky Groups . . . . . . . . . . . . 165--182
Darren Crowdy and
Jonathan S. Marshall Uniformizing Real Hyperelliptic
$M$-Curves Using the Schottky--Klein
Prime Function . . . . . . . . . . . . . 183--193
Rubén A. Hidalgo and
Mika Seppälä Numerical Schottky Uniformizations:
Myrberg's Opening Process . . . . . . . 195--209
Rubén A. Hidalgo and
Mika Seppälä Front Matter . . . . . . . . . . . . . . 211--211
Alexander I. Bobenko and
Christian Mercat and
Markus Schmies Period Matrices of Polyhedral Surfaces 213--226
Alexey Kokotov On the Spectral Theory of the Laplacian
on Compact Polyhedral Surfaces of
Arbitrary Genus . . . . . . . . . . . . 227--253
Alexey Kokotov Back Matter . . . . . . . . . . . . . . 255--257
Mich\`ele Audin Front Matter . . . . . . . . . . . . . . i--viii
Mich\`ele Audin Introduction . . . . . . . . . . . . . . 1--12
Mich\`ele Audin The Great Prize, the framework . . . . . 13--57
Mich\`ele Audin The Great Prize of Mathematical Sciences 59--89
Mich\`ele Audin The memoirs . . . . . . . . . . . . . . 91--114
Mich\`ele Audin After Fatou and Julia . . . . . . . . . 115--133
Mich\`ele Audin On Pierre Fatou . . . . . . . . . . . . 135--192
Mich\`ele Audin History's scars --- a scientific
controversy \ldots in 1965 . . . . . . . 193--235
Mich\`ele Audin Back Matter . . . . . . . . . . . . . . 237--332
Franco Flandoli Front Matter . . . . . . . . . . . . . . i--ix
Franco Flandoli Introduction to Uniqueness and Blow-Up 1--16
Franco Flandoli Regularization by Additive Noise . . . . 17--69
Franco Flandoli Dyadic Models . . . . . . . . . . . . . 71--99
Franco Flandoli Transport Equation . . . . . . . . . . . 101--131
Franco Flandoli Other Models: Uniqueness and
Singularities . . . . . . . . . . . . . 133--159
Franco Flandoli Back Matter . . . . . . . . . . . . . . 161--176
Jan Lang and
David Edmunds Front Matter . . . . . . . . . . . . . . i--xi
Prof. Jan Lang and
Prof. David Edmunds Basic Material . . . . . . . . . . . . . 1--31
Prof. Jan Lang and
Prof. David Edmunds Trigonometric Generalisations . . . . . 33--48
Prof. Jan Lang and
Prof. David Edmunds The Laplacian and Some Natural Variants 49--63
Prof. Jan Lang and
Prof. David Edmunds Hardy Operators . . . . . . . . . . . . 65--71
Prof. Jan Lang and
Prof. David Edmunds $s$-Numbers and Generalised
Trigonometric Functions . . . . . . . . 73--104
Prof. Jan Lang and
Prof. David Edmunds Estimates of $s$-Numbers of Weighted
Hardy Operators . . . . . . . . . . . . 105--128
Prof. Jan Lang and
Prof. David Edmunds More Refined Estimates . . . . . . . . . 129--151
Prof. Jan Lang and
Prof. David Edmunds A Non-Linear Integral System . . . . . . 153--182
Prof. Jan Lang and
Prof. David Edmunds Hardy Operators on Variable Exponent
Spaces . . . . . . . . . . . . . . . . . 183--209
Prof. Jan Lang and
Prof. David Edmunds Back Matter . . . . . . . . . . . . . . 211--220
Lars Diening and
Petteri Harjulehto and
Peter Hästö and
Michael Ruzicka Front Matter . . . . . . . . . . . . . . i--ix
Lars Diening and
Petteri Harjulehto and
Peter Hästö and
Michael R\ru\vzi\vcka Introduction . . . . . . . . . . . . . . 1--17
Lars Diening and
Petteri Harjulehto and
Peter Hästö and
Michael R\ru\vzi\vcka Front Matter . . . . . . . . . . . . . . 19--19
Lars Diening and
Petteri Harjulehto and
Peter Hästö and
Michael R\ru\vzi\vcka A Framework for Function Spaces . . . . 21--68
Lars Diening and
Petteri Harjulehto and
Peter Hästö and
Michael R\ru\vzi\vcka Variable Exponent Lebesgue Spaces . . . 69--97
Lars Diening and
Petteri Harjulehto and
Peter Hästö and
Michael R\ru\vzi\vcka The Maximal Operator . . . . . . . . . . 99--141
Lars Diening and
Petteri Harjulehto and
Peter Hästö and
Michael R\ru\vzi\vcka The Generalized Muckenhoupt Condition 143--197
Lars Diening and
Petteri Harjulehto and
Peter Hästö and
Michael R\ru\vzi\vcka Classical Operators . . . . . . . . . . 199--212
Lars Diening and
Petteri Harjulehto and
Peter Hästö and
Michael R\ru\vzi\vcka Transfer Techniques . . . . . . . . . . 213--244
Lars Diening and
Petteri Harjulehto and
Peter Hästö and
Michael R\ru\vzi\vcka Front Matter . . . . . . . . . . . . . . 245--245
Lars Diening and
Petteri Harjulehto and
Peter Hästö and
Michael R\ru\vzi\vcka Introduction to Sobolev Spaces . . . . . 247--288
Lars Diening and
Petteri Harjulehto and
Peter Hästö and
Michael R\ru\vzi\vcka Density of Regular Functions . . . . . . 289--314
Lars Diening and
Petteri Harjulehto and
Peter Hästö and
Michael R\ru\vzi\vcka Capacities . . . . . . . . . . . . . . . 315--338
Lars Diening and
Petteri Harjulehto and
Peter Hästö and
Michael R\ru\vzi\vcka Fine Properties of Sobolev Functions . . 339--366
Lars Diening and
Petteri Harjulehto and
Peter Hästö and
Michael R\ru\vzi\vcka Other Spaces of Differentiable Functions 367--398
Lars Diening and
Petteri Harjulehto and
Peter Hästö and
Michael R\ru\vzi\vcka Front Matter . . . . . . . . . . . . . . 399--399
Lars Diening and
Petteri Harjulehto and
Peter Hästö and
Michael R\ru\vzi\vcka Dirichlet Energy Integral and Laplace
Equation . . . . . . . . . . . . . . . . 401--436
Lars Diening and
Petteri Harjulehto and
Peter Hästö and
Michael R\ru\vzi\vcka PDEs and Fluid Dynamics . . . . . . . . 437--481
Lars Diening and
Petteri Harjulehto and
Peter Hästö and
Michael R\ru\vzi\vcka Back Matter . . . . . . . . . . . . . . 483--509
Bei Hu Front Matter . . . . . . . . . . . . . . i--x
Bei Hu Introduction . . . . . . . . . . . . . . 1--5
Bei Hu A Review of Elliptic Theories . . . . . 7--18
Bei Hu A Review of Parabolic Theories . . . . . 19--27
Bei Hu A Review of Fixed Point Theorems . . . . 29--31
Bei Hu Finite Time Blow-Up for Evolution
Equations . . . . . . . . . . . . . . . 33--46
Bei Hu Steady-State Solutions . . . . . . . . . 47--63
Bei Hu Blow-Up Rate . . . . . . . . . . . . . . 65--83
Bei Hu Asymptotically Self-Similar Blow-Up
Solutions . . . . . . . . . . . . . . . 85--95
Bei Hu One Space Variable Case . . . . . . . . 97--118
Bei Hu Back Matter . . . . . . . . . . . . . . 127--127
Robert J. Adler and
Jonathan E. Taylor Front Matter . . . . . . . . . . . . . . i--viii
Robert J. Adler and
Jonathan E. Taylor Introduction . . . . . . . . . . . . . . 1--12
Robert J. Adler and
Jonathan E. Taylor Gaussian Processes . . . . . . . . . . . 13--35
Robert J. Adler and
Jonathan E. Taylor Some Geometry and Some Topology . . . . 37--58
Robert J. Adler and
Jonathan E. Taylor The Gaussian Kinematic Formula . . . . . 59--85
Robert J. Adler and
Jonathan E. Taylor On Applications: Topological Inference 87--106
Robert J. Adler and
Jonathan E. Taylor Algebraic Topology of Excursion Sets: a
New Challenge . . . . . . . . . . . . . 107--114
Robert J. Adler and
Jonathan E. Taylor Back Matter . . . . . . . . . . . . . . 115--122
Alexander Isaev Front Matter . . . . . . . . . . . . . . i--xii
Prof. Alexander Isaev Invariants of CR-Hypersurfaces . . . . . 1--33
Prof. Alexander Isaev Rigid Hypersurfaces . . . . . . . . . . 35--40
Prof. Alexander Isaev Tube Hypersurfaces . . . . . . . . . . . 41--53
Prof. Alexander Isaev General Methods for Solving Defining
Systems . . . . . . . . . . . . . . . . 55--82
Prof. Alexander Isaev Strongly Pseudoconvex Spherical Tube
Hypersurfaces . . . . . . . . . . . . . 83--96
Prof. Alexander Isaev $ (n - 1, 1)$-Spherical Tube
Hypersurfaces . . . . . . . . . . . . . 97--121
Prof. Alexander Isaev $ (n - 2, 2)$-Spherical Tube
Hypersurfaces . . . . . . . . . . . . . 123--184
Prof. Alexander Isaev Number of Affine Equivalence Classes of
$ (k, n - k)$-Spherical Tube
Hypersurfaces for $ k \leq (n - 2)$ . . 185--194
Prof. Alexander Isaev Further Results . . . . . . . . . . . . 195--212
Prof. Alexander Isaev Back Matter . . . . . . . . . . . . . . 213--220
Andreas Defant Front Matter . . . . . . . . . . . . . . i--viii
Andreas Defant Introduction . . . . . . . . . . . . . . 1--13
Andreas Defant Commutative Theory . . . . . . . . . . . 15--78
Andreas Defant Noncommutative Theory . . . . . . . . . 79--158
Andreas Defant Back Matter . . . . . . . . . . . . . . 159--173
Ingemar Nåsell Front Matter . . . . . . . . . . . . . . i--xi
Ingemar Nåsell Introduction . . . . . . . . . . . . . . 1--7
Ingemar Nåsell Model Formulation . . . . . . . . . . . 9--16
Ingemar Nåsell Stochastic Process Background . . . . . 17--40
Ingemar Nåsell The SIS Model: First Approximations of
the Quasi-stationary Distribution . . . 41--46
Ingemar Nåsell Some Approximations Involving the Normal
Distribution . . . . . . . . . . . . . . 47--72
Ingemar Nåsell Preparations for the Study of the
Stationary Distribution $ p^{(1)} $ of
the SIS Model . . . . . . . . . . . . . 73--91
Ingemar Nåsell Approximation of the Stationary
Distribution $ p^{(1)} $ of the SIS
Model . . . . . . . . . . . . . . . . . 93--99
Ingemar Nåsell Preparations for the Study of the
Stationary Distribution $ p^{(0)} $ of
the SIS Model . . . . . . . . . . . . . 101--113
Ingemar Nåsell Approximation of the Stationary
Distribution $ p^{(0)} $ of the SIS
Model . . . . . . . . . . . . . . . . . 115--118
Ingemar Nåsell Approximation of Some Images Under $
\Psi $ for the SIS Model . . . . . . . . 119--139
Ingemar Nåsell Approximation of the Quasi-stationary
Distribution $q$ of the SIS Model . . . 141--147
Ingemar Nåsell Approximation of the Time to Extinction
for the SIS Model . . . . . . . . . . . 149--154
Ingemar Nåsell Uniform Approximations for the SIS Model 155--170
Ingemar Nåsell Thresholds for the SIS Model . . . . . . 171--175
Ingemar Nåsell Concluding Comments . . . . . . . . . . 177--182
Ingemar Nåsell Back Matter . . . . . . . . . . . . . . 183--199
Kre\vsimir Veseli\'c Front Matter . . . . . . . . . . . . . . i--xv
Kre\vsimir Veseli\'c The Model . . . . . . . . . . . . . . . 1--13
Kre\vsimir Veseli\'c Simultaneous Diagonalisation (Modal
Damping) . . . . . . . . . . . . . . . . 15--22
Kre\vsimir Veseli\'c Phase Space . . . . . . . . . . . . . . 23--28
Kre\vsimir Veseli\'c The Singular Mass Case . . . . . . . . . 29--37
Kre\vsimir Veseli\'c `Indefinite Metric' . . . . . . . . . . 39--48
Kre\vsimir Veseli\'c Matrices and Indefinite Scalar Products 49--54
Kre\vsimir Veseli\'c Oblique Projections . . . . . . . . . . 55--60
Kre\vsimir Veseli\'c $J$-Orthogonal Projections . . . . . . . 61--65
Kre\vsimir Veseli\'c Spectral Properties and Reduction of
$J$-Hermitian Matrices . . . . . . . . . 67--71
Kre\vsimir Veseli\'c Definite Spectra . . . . . . . . . . . . 73--88
Kre\vsimir Veseli\'c General Hermitian Matrix Pairs . . . . . 89--92
Kre\vsimir Veseli\'c Spectral Decomposition of a General
$J$-Hermitian Matrix . . . . . . . . . . 93--111
Kre\vsimir Veseli\'c The Matrix Exponential . . . . . . . . . 113--120
Kre\vsimir Veseli\'c The Quadratic Eigenvalue Problem . . . . 121--127
Kre\vsimir Veseli\'c Simple Eigenvalue Inclusions . . . . . . 129--134
Kre\vsimir Veseli\'c Spectral Shift . . . . . . . . . . . . . 135--138
Kre\vsimir Veseli\'c Resonances and Resolvents . . . . . . . 139--141
Kre\vsimir Veseli\'c Well-Posedness . . . . . . . . . . . . . 143--143
Kre\vsimir Veseli\'c Modal Approximation . . . . . . . . . . 145--157
Kre\vsimir Veseli\'c Modal Approximation and Overdampedness 159--166
Mariarosaria Padula Front Matter . . . . . . . . . . . . . . i--xiv
Mariarosaria Padula Topics in Fluid Mechanics . . . . . . . 1--52
Mariarosaria Padula Topics in Stability . . . . . . . . . . 53--86
Mariarosaria Padula Barotropic Fluids with Rigid Boundary 87--132
Mariarosaria Padula Isothermal Fluids with Free Boundaries 133--195
Mariarosaria Padula Polytropic Fluids with Rigid Boundary 197--221
Mariarosaria Padula Back Matter . . . . . . . . . . . . . . 223--235
Giambattista Giacomin Front Matter . . . . . . . . . . . . . . i--xi
Giambattista Giacomin Introduction . . . . . . . . . . . . . . 1--4
Giambattista Giacomin Homogeneous Pinning Systems: a Class of
Exactly Solved Models . . . . . . . . . 5--27
Giambattista Giacomin Introduction to Disordered Pinning
Models . . . . . . . . . . . . . . . . . 29--40
Giambattista Giacomin Irrelevant Disorder Estimates . . . . . 41--50
Giambattista Giacomin Relevant Disorder Estimates: The
Smoothing Phenomenon . . . . . . . . . . 51--61
Giambattista Giacomin Critical Point Shift: The Fractional
Moment Method . . . . . . . . . . . . . 63--90
Giambattista Giacomin The Coarse Graining Procedure . . . . . 91--99
Giambattista Giacomin Path Properties . . . . . . . . . . . . 101--112
Giambattista Giacomin Back Matter . . . . . . . . . . . . . . 113--130
Yves Le Jan Front Matter . . . . . . . . . . . . . . i--viii
Yves Le Jan Symmetric Markov Processes on Finite
Spaces . . . . . . . . . . . . . . . . . 1--12
Yves Le Jan Loop Measures . . . . . . . . . . . . . 13--28
Yves Le Jan Geodesic Loops . . . . . . . . . . . . . 29--34
Yves Le Jan Poisson Process of Loops . . . . . . . . 35--45
Yves Le Jan The Gaussian Free Field . . . . . . . . 47--56
Yves Le Jan Energy Variation and Representations . . 57--64
Yves Le Jan Decompositions . . . . . . . . . . . . . 65--73
Yves Le Jan Loop Erasure and Spanning Trees . . . . 75--89
Yves Le Jan Reflection Positivity . . . . . . . . . 91--97
Yves Le Jan The Case of General Symmetric Markov
Processes . . . . . . . . . . . . . . . 99--113
Yves Le Jan Back Matter . . . . . . . . . . . . . . 115--124
V. S. Varadarajan Introduction . . . . . . . . . . . . . . 1--15
L. Andrianopoli and
R. D'Auria and
S. Ferrara and
M. Trigiante Black Holes and First Order Flows in
Supergravity . . . . . . . . . . . . . . 17--43
Claudio Carmeli and
Gianni Cassinelli Representations of Super Lie Groups:
Some Remarks . . . . . . . . . . . . . . 45--67
D. Cervantes and
R. Fioresi and
M. A. Lledó On Chiral Quantum Superspaces . . . . . 69--99
R. Fioresi and
F. Gavarini On the Construction of Chevalley
Supergroups . . . . . . . . . . . . . . 101--123
Hans Plesner Jakobsen Indecomposable Finite-Dimensional
Representations of a Class of Lie
Algebras and Lie Superalgebras . . . . . 125--138
Stephen Kwok On the Geometry of Super Riemann
Surfaces . . . . . . . . . . . . . . . . 139--154
Alessio Marrani Charge Orbits and Moduli Spaces of Black
Hole Attractors . . . . . . . . . . . . 155--174
M. V. Movshev and
A. Schwarz Maximal Supersymmetry . . . . . . . . . 175--193
Karl-Hermann Neeb and
Hadi Salmasian Lie Supergroups, Unitary
Representations, and Invariant Cones . . 195--239
Jeffrey M. Rabin Geometry of Dual Pairs of Complex
Supercurves . . . . . . . . . . . . . . 241--252
Vera Serganova On the Superdimension of an Irreducible
Representation of a Basic Classical Lie
Superalgebra . . . . . . . . . . . . . . 253--273
Vera Serganova Back Matter . . . . . . . . . . . . . . 275--276
Stefano Bianchini and
Eric A. Carlen and
Alexander Mielke and
Cédric Villani Front Matter . . . . . . . . . . . . . . i--xiii
Stefano Bianchini and
Matteo Gloyer Transport Rays and Applications to
Hamilton--Jacobi Equations . . . . . . . 1--15
Eric A. Carlen Functional Inequalities and Dynamics . . 17--85
Alexander Mielke Differential, Energetic, and Metric
Formulations for Rate-Independent
Processes . . . . . . . . . . . . . . . 87--170
Alessio Figalli and
Cédric Villani Optimal Transport and Curvature . . . . 171--217
Alessio Figalli and
Cédric Villani Back Matter . . . . . . . . . . . . . . 219--224
Pierre Gillibert and
Friedrich Wehrung Front Matter . . . . . . . . . . . . . . i--x
Pierre Gillibert and
Friedrich Wehrung Background . . . . . . . . . . . . . . . 1--34
Pierre Gillibert and
Friedrich Wehrung Boolean Algebras That Are Scaled with
Respect to a Poset . . . . . . . . . . . 35--50
Pierre Gillibert and
Friedrich Wehrung The Condensate Lifting Lemma (CLL) . . . 51--79
Pierre Gillibert and
Friedrich Wehrung Getting Larders from Congruence Lattices
of First-Order Structures . . . . . . . 81--116
Pierre Gillibert and
Friedrich Wehrung Congruence-Permutable,
Congruence-Preserving Extensions of
Lattices . . . . . . . . . . . . . . . . 117--129
Pierre Gillibert and
Friedrich Wehrung Larders from von Neumann Regular Rings 131--138
Pierre Gillibert and
Friedrich Wehrung Discussion . . . . . . . . . . . . . . . 139--141
Pierre Gillibert and
Friedrich Wehrung Back Matter . . . . . . . . . . . . . . 143--158
Yukio Matsumoto and
José María Montesinos-Amilibia Front Matter . . . . . . . . . . . . . . i--xvi
Yukio Matsumoto and
José María Montesinos-Amilibia Front Matter . . . . . . . . . . . . . . 1--1
Yukio Matsumoto and
José María Montesinos-Amilibia Pseudo-periodic Maps . . . . . . . . . . 3--15
Yukio Matsumoto and
José María Montesinos-Amilibia Standard Form . . . . . . . . . . . . . 17--52
Yukio Matsumoto and
José María Montesinos-Amilibia Generalized Quotient . . . . . . . . . . 53--92
Yukio Matsumoto and
José María Montesinos-Amilibia Uniqueness of Minimal Quotient . . . . . 93--129
Yukio Matsumoto and
José María Montesinos-Amilibia A Theorem in Elementary Number Theory 131--144
Yukio Matsumoto and
José María Montesinos-Amilibia Conjugacy Invariants . . . . . . . . . . 145--169
Yukio Matsumoto and
José María Montesinos-Amilibia Front Matter . . . . . . . . . . . . . . 171--171
Yukio Matsumoto and
José María Montesinos-Amilibia Topological Monodromy . . . . . . . . . 173--188
Yukio Matsumoto and
José María Montesinos-Amilibia Blowing Down Is a Topological Operation 189--198
Yukio Matsumoto and
José María Montesinos-Amilibia Singular Open-Book . . . . . . . . . . . 199--220
Yukio Matsumoto and
José María Montesinos-Amilibia Back Matter . . . . . . . . . . . . . . 221--238
Jin Akiyama and
Mikio Kano Front Matter . . . . . . . . . . . . . . i--xii
Jin Akiyama and
Mikio Kano Basic Terminology . . . . . . . . . . . 1--14
Jin Akiyama and
Mikio Kano Matchings and $1$-Factors . . . . . . . 15--67
Jin Akiyama and
Mikio Kano Regular Factors and $f$-Factors . . . . 69--141
Jin Akiyama and
Mikio Kano $ (g, f)$-Factors and $ [a, b]$-Factors 143--191
Jin Akiyama and
Mikio Kano $ [a, b]$-Factorizations . . . . . . . . 193--218
Jin Akiyama and
Mikio Kano Parity Factors . . . . . . . . . . . . . 219--251
Jin Akiyama and
Mikio Kano Component Factors . . . . . . . . . . . 253--293
Jin Akiyama and
Mikio Kano Spanning Trees . . . . . . . . . . . . . 295--336
Jin Akiyama and
Mikio Kano Back Matter . . . . . . . . . . . . . . 337--356
Jonathan A. Barmak Front Matter . . . . . . . . . . . . . . i--xvii
Jonathan A. Barmak Preliminaries . . . . . . . . . . . . . 1--18
Jonathan A. Barmak Basic Topological Properties of Finite
Spaces . . . . . . . . . . . . . . . . . 19--35
Jonathan A. Barmak Minimal Finite Models . . . . . . . . . 37--47
Jonathan A. Barmak Simple Homotopy Types and Finite Spaces 49--72
Jonathan A. Barmak Strong Homotopy Types . . . . . . . . . 73--84
Jonathan A. Barmak Methods of Reduction . . . . . . . . . . 85--91
Jonathan A. Barmak $h$-Regular Complexes and Quotients . . 93--104
Jonathan A. Barmak Group Actions and a Conjecture of
Quillen . . . . . . . . . . . . . . . . 105--120
Jonathan A. Barmak Reduced Lattices . . . . . . . . . . . . 121--127
Jonathan A. Barmak Fixed Points and the Lefschetz Number 129--135
Jonathan A. Barmak The Andrews--Curtis Conjecture . . . . . 137--150
Jonathan A. Barmak Back Matter . . . . . . . . . . . . . . 151--170
Vladimir Koltchinskii Front Matter . . . . . . . . . . . . . . i--ix
Prof. Vladimir Koltchinskii Introduction . . . . . . . . . . . . . . 1--16
Prof. Vladimir Koltchinskii Empirical and Rademacher Processes . . . 17--32
Prof. Vladimir Koltchinskii Bounding Expected Sup-Norms of Empirical
and Rademacher Processes . . . . . . . . 33--57
Prof. Vladimir Koltchinskii Excess Risk Bounds . . . . . . . . . . . 59--79
Prof. Vladimir Koltchinskii Examples of Excess Risk Bounds in
Prediction Problems . . . . . . . . . . 81--97
Prof. Vladimir Koltchinskii Penalized Empirical Risk Minimization
and Model Selection Problems . . . . . . 99--119
Prof. Vladimir Koltchinskii Linear Programming in Sparse Recovery 121--149
Prof. Vladimir Koltchinskii Convex Penalization in Sparse Recovery 151--189
Prof. Vladimir Koltchinskii Low Rank Matrix Recovery: Nuclear Norm
Penalization . . . . . . . . . . . . . . 191--234
Prof. Vladimir Koltchinskii Back Matter . . . . . . . . . . . . . . 235--254
Volker Mayer and
Mariusz Urbanski and
Bartlomiej Skorulski Front Matter . . . . . . . . . . . . . . i--x
Volker Mayer and
Bartlomiej Skorulski and
Mariusz Urbanski Introduction . . . . . . . . . . . . . . 1--4
Volker Mayer and
Bartlomiej Skorulski and
Mariusz Urbanski Expanding Random Maps . . . . . . . . . 5--15
Volker Mayer and
Bartlomiej Skorulski and
Mariusz Urbanski The RPF-Theorem . . . . . . . . . . . . 17--38
Volker Mayer and
Bartlomiej Skorulski and
Mariusz Urbanski Measurability, Pressure and Gibbs
Condition . . . . . . . . . . . . . . . 39--45
Volker Mayer and
Bartlomiej Skorulski and
Mariusz Urbanski Fractal Structure of Conformal Expanding
Random Repellers . . . . . . . . . . . . 47--56
Volker Mayer and
Bartlomiej Skorulski and
Mariusz Urbanski Multifractal Analysis . . . . . . . . . 57--68
Volker Mayer and
Bartlomiej Skorulski and
Mariusz Urbanski Expanding in the Mean . . . . . . . . . 69--74
Volker Mayer and
Bartlomiej Skorulski and
Mariusz Urbanski Classical Expanding Random Systems . . . 75--91
Volker Mayer and
Bartlomiej Skorulski and
Mariusz Urbanski Real Analyticity of Pressure . . . . . . 93--108
Volker Mayer and
Bartlomiej Skorulski and
Mariusz Urbanski Back Matter . . . . . . . . . . . . . . 109--112
Andrea Bonfiglioli and
Roberta Fulci Front Matter . . . . . . . . . . . . . . i--xxii
Andrea Bonfiglioli and
Roberta Fulci Historical Overview . . . . . . . . . . 1--45
Andrea Bonfiglioli and
Roberta Fulci Front Matter . . . . . . . . . . . . . . 47--47
Andrea Bonfiglioli and
Roberta Fulci Background Algebra . . . . . . . . . . . 49--114
Andrea Bonfiglioli and
Roberta Fulci The Main Proof of the CBHD Theorem . . . 115--172
Andrea Bonfiglioli and
Roberta Fulci Some ``Short'' Proofs of the CBHD
Theorem . . . . . . . . . . . . . . . . 173--264
Andrea Bonfiglioli and
Roberta Fulci Convergence of the CBHD Series and
Associativity of the CBHD Operation . . 265--369
Andrea Bonfiglioli and
Roberta Fulci Relationship Between the CBHD Theorem,
the PBW Theorem and the Free Lie
Algebras . . . . . . . . . . . . . . . . 371--389
Andrea Bonfiglioli and
Roberta Fulci Front Matter . . . . . . . . . . . . . . 391--391
Andrea Bonfiglioli and
Roberta Fulci Proofs of the Algebraic Prerequisites 393--457
Andrea Bonfiglioli and
Roberta Fulci Construction of Free Lie Algebras . . . 459--477
Andrea Bonfiglioli and
Roberta Fulci Formal Power Series in One Indeterminate 479--499
Andrea Bonfiglioli and
Roberta Fulci Symmetric Algebra . . . . . . . . . . . 501--521
Andrea Bonfiglioli and
Roberta Fulci Back Matter . . . . . . . . . . . . . . 523--539
Habib Ammari Front Matter . . . . . . . . . . . . . . i--ix
John C. Schotland Direct Reconstruction Methods in Optical
Tomography . . . . . . . . . . . . . . . 1--29
Habib Ammari and
Josselin Garnier and
Vincent Jugnon and
Hyeonbae Kang Direct Reconstruction Methods in
Ultrasound Imaging of Small Anomalies 31--55
Habib Ammari and
Elie Bretin and
Vincent Jugnon and
Abdul Wahab Photoacoustic Imaging for Attenuating
Acoustic Media . . . . . . . . . . . . . 57--84
Richard Kowar and
Otmar Scherzer Attenuation Models in Photoacoustics . . 85--130
Hao Gao and
Stanley Osher and
Hongkai Zhao Quantitative Photoacoustic Tomography 131--158
Hao Gao and
Stanley Osher and
Hongkai Zhao Back Matter . . . . . . . . . . . . . . 159--160
András Némethi and
Ágnes Szilárd Front Matter . . . . . . . . . . . . . . i--xii
András Némethi and
Ágnes Szilárd Introduction . . . . . . . . . . . . . . 1--7
András Némethi and
Ágnes Szilárd Front Matter . . . . . . . . . . . . . . 9--9
András Némethi and
Ágnes Szilárd The Topology of a Hypersurface Germ $f$
in Three Variables . . . . . . . . . . . 11--15
András Némethi and
Ágnes Szilárd The Topology of a Pair $ (f, g) $ . . . 17--23
András Némethi and
Ágnes Szilárd Plumbing Graphs and Oriented Plumbed
$3$-Manifolds . . . . . . . . . . . . . 25--43
András Némethi and
Ágnes Szilárd Cyclic Coverings of Graphs . . . . . . . 45--54
András Némethi and
Ágnes Szilárd The Graph $ \mathit \Gamma_{\mathcal
{C}} $ of a pair $ (f, g) $: The
Definition . . . . . . . . . . . . . . . 55--61
András Némethi and
Ágnes Szilárd The Graph $ \mathit \Gamma_{\mathcal
{C}} $: Properties . . . . . . . . . . . 63--77
András Némethi and
Ágnes Szilárd Examples: Homogeneous Singularities . . 79--82
András Némethi and
Ágnes Szilárd Examples: Families Associated with Plane
Curve Singularities . . . . . . . . . . 83--97
András Némethi and
Ágnes Szilárd Front Matter . . . . . . . . . . . . . . 99--99
András Némethi and
Ágnes Szilárd The Main Algorithm . . . . . . . . . . . 101--115
András Némethi and
Ágnes Szilárd Proof of the Main Algorithm . . . . . . 117--130
András Némethi and
Ágnes Szilárd The Collapsing Main Algorithm . . . . . 131--138
András Némethi and
Ágnes Szilárd Vertical/Horizontal Monodromies . . . . 139--151
András Némethi and
Ágnes Szilárd The Algebraic Monodromy of $ H_1
(\partial F) $: Starting Point . . . . . 153--156
András Némethi and
Ágnes Szilárd The Ranks of $ H_1 (\partial F) $ and $
H_1 (\partial F \setminus V g) $ via
plumbing . . . . . . . . . . . . . . . . 157--160
András Némethi and
Ágnes Szilárd The Characteristic Polynomial of $
\partial F $ via $ P^\sharp $ and $
P^\sharp_j $ . . . . . . . . . . . . . . 161--166
András Némethi and
Ágnes Szilárd The Proof of the Characteristic
Polynomial Formulae . . . . . . . . . . 167--172
András Némethi and
Ágnes Szilárd The Mixed Hodge Structure of $ H_1
(\partial F) $ . . . . . . . . . . . . . 173--176
András Némethi and
Ágnes Szilárd Front Matter . . . . . . . . . . . . . . 177--177
András Némethi and
Ágnes Szilárd Homogeneous Singularities . . . . . . . 179--199
András Némethi and
Ágnes Szilárd Cylinders of Plane Curve Singularities:
$ f = f^{\prime }(x, y) $ . . . . . . . 201--204
Vincent Guedj Introduction . . . . . . . . . . . . . . 1--10
Vincent Guedj and
Ahmed Zeriahi Dirichlet Problem in Domains of $
\mathbb {C}^n $ . . . . . . . . . . . . 13--32
Romain Dujardin and
Vincent Guedj Geometric Properties of Maximal psh
Functions . . . . . . . . . . . . . . . 33--52
Romain Dujardin and
Vincent Guedj Front Matter . . . . . . . . . . . . . . 53--53
François Delarue Probabilistic Approach to Regularity . . 55--198
François Delarue Front Matter . . . . . . . . . . . . . . 199--199
Zbigniew B\locki The Calabi--Yau Theorem . . . . . . . . 201--227
Zbigniew B\locki Front Matter . . . . . . . . . . . . . . 229--229
Boris Kolev The Riemannian Space of Kähler Metrics 231--255
Sébastien Boucksom Monge--Amp\`ere Equations on Complex
Manifolds with Boundary . . . . . . . . 257--282
Robert Berman and
Julien Keller Bergman Geodesics . . . . . . . . . . . 283--302
Robert Berman and
Julien Keller Back Matter . . . . . . . . . . . . . . 303--310
Olaf Post Front Matter . . . . . . . . . . . . . . i--xv
Olaf Post Introduction . . . . . . . . . . . . . . 1--56
Olaf Post Graphs and Associated Laplacians . . . . 57--96
Olaf Post The Functional Analytic Part: Scales of
Hilbert Spaces and Boundary Triples . . 97--185
Olaf Post The Functional Analytic Part: Two
Operators in Different Hilbert Spaces 187--257
Olaf Post Manifolds, Tubular Neighbourhoods and
Their Perturbations . . . . . . . . . . 259--289
Olaf Post Plumber's Shop: Estimates for Star
Graphs and Related Spaces . . . . . . . 291--366
Olaf Post Global Convergence Results . . . . . . . 367--388
Olaf Post Back Matter . . . . . . . . . . . . . . 389--431
Silvia Bertoluzza and
Ricardo H. Nochetto and
Alfio Quarteroni and
Kunibert G. Siebert and
Andreas Veeser Front Matter . . . . . . . . . . . . . . i--xii
Silvia Bertoluzza Adaptive Wavelet Methods . . . . . . . . 1--56
Marco Discacciati and
Paola Gervasio and
Alfio Quarteroni Heterogeneous Mathematical Models in
Fluid Dynamics and Associated Solution
Algorithms . . . . . . . . . . . . . . . 57--123
Ricardo H. Nochetto and
Andreas Veeser Primer of Adaptive Finite Element
Methods . . . . . . . . . . . . . . . . 125--225
Kunibert G. Siebert Mathematically Founded Design of
Adaptive Finite Element Software . . . . 227--309
Kunibert G. Siebert Back Matter . . . . . . . . . . . . . . 311--314
Benjamin Howard and
Tonghai Yang Front Matter . . . . . . . . . . . . . . i--viii
Benjamin Howard and
Tonghai Yang Introduction . . . . . . . . . . . . . . 1--9
Benjamin Howard and
Tonghai Yang Linear Algebra . . . . . . . . . . . . . 11--24
Benjamin Howard and
Tonghai Yang Moduli Spaces of Abelian Surfaces . . . 25--41
Benjamin Howard and
Tonghai Yang Eisenstein Series . . . . . . . . . . . 43--63
Benjamin Howard and
Tonghai Yang The Main Results . . . . . . . . . . . . 65--84
Benjamin Howard and
Tonghai Yang Local Calculations . . . . . . . . . . . 85--133
Benjamin Howard and
Tonghai Yang Back Matter . . . . . . . . . . . . . . 135--140
William J. Layton and
Leo Rebholz Front Matter . . . . . . . . . . . . . . i--viii
William J. Layton and
Leo G. Rebholz Introduction . . . . . . . . . . . . . . 1--33
William J. Layton and
Leo G. Rebholz Large Eddy Simulation . . . . . . . . . 35--60
William J. Layton and
Leo G. Rebholz Approximate Deconvolution Operators and
Models . . . . . . . . . . . . . . . . . 61--88
William J. Layton and
Leo G. Rebholz Phenomenology of ADMs . . . . . . . . . 89--97
William J. Layton and
Leo G. Rebholz Time Relaxation Truncates Scales . . . . 99--120
William J. Layton and
Leo G. Rebholz The Leray-Deconvolution Regularization 121--144
William J. Layton and
Leo G. Rebholz NS-Alpha- and NS-Omega-Deconvolution
Regularizations . . . . . . . . . . . . 145--162
William J. Layton and
Leo G. Rebholz Back Matter . . . . . . . . . . . . . . 163--184
Thomas H. Otway Front Matter . . . . . . . . . . . . . . i--ix
Thomas H. Otway Introduction . . . . . . . . . . . . . . 1--11
Thomas H. Otway Mathematical Preliminaries . . . . . . . 13--45
Thomas H. Otway The Equation of Cinquini--Cibrario . . . 47--85
Thomas H. Otway The Cold Plasma Model . . . . . . . . . 87--120
Thomas H. Otway Light Near a Caustic . . . . . . . . . . 121--144
Thomas H. Otway Projective Geometry . . . . . . . . . . 145--167
Thomas H. Otway Back Matter . . . . . . . . . . . . . . 169--214
Kendall Atkinson and
Weimin Han Front Matter . . . . . . . . . . . . . . i--ix
Kendall Atkinson and
Weimin Han Preliminaries . . . . . . . . . . . . . 1--9
Kendall Atkinson and
Weimin Han Spherical Harmonics . . . . . . . . . . 11--86
Kendall Atkinson and
Weimin Han Differentiation and Integration over the
Sphere . . . . . . . . . . . . . . . . . 87--130
Kendall Atkinson and
Weimin Han Approximation Theory . . . . . . . . . . 131--163
Kendall Atkinson and
Weimin Han Numerical Quadrature . . . . . . . . . . 165--210
Kendall Atkinson and
Weimin Han Applications: Spectral Methods . . . . . 211--236
Kendall Atkinson and
Weimin Han Back Matter . . . . . . . . . . . . . . 237--244
John Lewis and
Peter Lindqvist and
Juan J. Manfredi and
Sandro Salsa Front Matter . . . . . . . . . . . . . . i--xi
J. Lewis Applications of Boundary Harnack
Inequalities for $p$ Harmonic Functions
and Related Topics . . . . . . . . . . . 1--72
Peter Lindqvist Regularity of Supersolutions . . . . . . 73--131
Juan J. Manfredi Introduction to Random Tug-of-War Games
and PDEs . . . . . . . . . . . . . . . . 133--151
Sandro Salsa The Problems of the Obstacle in Lower
Dimension and for the Fractional
Laplacian . . . . . . . . . . . . . . . 153--244
Sandro Salsa Back Matter . . . . . . . . . . . . . . 245--247
Peggy Cénac and
Brigitte Chauvin and
Frédéric Paccaut and
Nicolas Pouyanne Context Trees, Variable Length Markov
Chains and Dynamical Sources . . . . . . 1--39
Aleksandar Mijatovi\'c and
Nika Novak and
Mikhail Urusov Martingale Property of Generalized
Stochastic Exponentials . . . . . . . . 41--59
Andreas Basse-O'Connor and
Svend-Erik Graversen and
Jan Pedersen Some Classes of Proper Integrals and
Generalized Ornstein--Uhlenbeck
Processes . . . . . . . . . . . . . . . 61--74
Zhongmin Qian and
Jiangang Ying Martingale Representations for Diffusion
Processes and Backward Stochastic
Differential Equations . . . . . . . . . 75--103
Markus Mocha and
Nicholas Westray Quadratic Semimartingale BSDEs Under an
Exponential Moments Condition . . . . . 105--139
Greg Markowsky The Derivative of the Intersection Local
Time of Brownian Motion Through Wiener
Chaos . . . . . . . . . . . . . . . . . 141--148
Hao Wu On the Occupation Times of Brownian
Excursions and Brownian Loops . . . . . 149--166
Hatem Hajri Discrete Approximations to Solution
Flows of Tanaka's SDE Related to Walsh
Brownian Motion . . . . . . . . . . . . 167--190
Nizar Demni and
Taoufik Hmidi Spectral Distribution of the Free
Unitary Brownian Motion: Another
Approach . . . . . . . . . . . . . . . . 191--206
Nathalie Eisenbaum Another Failure in the Analogy Between
Gaussian and Semicircle Laws . . . . . . 207--213
Antoine Lejay Global Solutions to Rough Differential
Equations with Unbounded Vector Fields 215--246
Renaud Marty and
Knut Sòlna Asymptotic Behavior of Oscillatory
Fractional Processes . . . . . . . . . . 247--269
Juha Vuolle-Apiala Time Inversion Property for Rotation
Invariant Self-similar Diffusion
Processes . . . . . . . . . . . . . . . 271--277
Antoine-Marie Bogso and
Christophe Profeta and
Bernard Roynette On Peacocks: a General Introduction to
Two Articles . . . . . . . . . . . . . . 279--280
Antoine-Marie Bogso and
Christophe Profeta and
Bernard Roynette Some Examples of Peacocks in a Markovian
Set-Up . . . . . . . . . . . . . . . . . 281--315
Antoine-Marie Bogso and
Christophe Profeta and
Bernard Roynette Peacocks Obtained by Normalisation:
Strong and Very Strong Peacocks . . . . 317--374
Simon C. Harris and
Matthew I. Roberts Branching Brownian Motion: Almost Sure
Growth Along Scaled Paths . . . . . . . 375--399
Jean-Christophe Mourrat On the Delocalized Phase of the Random
Pinning Model . . . . . . . . . . . . . 401--407
Bernard Bercu and
Jean-François Bony and
Vincent Bruneau Large Deviations for Gaussian Stationary
Processes and Semi-Classical Analysis 409--428
Christian Léonard Girsanov Theory Under a Finite Entropy
Condition . . . . . . . . . . . . . . . 429--465
Christian Léonard Back Matter . . . . . . . . . . . . . . 467--469
Gani T. Stamov Front Matter . . . . . . . . . . . . . . i--xx
Gani T. Stamov Impulsive Differential Equations and
Almost Periodicity . . . . . . . . . . . 1--32
Gani T. Stamov Almost Periodic Solutions . . . . . . . 33--96
Gani T. Stamov Lyapunov Method and Almost Periodicity 97--149
Gani T. Stamov Applications . . . . . . . . . . . . . . 151--203
Gani T. Stamov Back Matter . . . . . . . . . . . . . . 205--217
Fatiha Alabau-Boussouira and
Roger Brockett and
Olivier Glass and
Jérôme Le Rousseau and
Enrique Zuazua Front Matter . . . . . . . . . . . . . . i--xiii
Fatiha Alabau-Boussouira On Some Recent Advances on Stabilization
for Hyperbolic Equations . . . . . . . . 1--100
Roger Brockett Notes on the Control of the Liouville
Equation . . . . . . . . . . . . . . . . 101--129
Olivier Glass Some Questions of Control in Fluid
Mechanics . . . . . . . . . . . . . . . 131--206
Jérôme Le Rousseau Carleman Estimates and Some Applications
to Control Theory . . . . . . . . . . . 207--243
Sylvain Ervedoza and
Enrique Zuazua The Wave Equation: Control and Numerics 245--339
Sylvain Ervedoza and
Enrique Zuazua Back Matter . . . . . . . . . . . . . . 341--344
Angelo Favini and
Gabriela Marinoschi Front Matter . . . . . . . . . . . . . . i--xxi
Angelo Favini and
Gabriela Marinoschi Existence for Parabolic--Elliptic
Degenerate Diffusion Problems . . . . . 1--56
Angelo Favini and
Gabriela Marinoschi Existence for Diffusion Degenerate
Problems . . . . . . . . . . . . . . . . 57--90
Angelo Favini and
Gabriela Marinoschi Existence for Nonautonomous
Parabolic--Elliptic Degenerate Diffusion
Equations . . . . . . . . . . . . . . . 91--108
Angelo Favini and
Gabriela Marinoschi Parameter Identification in a
Parabolic--Elliptic Degenerate Problem 109--133
Angelo Favini and
Gabriela Marinoschi Back Matter . . . . . . . . . . . . . . 135--143
Semyon Alesker The $ \alpha $-Cosine Transform and
Intertwining Integrals on Real
Grassmannians . . . . . . . . . . . . . 1--21
Semyon Alesker On Modules Over Valuations . . . . . . . 23--34
Shiri Artstein-Avidan and
Dmitry Faifman and
Vitali Milman On Multiplicative Maps of Continuous and
Smooth Functions . . . . . . . . . . . . 35--59
Shiri Artstein-Avidan and
Dan Florentin and
Vitali Milman Order Isomorphisms on Convex Functions
in Windows . . . . . . . . . . . . . . . 61--122
Itai Benjamini and
Oded Schramm Finite Transitive Graph Embeddings into
a Hyperbolic Metric Space Must Stretch
or Squeeze . . . . . . . . . . . . . . . 123--126
Itai Benjamini and
Ofer Zeitouni Tightness of Fluctuations of First
Passage Percolation on Some Large Graphs 127--132
Jean Bourgain Finitely Supported Measures on $ {\rm
SL}_2 (\mathbb {R}) $ Which are
Absolutely Continuous at Infinity . . . 133--141
Jean Bourgain Möbius Schrödinger . . . . . . . . . . . . 143--150
Dario Cordero-Erausquin and
Bo'az Klartag Interpolations, Convexity and Geometric
Inequalities . . . . . . . . . . . . . . 151--168
Dario Cordero-Erausquin and
Michel Ledoux Hypercontractive Measures, Talagrand's
Inequality, and Influences . . . . . . . 169--189
Dmitry Faifman A Family of Unitary Operators Satisfying
a Poisson-Type Summation Formula . . . . 191--204
Dan Florentin and
Alexander Segal Stability of Order Preserving Transforms 205--225
Apostolos Giannopoulos and
Grigoris Paouris and
Petros Valettas On the Distribution of the $
\psi_2$-Norm of Linear Functionals on
Isotropic Convex Bodies . . . . . . . . 227--253
Efim D. Gluskin and
Alexander E. Litvak A Remark on Vertex Index of the Convex
Bodies . . . . . . . . . . . . . . . . . 255--265
Bo'az Klartag and
Emanuel Milman Inner Regularization of Log-Concave
Measures and Small-Ball Estimates . . . 267--278
Hermann König and
Vitali Milman An Operator Equation Generalizing the
Leibniz Rule for the Second Derivative 279--299
Rafa\l Lata\la Moments of Unconditional Logarithmically
Concave Vectors . . . . . . . . . . . . 301--315
Elizabeth Meckes Projections of Probability
Distributions: a Measure-Theoretic
Dvoretzky Theorem . . . . . . . . . . . 317--326
Piotr Nayar and
Tomasz Tkocz On a Loomis--Whitney Type Inequality for
Permutationally Invariant Unconditional
Convex Bodies . . . . . . . . . . . . . 327--333
Fedor Nazarov The Hörmander Proof of the
Bourgain--Milman Theorem . . . . . . . . 335--343
Vincent Rivasseau and
Robert Seiringer and
Jan Philip Solovej and
Thomas Spencer Front Matter . . . . . . . . . . . . . . i--xiii
Vincent Rivasseau Introduction to the Renormalization
Group with Applications to
Non-relativistic Quantum Electron Gases 1--54
Robert Seiringer Cold Quantum Gases and Bose--Einstein
Condensation . . . . . . . . . . . . . . 55--92
Jan Philip Solovej Quantum Coulomb Gases . . . . . . . . . 93--124
Thomas Spencer SUSY Statistical Mechanics and Random
Band Matrices . . . . . . . . . . . . . 125--177
Thomas Spencer Back Matter . . . . . . . . . . . . . . 179--180
Fabien Morel Front Matter . . . . . . . . . . . . . . i--x
Fabien Morel Introduction . . . . . . . . . . . . . . 1--13
Fabien Morel Unramified Sheaves and Strongly $
{\mathbb {A}}^1 $-Invariant Sheaves . . 15--48
Fabien Morel Unramified Milnor--Witt $K$-Theories . . 49--80
Fabien Morel Geometric Versus Canonical Transfers . . 81--112
Fabien Morel The Rost--Schmid Complex of a Strongly $
\mathbb {A}^1 $-Invariant Sheaf . . . . 113--148
Fabien Morel $ {\mathbb {A}}^1 $-Homotopy Sheaves and
$ {\mathbb {A}}^1 $-Homology Sheaves . . 149--175
Fabien Morel $ {\mathbb {A}}^1 $-Coverings, $ {\pi
}_1^{{\mathbb {A}}^1 }({\mathbb {P}}^n)
$ and $ {\pi }_1^{{\mathbb {A}}^1}({\rm
SL}_n) $ . . . . . . . . . . . . . . . . 177--197
Fabien Morel $ {\mathbb {A}}^1 $-Homotopy and
Algebraic Vector Bundles . . . . . . . . 199--207
Fabien Morel The Affine B.G. Property for the Linear
Groups and the Grassmannian . . . . . . 209--226
Fabien Morel Back Matter . . . . . . . . . . . . . . 227--259
Steffen Fröhlich Front Matter . . . . . . . . . . . . . . i--xiv
Steffen Fröhlich Surface Geometry . . . . . . . . . . . . 1--29
Steffen Fröhlich Elliptic Systems . . . . . . . . . . . . 31--52
Steffen Fröhlich Normal Coulomb Frames in $ {\mathbb
{R}}^4 $ . . . . . . . . . . . . . . . . 53--73
Steffen Fröhlich Normal Coulomb Frames in $ \mathbb
{R}^{n + 2} $ . . . . . . . . . . . . . 75--105
Steffen Fröhlich Back Matter . . . . . . . . . . . . . . 107--117
Sungbok Hong and
John Kalliongis and
Darryl McCullough and
J. Hyam Rubinstein Front Matter . . . . . . . . . . . . . . i--x
Sungbok Hong and
John Kalliongis and
Darryl McCullough and
J. Hyam Rubinstein Elliptic Three-Manifolds and the Smale
Conjecture . . . . . . . . . . . . . . . 1--7
Sungbok Hong and
John Kalliongis and
Darryl McCullough and
J. Hyam Rubinstein Diffeomorphisms and Embeddings of
Manifolds . . . . . . . . . . . . . . . 9--17
Sungbok Hong and
John Kalliongis and
Darryl McCullough and
J. Hyam Rubinstein The Method of Cerf and Palais . . . . . 19--51
Sungbok Hong and
John Kalliongis and
Darryl McCullough and
J. Hyam Rubinstein Elliptic Three-Manifolds Containing
One-Sided Klein Bottles . . . . . . . . 53--83
Sungbok Hong and
John Kalliongis and
Darryl McCullough and
J. Hyam Rubinstein Lens Spaces . . . . . . . . . . . . . . 85--144
Sungbok Hong and
John Kalliongis and
Darryl McCullough and
J. Hyam Rubinstein Back Matter . . . . . . . . . . . . . . 145--155
Mahmoud H. Annaby and
Zeinab S. Mansour Front Matter . . . . . . . . . . . . . . i--xix
Mahmoud H. Annaby and
Zeinab S. Mansour Preliminaries . . . . . . . . . . . . . 1--39
Mahmoud H. Annaby and
Zeinab S. Mansour $q$-Difference Equations . . . . . . . . 41--71
Mahmoud H. Annaby and
Zeinab S. Mansour $q$-Sturm--Liouville Problems . . . . . 73--105
Mahmoud H. Annaby and
Zeinab S. Mansour Riemann--Liouville $q$-Fractional
Calculi . . . . . . . . . . . . . . . . 107--146
Mahmoud H. Annaby and
Zeinab S. Mansour Other $q$-Fractional Calculi . . . . . . 147--173
Mahmoud H. Annaby and
Zeinab S. Mansour Fractional $q$-Leibniz Rule and
Applications . . . . . . . . . . . . . . 175--199
Mahmoud H. Annaby and
Zeinab S. Mansour $q$-Mittag-Leffler Functions . . . . . . 201--222
Mahmoud H. Annaby and
Zeinab S. Mansour Fractional $q$-Difference Equations . . 223--270
Mahmoud H. Annaby and
Zeinab S. Mansour $q$-Integral Transforms for Solving
Fractional $q$-Difference Equations . . 271--293
Mahmoud H. Annaby and
Zeinab S. Mansour Back Matter . . . . . . . . . . . . . . 295--318
Hidetoshi Marubayashi and
Fred Van Oystaeyen Front Matter . . . . . . . . . . . . . . i--ix
Hidetoshi Marubayashi and
Fred Van Oystaeyen General Theory of Primes . . . . . . . . 1--107
Hidetoshi Marubayashi and
Fred Van Oystaeyen Maximal Orders and Primes . . . . . . . 109--173
Hidetoshi Marubayashi and
Fred Van Oystaeyen Extensions of Valuations to Quantized
Algebras . . . . . . . . . . . . . . . . 175--211
Hidetoshi Marubayashi and
Fred Van Oystaeyen Back Matter . . . . . . . . . . . . . . 213--218
Serge Cohen and
Alexey Kuznetsov and
Andreas E. Kyprianou and
Victor Rivero Front Matter . . . . . . . . . . . . . . i--xii
Serge Cohen Fractional Lévy Fields . . . . . . . . . 1--95
Alexey Kuznetsov and
Andreas E. Kyprianou and
Victor Rivero The Theory of Scale Functions for
Spectrally Negative Lévy Processes . . . 97--186
Alexey Kuznetsov and
Andreas E. Kyprianou and
Victor Rivero Back Matter . . . . . . . . . . . . . . 187--188
Jakob Stix Front Matter . . . . . . . . . . . . . . i--xx
Jakob Stix Front Matter . . . . . . . . . . . . . . 1--1
Jakob Stix Continuous Non-abelian $ H^1 $ with
Profinite Coefficients . . . . . . . . . 3--11
Jakob Stix The Fundamental Groupoid . . . . . . . . 13--23
Jakob Stix Basic Geometric Operations in Terms of
Sections . . . . . . . . . . . . . . . . 25--36
Jakob Stix The Space of Sections as a Topological
Space . . . . . . . . . . . . . . . . . 37--44
Jakob Stix Evaluation of Units . . . . . . . . . . 45--51
Jakob Stix Cycle Classes in Anabelian Geometry . . 53--66
Jakob Stix Front Matter . . . . . . . . . . . . . . 67--67
Jakob Stix Injectivity in the Section Conjecture 69--79
Jakob Stix Reduction of Sections . . . . . . . . . 81--93
Jakob Stix The Space of Sections in the Arithmetic
Case and the Section Conjecture in
Covers . . . . . . . . . . . . . . . . . 95--103
Jakob Stix Front Matter . . . . . . . . . . . . . . 105--105
Jakob Stix Local Obstructions at a $p$-adic Place 107--117
Jakob Stix Brauer--Manin and Descent Obstructions 119--146
Jakob Stix Fragments of Non-abelian Tate--Poitou
Duality . . . . . . . . . . . . . . . . 147--154
Jakob Stix Front Matter . . . . . . . . . . . . . . 155--155
Jakob Stix On the Section Conjecture for Torsors 157--174
Jakob Stix Nilpotent Sections . . . . . . . . . . . 175--196
Jakob Stix Sections over Finite Fields . . . . . . 197--205
Jakob Stix On the Section Conjecture over Local
Fields . . . . . . . . . . . . . . . . . 207--212
Jakob Stix Fields of Cohomological Dimension 1 . . 213--218
Jakob Stix Cuspidal Sections and Birational
Analogues . . . . . . . . . . . . . . . 219--231
Jakob Stix Back Matter . . . . . . . . . . . . . . 233--249
Andrzej Cegielski Front Matter . . . . . . . . . . . . . . i--xvi
Andrzej Cegielski Introduction . . . . . . . . . . . . . . 1--38
Andrzej Cegielski Algorithmic Operators . . . . . . . . . 39--103
Andrzej Cegielski Convergence of Iterative Methods . . . . 105--127
Andrzej Cegielski Algorithmic Projection Operators . . . . 129--202
Andrzej Cegielski Projection Methods . . . . . . . . . . . 203--274
Andrzej Cegielski Back Matter . . . . . . . . . . . . . . 275--298
Mostafa Bachar and
Jerry Batzel and
Susanne Ditlevsen Front Matter . . . . . . . . . . . . . . i--xvi
Mostafa Bachar and
Jerry Batzel and
Susanne Ditlevsen Front Matter . . . . . . . . . . . . . . 1--1
Susanne Ditlevsen and
Adeline Samson Introduction to Stochastic Models in
Biology . . . . . . . . . . . . . . . . 3--35
Martin Jacobsen One-Dimensional Homogeneous Diffusions 37--55
Gilles Wainrib A Brief Introduction to Large Deviations
Theory . . . . . . . . . . . . . . . . . 57--72
Gilles Wainrib Some Numerical Methods for Rare Events
Simulation and Analysis . . . . . . . . 73--95
Gilles Wainrib Front Matter . . . . . . . . . . . . . . 97--97
Laura Sacerdote and
Maria Teresa Giraudo Stochastic Integrate and Fire Models: a
Review on Mathematical Methods and Their
Applications . . . . . . . . . . . . . . 99--148
Henry C. Tuckwell Stochastic Partial Differential
Equations in Neurobiology: Linear and
Nonlinear Models for Spiking Neurons . . 149--173
Mich\`ele Thieullen Deterministic and Stochastic
FitzHugh--Nagumo Systems . . . . . . . . 175--186
Henry C. Tuckwell Stochastic Modeling of Spreading
Cortical Depression . . . . . . . . . . 187--200
Henry C. Tuckwell Back Matter . . . . . . . . . . . . . . 201--206
Claude Sabbah Front Matter . . . . . . . . . . . . . . i--xiv
Claude Sabbah $ \mathcal {I}$-Filtrations . . . . . . 1--19
Claude Sabbah Front Matter . . . . . . . . . . . . . . 21--21
Claude Sabbah Stokes-Filtered Local Systems in
Dimension One . . . . . . . . . . . . . 23--38
Claude Sabbah Abelianity and Strictness . . . . . . . 39--50
Claude Sabbah Stokes-Perverse Sheaves on Riemann
Surfaces . . . . . . . . . . . . . . . . 51--64
Claude Sabbah The Riemann--Hilbert Correspondence for
Holonomic $ \mathcal {D}$-Modules on
Curves . . . . . . . . . . . . . . . . . 65--78
Claude Sabbah Applications of the Riemann--Hilbert
Correspondence to Holonomic
Distributions . . . . . . . . . . . . . 79--88
Claude Sabbah Riemann--Hilbert and Laplace on the
Affine Line (the Regular Case) . . . . . 89--111
Claude Sabbah Front Matter . . . . . . . . . . . . . . 113--113
Claude Sabbah Real Blow-Up Spaces and Moderate de Rham
Complexes . . . . . . . . . . . . . . . 115--129
Claude Sabbah Stokes-Filtered Local Systems Along a
Divisor with Normal Crossings . . . . . 131--146
Claude Sabbah The Riemann--Hilbert Correspondence for
Good Meromorphic Connections (Case of a
Smooth Divisor) . . . . . . . . . . . . 147--157
Claude Sabbah Good Meromorphic Connections (Formal
Theory) . . . . . . . . . . . . . . . . 159--175
Claude Sabbah Good Meromorphic Connections (Analytic
Theory) and the Riemann--Hilbert
Correspondence . . . . . . . . . . . . . 177--193
Claude Sabbah Push-Forward of Stokes-Filtered Local
Systems . . . . . . . . . . . . . . . . 195--206
Claude Sabbah Irregular Nearby Cycles . . . . . . . . 207--225
Claude Sabbah Nearby Cycles of Stokes-Filtered Local
Systems . . . . . . . . . . . . . . . . 227--238
Claude Sabbah Back Matter . . . . . . . . . . . . . . 239--249
Luigi Ambrosio and
Alberto Bressan and
Dirk Helbing and
Axel Klar and
Enrique Zuazua Front Matter . . . . . . . . . . . . . . i--xiv
Luigi Ambrosio and
Nicola Gigli A User's Guide to Optimal Transport . . 1--155
Alberto Bressan Hyperbolic Conservation Laws: an
Illustrated Tutorial . . . . . . . . . . 157--245
Dirk Helbing Derivation of Non-local Macroscopic
Traffic Equations and Consistent Traffic
Pressures from Microscopic Car-Following
Models . . . . . . . . . . . . . . . . . 247--269
Dirk Helbing and
Anders Johansson On the Controversy Around Daganzo's
Requiem for and Aw--Rascle's
Resurrection of Second-Order Traffic
Flow Models . . . . . . . . . . . . . . 271--302
Dirk Helbing and
Martin Treiber and
Arne Kesting and
Martin Schönhof Theoretical vs. Empirical Classification
and Prediction of Congested Traffic
States . . . . . . . . . . . . . . . . . 303--333
Dirk Helbing and
Jan Siegmeier and
Stefan Lämmer Self-Organized Network Flows . . . . . . 335--355
Dirk Helbing and
Amin Mazloumian Operation Regimes and
Slower-is-Faster-Effect in the Control
of Traffic Intersections . . . . . . . . 357--394
Simone Göttlich and
Axel Klar Modeling and Optimization of Scalar
Flows on Networks . . . . . . . . . . . 395--461
Enrique Zuazua Control and Stabilization of Waves on
$1$-D Networks . . . . . . . . . . . . . 463--493
Enrique Zuazua Back Matter . . . . . . . . . . . . . . 495--497
Irina Mitrea and
Marius Mitrea Front Matter . . . . . . . . . . . . . . i--x
Irina Mitrea and
Marius Mitrea Introduction . . . . . . . . . . . . . . 1--19
Irina Mitrea and
Marius Mitrea Smoothness Scales and Calderón--Zygmund
Theory in the Scalar-Valued Case . . . . 21--124
Irina Mitrea and
Marius Mitrea Function Spaces of Whitney Arrays . . . 125--197
Irina Mitrea and
Marius Mitrea The Double Multi-Layer Potential
Operator . . . . . . . . . . . . . . . . 199--252
Irina Mitrea and
Marius Mitrea The Single Multi-Layer Potential
Operator . . . . . . . . . . . . . . . . 253--291
Irina Mitrea and
Marius Mitrea Functional Analytic Properties of
Multi-Layer Potentials and Boundary
Value Problems . . . . . . . . . . . . . 293--403
Irina Mitrea and
Marius Mitrea Back Matter . . . . . . . . . . . . . . 405--424
Jerry J. Batzel and
Mostafa Bachar and
Franz Kappel Front Matter . . . . . . . . . . . . . . i--xx
Jerry J. Batzel and
Mostafa Bachar and
Franz Kappel Front Matter . . . . . . . . . . . . . . 1--1
Jerry J. Batzel and
Mostafa Bachar and
John M. Karemaker and
Franz Kappel Merging Mathematical and Physiological
Knowledge: Dimensions and Challenges . . 3--19
Thomas Heldt and
George C. Verghese and
Roger G. Mark Mathematical Modeling of Physiological
Systems . . . . . . . . . . . . . . . . 21--41
H. T. Banks and
Ariel Cintrón-Arias and
Franz Kappel Parameter Selection Methods in Inverse
Problem Formulation . . . . . . . . . . 43--73
Adam Attarian and
Jerry J. Batzel and
Brett Matzuka and
Hien Tran Application of the Unscented Kalman
Filtering to Parameter Estimation . . . 75--88
Chung Tin and
Chi-Sang Poon Integrative and Reductionist Approaches
to Modeling of Control of Breathing . . 89--103
Ferenc Hartung and
Janos Turi Parameter Identification in a
Respiratory Control System Model with
Delay . . . . . . . . . . . . . . . . . 105--118
Ferenc Hartung and
Janos Turi Front Matter . . . . . . . . . . . . . . 119--119
Eugene N. Bruce Experimental Studies of Respiration and
Apnea . . . . . . . . . . . . . . . . . 121--132
James Duffin Model Validation and Control Issues in
the Respiratory System . . . . . . . . . 133--162
Clive M. Brown Experimental Studies of the Baroreflex 163--176
Johnny T. Ottesen and
Vera Novak and
Mette S. Olufsen Development of Patient Specific
Cardiovascular Models Predicting
Dynamics in Response to Orthostatic
Stress Challenges . . . . . . . . . . . 177--213
Karl Thomaseth and
Jerry J. Batzel and
Mostafa Bachar and
Raffaello Furlan Parameter Estimation of a Model for
Baroreflex Control of Unstressed Volume 215--246
Karl Thomaseth and
Jerry J. Batzel and
Mostafa Bachar and
Raffaello Furlan Back Matter . . . . . . . . . . . . . . 247--254
Anna Capietto and
Peter Kloeden and
Jean Mawhin and
Sylvia Novo and
Rafael Ortega Front Matter . . . . . . . . . . . . . . i--ix
Alberto Boscaggin and
Anna Capietto and
Walter Dambrosio The Maslov Index and Global Bifurcation
for Nonlinear Boundary Value Problems 1--34
P. E. Kloeden and
C. Pötzsche and
M. Rasmussen Discrete-Time Nonautonomous Dynamical
Systems . . . . . . . . . . . . . . . . 35--102
Jean Mawhin Resonance Problems for Some
Non-autonomous Ordinary Differential
Equations . . . . . . . . . . . . . . . 103--184
Sylvia Novo and
Rafael Obaya Non-autonomous Functional Differential
Equations and Applications . . . . . . . 185--263
Markus Kunze and
Rafael Ortega Twist Mappings with Non-Periodic Angles 265--300
Markus Kunze and
Rafael Ortega Back Matter . . . . . . . . . . . . . . 301--303
Augustin Fruchard and
Reinhard Schäfke Front Matter . . . . . . . . . . . . . . i--x
Augustin Fruchard and
Reinhard Schäfke Four Introductory Examples . . . . . . . 1--15
Augustin Fruchard and
Reinhard Schäfke Composite Asymptotic Expansions: General
Study . . . . . . . . . . . . . . . . . 17--41
Augustin Fruchard and
Reinhard Schäfke Composite Asymptotic Expansions: Gevrey
Theory . . . . . . . . . . . . . . . . . 43--61
Augustin Fruchard and
Reinhard Schäfke A Theorem of Ramis--Sibuya Type . . . . 63--80
Augustin Fruchard and
Reinhard Schäfke Composite Expansions and Singularly
Perturbed Differential Equations . . . . 81--118
Augustin Fruchard and
Reinhard Schäfke Applications . . . . . . . . . . . . . . 119--150
Augustin Fruchard and
Reinhard Schäfke Historical Remarks . . . . . . . . . . . 151--153
Augustin Fruchard and
Reinhard Schäfke Back Matter . . . . . . . . . . . . . . 155--161
Frederik Herzberg Front Matter . . . . . . . . . . . . . . i--xviii
Frederik S. Herzberg Infinitesimal Calculus, Consistently and
Accessibly . . . . . . . . . . . . . . . 1--5
Frederik S. Herzberg Radically Elementary Probability Theory 7--17
Frederik S. Herzberg Radically Elementary Stochastic
Integrals . . . . . . . . . . . . . . . 19--34
Frederik S. Herzberg The Radically Elementary Girsanov
Theorem and the Diffusion Invariance
Principle . . . . . . . . . . . . . . . 35--44
Frederik S. Herzberg Excursion to Financial Economics: a
Radically Elementary Approach to the
Fundamental Theorems of Asset Pricing 45--53
Frederik S. Herzberg Excursion to Financial Engineering:
Volatility Invariance in the
Black--Scholes Model . . . . . . . . . . 55--59
Frederik S. Herzberg A Radically Elementary Theory of Itô
Diffusions and Associated Partial
Differential Equations . . . . . . . . . 61--70
Frederik S. Herzberg Excursion to Mathematical Physics: a
Radically Elementary Definition of
Feynman Path Integrals . . . . . . . . . 71--75
Frederik S. Herzberg A Radically Elementary Theory of Lévy
Processes . . . . . . . . . . . . . . . 77--92
Frederik S. Herzberg Final Remarks . . . . . . . . . . . . . 93--93
Frederik S. Herzberg Back Matter . . . . . . . . . . . . . . 95--112
Ilya Molchanov Foundations of Stochastic Geometry and
Theory of Random Sets . . . . . . . . . 1--20
Markus Kiderlen Introduction into Integral Geometry and
Stereology . . . . . . . . . . . . . . . 21--48
Adrian Baddeley Spatial Point Patterns: Models and
Statistics . . . . . . . . . . . . . . . 49--114
Lothar Heinrich Asymptotic Methods in Statistics of
Random Point Processes . . . . . . . . . 115--150
Florian Voss and
Catherine Gloaguen and
Volker Schmidt Random Tessellations and Cox Processes 151--182
Pierre Calka Asymptotic Methods for Random
Tessellations . . . . . . . . . . . . . 183--204
Daniel Hug Random Polytopes . . . . . . . . . . . . 205--238
Joseph Yukich Limit Theorems in Discrete Stochastic
Geometry . . . . . . . . . . . . . . . . 239--275
Alexander Bulinski and
Evgeny Spodarev Introduction to Random Fields . . . . . 277--335
Alexander Bulinski and
Evgeny Spodarev Central Limit Theorems for Weakly
Dependent Random Fields . . . . . . . . 337--383
Ulrich Stadtmüller Strong Limit Theorems for Increments of
Random Fields . . . . . . . . . . . . . 385--398
Yuri Bakhtin Geometry of Large Random Trees: SPDE
Approximation . . . . . . . . . . . . . 399--420
Yuri Bakhtin Back Matter . . . . . . . . . . . . . . 421--448
David Futer and
Efstratia Kalfagianni and
Jessica Purcell Front Matter . . . . . . . . . . . . . . i--x
David Futer and
Efstratia Kalfagianni and
Jessica Purcell Introduction . . . . . . . . . . . . . . 1--15
David Futer and
Efstratia Kalfagianni and
Jessica Purcell Decomposition into $3$-Balls . . . . . . 17--33
David Futer and
Efstratia Kalfagianni and
Jessica Purcell Ideal Polyhedra . . . . . . . . . . . . 35--51
David Futer and
Efstratia Kalfagianni and
Jessica Purcell $I$-Bundles and Essential Product Disks 53--72
David Futer and
Efstratia Kalfagianni and
Jessica Purcell Guts and Fibers . . . . . . . . . . . . 73--90
David Futer and
Efstratia Kalfagianni and
Jessica Purcell Recognizing Essential Product Disks . . 91--108
David Futer and
Efstratia Kalfagianni and
Jessica Purcell Diagrams Without Non-prime Arcs . . . . 109--118
David Futer and
Efstratia Kalfagianni and
Jessica Purcell Montesinos Links . . . . . . . . . . . . 119--138
David Futer and
Efstratia Kalfagianni and
Jessica Purcell Applications . . . . . . . . . . . . . . 139--154
David Futer and
Efstratia Kalfagianni and
Jessica Purcell Discussion and Questions . . . . . . . . 155--161
David Futer and
Efstratia Kalfagianni and
Jessica Purcell Back Matter . . . . . . . . . . . . . . 163--170
Martin W. Liebeck Probabilistic and Asymptotic Aspects of
Finite Simple Groups . . . . . . . . . . 1--34
Alice C. Niemeyer and
Cheryl E. Praeger and
Ákos Seress Estimation Problems and Randomised Group
Algorithms . . . . . . . . . . . . . . . 35--82
Leonard H. Soicher Designs, Groups and Computing . . . . . 83--107
Leonard H. Soicher Back Matter . . . . . . . . . . . . . . 107--107
Mark A. Lewis and
Philip K. Maini and
Sergei V. Petrovskii Front Matter . . . . . . . . . . . . . . i--xiv
Mark A. Lewis and
Philip K. Maini and
Sergei V. Petrovskii Front Matter . . . . . . . . . . . . . . 1--1
Frederic Bartumeus and
Ernesto P. Raposo and
Gandhi M. Viswanathan and
Marcos G. E. da Luz Stochastic Optimal Foraging Theory . . . 3--32
Michael J. Plank and
Marie Auger-Méthé and
Edward A. Codling Lévy or Not? Analysing Positional Data
from Animal Movement Paths . . . . . . . 33--52
Andy Reynolds Beyond Optimal Searching: Recent
Developments in the Modelling of Animal
Movement Patterns as Lévy Walks . . . . . 53--76
Andy Reynolds Front Matter . . . . . . . . . . . . . . 77--77
Hans G. Othmer and
Chuan Xue The Mathematical Analysis of Biological
Aggregation and Dispersal: Progress,
Problems and Perspectives . . . . . . . 79--127
Benjamin Franz and
Radek Erban Hybrid Modelling of Individual Movement
and Collective Behaviour . . . . . . . . 129--157
Hsin-Hua Wei and
Frithjof Lutscher From Individual Movement Rules to
Population Level Patterns: The Case of
Central-Place Foragers . . . . . . . . . 159--175
Thomas Hillen and
Kevin J. Painter Transport and Anisotropic Diffusion
Models for Movement in Oriented Habitats 177--222
Andrew Yu. Morozov Incorporating Complex Foraging of
Zooplankton in Models: Role of Micro-
and Mesoscale Processes in Macroscale
Patterns . . . . . . . . . . . . . . . . 223--259
Andrew Yu. Morozov Front Matter . . . . . . . . . . . . . . 261--261
Ying Zhou and
Mark Kot Life on the Move: Modeling the Effects
of Climate-Driven Range Shifts with
Integrodifference Equations . . . . . . 263--292
Horst Malchow and
Alex James and
Richard Brown Control of Competitive Bioinvasion . . . 293--305
Nick F. Britton Destruction and Diversity: Effects of
Habitat Loss on Ecological Communities 307--330
Vitaly Volpert and
Vitali Vougalter Emergence and Propagation of Patterns in
Nonlocal Reaction-Diffusion Equations
Arising in the Theory of Speciation . . 331--353
Natalia Petrovskaya and
Nina Embleton and
Sergei V. Petrovskii Numerical Study of Pest Population Size
at Various Diffusion Rates . . . . . . . 355--385
Natalia Petrovskaya and
Nina Embleton and
Sergei V. Petrovskii Back Matter . . . . . . . . . . . . . . 387--388
Igor Reider Front Matter . . . . . . . . . . . . . . i--viii
Igor Reider Introduction . . . . . . . . . . . . . . 1--15
Igor Reider Nonabelian Jacobian $ J(X; L, d) $: Main
Properties . . . . . . . . . . . . . . . 17--32
Igor Reider Some Properties of the Filtration $
\mathbf {\tilde {H}}_{- \bullet } $ . . 33--38
Igor Reider The Sheaf of Lie Algebras $ \mathcal
{G}_{\Gamma } $ . . . . . . . . . . . . 39--73
Igor Reider Period Maps and Torelli Problems . . . . 75--98
Igor Reider $ {\rm sl}_2$-Structures on $ {\mathcal
{F}}^{{\prime }}$ . . . . . . . . . . . 99--111
Igor Reider $ {\rm sl}_2$-Structures on $ {\mathcal
{G}}_{\Gamma }$ . . . . . . . . . . . . 113--122
Igor Reider Involution on $ \mathcal {G}_\Gamma $ 123--132
Igor Reider Stratification of $ T_\pi $ . . . . . . 133--144
Igor Reider Configurations and Theirs Equations . . 145--173
Igor Reider Representation Theoretic Constructions 175--196
Igor Reider $ J(X; L, d) $ and the Langlands Duality 197--212
Igor Reider Back Matter . . . . . . . . . . . . . . 213--216
Peter Constantin and
Arnaud Debussche and
Giovanni P. Galdi and
Michael R\ru\vzi\vcka and
Gregory Seregin Front Matter . . . . . . . . . . . . . . i--ix
Peter Constantin Complex Fluids and Lagrangian Particles 1--21
Arnaud Debussche Ergodicity Results for the Stochastic
Navier--Stokes Equations: an
Introduction . . . . . . . . . . . . . . 23--108
Giovanni P. Galdi Steady-State Navier--Stokes Problem Past
a Rotating Body: Geometric-Functional
Properties and Related Questions . . . . 109--197
Michael R\ru\vzi\vcka Analysis of Generalized Newtonian Fluids 199--238
Michael R\ru\vzi\vcka Analysis of Generalized Newtonian Fluids 199--238
Gregory Seregin Selected Topics of Local Regularity
Theory for Navier--Stokes Equations . . 239--313
Gregory Seregin Back Matter . . . . . . . . . . . . . . 315--316
Yves Achdou and
Guy Barles and
Hitoshi Ishii and
Grigory L. Litvinov Front Matter . . . . . . . . . . . . . . i--xv
Yves Achdou Finite Difference Methods for Mean Field
Games . . . . . . . . . . . . . . . . . 1--47
Guy Barles An Introduction to the Theory of
Viscosity Solutions for First-Order
Hamilton--Jacobi Equations and
Applications . . . . . . . . . . . . . . 49--109
Hitoshi Ishii A Short Introduction to Viscosity
Solutions and the Large Time Behavior of
Solutions of Hamilton--Jacobi Equations 111--249
Grigory L. Litvinov Idempotent/Tropical Analysis, the
Hamilton--Jacobi and Bellman Equations 251--301
Grigory L. Litvinov Back Matter . . . . . . . . . . . . . . 303--304
Giorgio Patrizio and
Zbigniew B\locki and
François Berteloot and
Jean Pierre Demailly Front Matter . . . . . . . . . . . . . . i--ix
François Berteloot Bifurcation Currents in Holomorphic
Families of Rational Maps . . . . . . . 1--93
Zbigniew B\locki The Complex Monge--Amp\`ere Equation in
Kähler Geometry . . . . . . . . . . . . . 95--141
Jean-Pierre Demailly Applications of Pluripotential Theory to
Algebraic Geometry . . . . . . . . . . . 143--263
G. Patrizio and
A. Spiro Pluripotential Theory and
Monge--Amp\`ere Foliations . . . . . . . 265--319
G. Patrizio and
A. Spiro Back Matter . . . . . . . . . . . . . . 321--322
Valeri Obukhovskii and
Pietro Zecca and
Nguyen Van Loi and
Sergei Kornev Front Matter . . . . . . . . . . . . . . i--xiii
Valeri Obukhovskii and
Pietro Zecca and
Nguyen Van Loi and
Sergei Kornev Background . . . . . . . . . . . . . . . 1--24
Valeri Obukhovskii and
Pietro Zecca and
Nguyen Van Loi and
Sergei Kornev Method of Guiding Functions in
Finite-Dimensional Spaces . . . . . . . 25--67
Valeri Obukhovskii and
Pietro Zecca and
Nguyen Van Loi and
Sergei Kornev Method of Guiding Functions in Hilbert
Spaces . . . . . . . . . . . . . . . . . 69--104
Valeri Obukhovskii and
Pietro Zecca and
Nguyen Van Loi and
Sergei Kornev Second-Order Differential Inclusions . . 105--129
Valeri Obukhovskii and
Pietro Zecca and
Nguyen Van Loi and
Sergei Kornev Nonlinear Fredholm Inclusions and
Applications . . . . . . . . . . . . . . 131--165
Valeri Obukhovskii and
Pietro Zecca and
Nguyen Van Loi and
Sergei Kornev Back Matter . . . . . . . . . . . . . . 167--180
Vladimir Maz'ya and
Alexander Movchan and
Michael Nieves Front Matter . . . . . . . . . . . . . . i--xvii
Vladimir Maz'ya and
Alexander Movchan and
Michael Nieves Front Matter . . . . . . . . . . . . . . 1--1
Vladimir Maz'ya and
Alexander Movchan and
Michael Nieves Uniform Asymptotic Formulae for Green's
Functions for the Laplacian in Domains
with Small Perforations . . . . . . . . 3--19
Vladimir Maz'ya and
Alexander Movchan and
Michael Nieves Mixed and Neumann Boundary Conditions
for Domains with Small Holes and
Inclusions: Uniform Asymptotics of
Green's Kernels . . . . . . . . . . . . 21--57
Vladimir Maz'ya and
Alexander Movchan and
Michael Nieves Green's Function for the Dirichlet
Boundary Value Problem in a Domain with
Several Inclusions . . . . . . . . . . . 59--73
Vladimir Maz'ya and
Alexander Movchan and
Michael Nieves Numerical Simulations Based on the
Asymptotic Approximations . . . . . . . 75--81
Vladimir Maz'ya and
Alexander Movchan and
Michael Nieves Other Examples of Asymptotic
Approximations of Green's Functions in
Singularly Perturbed Domains . . . . . . 83--94
Vladimir Maz'ya and
Alexander Movchan and
Michael Nieves Front Matter . . . . . . . . . . . . . . 95--95
Vladimir Maz'ya and
Alexander Movchan and
Michael Nieves Green's Tensor for the Dirichlet
Boundary Value Problem in a Domain with
a Single Inclusion . . . . . . . . . . . 97--137
Vladimir Maz'ya and
Alexander Movchan and
Michael Nieves Green's Tensor in Bodies with Multiple
Rigid Inclusions . . . . . . . . . . . . 139--167
Vladimir Maz'ya and
Alexander Movchan and
Michael Nieves Green's Tensor for the Mixed Boundary
Value Problem in a Domain with a Small
Hole . . . . . . . . . . . . . . . . . . 169--188
Vladimir Maz'ya and
Alexander Movchan and
Michael Nieves Front Matter . . . . . . . . . . . . . . 189--189
Vladimir Maz'ya and
Alexander Movchan and
Michael Nieves Meso-scale Approximations for Solutions
of Dirichlet Problems . . . . . . . . . 191--219
Vladimir Maz'ya and
Alexander Movchan and
Michael Nieves Mixed Boundary Value Problems in
Multiply-Perforated Domains . . . . . . 221--247
Vladimir Maz'ya and
Alexander Movchan and
Michael Nieves Back Matter . . . . . . . . . . . . . . 249--260
Ivan Nourdin Lectures on Gaussian Approximations with
Malliavin Calculus . . . . . . . . . . . 3--89
Ivan Nourdin Front Matter . . . . . . . . . . . . . . 91--91
Vilmos Prokaj Some Sufficient Conditions for the
Ergodicity of the Lévy Transformation . . 93--121
Stéphane Laurent Vershik's Intermediate Level
Standardness Criterion and the Scale of
an Automorphism . . . . . . . . . . . . 123--139
Claude Dellacherie and
Michel Émery Filtrations Indexed by Ordinals;
Application to a Conjecture of S.
Laurent . . . . . . . . . . . . . . . . 141--157
Michel Émery A Planar Borel Set Which Divides Every
Non-negligible Borel Product . . . . . . 159--165
Jean Brossard and
Christophe Leuridan Characterising Ocone Local Martingales
with Reflections . . . . . . . . . . . . 167--180
Hiroya Hashimoto Approximation and Stability of Solutions
of SDEs Driven by a Symmetric $ \alpha $
Stable Process with Non-Lipschitz
Coefficients . . . . . . . . . . . . . . 181--199
Christa Cuchiero and
Josef Teichmann Path Properties and Regularity of Affine
Processes on General State Spaces . . . 201--244
Emmanuel Jacob Langevin Process Reflected on a
Partially Elastic Boundary II . . . . . 245--275
R. A. Doney and
S. Vakeroudis Windings of Planar Stable Processes . . 277--300
Alexander Sokol An Elementary Proof that the First
Hitting Time of an Open Set by a Jump
Process is a Stopping Time . . . . . . . 301--304
Leif Döring and
Matthew I. Roberts Catalytic Branching Processes via Spine
Techniques and Renewal Theory . . . . . 305--322
Solesne Bourguin and
Ciprian A. Tudor Malliavin Calculus and Self Normalized
Sums . . . . . . . . . . . . . . . . . . 323--351
Pedro J. Catuogno and
Diego S. Ledesma and
Paulo R. Ruffino A Note on Stochastic Calculus in Vector
Bundles . . . . . . . . . . . . . . . . 353--364
Gilles Pag\`es Functional Co-monotony of Processes with
Applications to Peacocks and Barrier
Options . . . . . . . . . . . . . . . . 365--400
Salim Noreddine Fluctuations of the Traces of
Complex-Valued Random Matrices . . . . . 401--431
Janosch Ortmann Functionals of the Brownian Bridge . . . 433--458
Laurent Miclo and
Pierre Monmarché Étude spectrale minutieuse de processus
moins indécis que les autres. (French) [A
careful spectral study of processes less
undecided than others] . . . . . . . . . 459--481
Franck Barthe and
Charles Bordenave Combinatorial Optimization Over Two
Random Point Sets . . . . . . . . . . . 483--535
Igor Kortchemski A Simple Proof of Duquesne's Theorem on
Contour Processes of Conditioned
Galton--Watson Trees . . . . . . . . . . 537--558
Igor Kortchemski Back Matter . . . . . . . . . . . . . . 559--560
Péter Major Front Matter . . . . . . . . . . . . . . i--xiii
Péter Major Introduction . . . . . . . . . . . . . . 1--3
Péter Major Motivation of the Investigation:
Discussion of Some Problems . . . . . . 5--13
Péter Major Some Estimates About Sums of Independent
Random Variables . . . . . . . . . . . . 15--20
Péter Major On the Supremum of a Nice Class of
Partial Sums . . . . . . . . . . . . . . 21--33
Péter Major Vapnik--\vCervonenkis Classes and $ L_2
$-Dense Classes of Functions . . . . . . 35--39
Péter Major The Proof of Theorems 4.1 and 4.2 on the
Supremum of Random Sums . . . . . . . . 41--51
Péter Major The Completion of the Proof of Theorem
4.1 . . . . . . . . . . . . . . . . . . 53--64
Péter Major Formulation of the Main Results of This
Work . . . . . . . . . . . . . . . . . . 65--78
Péter Major Some Results About $U$-statistics . . . 79--95
Péter Major Multiple Wiener--Itô Integrals and Their
Properties . . . . . . . . . . . . . . . 97--120
Péter Major The Diagram Formula for Products of
Degenerate $U$-Statistics . . . . . . . 121--138
Péter Major The Proof of the Diagram Formula for
$U$-Statistics . . . . . . . . . . . . . 139--149
Péter Major The Proof of Theorems 8.3, 8.5 and
Example 8.7 . . . . . . . . . . . . . . 151--168
Péter Major Reduction of the Main Result in This
Work . . . . . . . . . . . . . . . . . . 169--179
Péter Major The Strategy of the Proof for the Main
Result of This Work . . . . . . . . . . 181--189
Péter Major A Symmetrization Argument . . . . . . . 191--208
Péter Major The Proof of the Main Result . . . . . . 209--225
Péter Major An Overview of the Results and a
Discussion of the Literature . . . . . . 227--245
Péter Major Back Matter . . . . . . . . . . . . . . 247--290
Tadahito Harima and
Toshiaki Maeno and
Hideaki Morita and
Yasuhide Numata and
Akihito Wachi and
Junzo Watanabe Front Matter . . . . . . . . . . . . . . i--xix
Tadahito Harima and
Toshiaki Maeno and
Hideaki Morita and
Yasuhide Numata and
Akihito Wachi and
Junzo Watanabe Poset Theory . . . . . . . . . . . . . . 1--38
Tadahito Harima and
Toshiaki Maeno and
Hideaki Morita and
Yasuhide Numata and
Akihito Wachi and
Junzo Watanabe Basics on the Theory of Local Rings . . 39--95
Tadahito Harima and
Toshiaki Maeno and
Hideaki Morita and
Yasuhide Numata and
Akihito Wachi and
Junzo Watanabe Lefschetz Properties . . . . . . . . . . 97--140
Tadahito Harima and
Toshiaki Maeno and
Hideaki Morita and
Yasuhide Numata and
Akihito Wachi and
Junzo Watanabe Complete Intersections with the SLP . . 141--156
Tadahito Harima and
Toshiaki Maeno and
Hideaki Morita and
Yasuhide Numata and
Akihito Wachi and
Junzo Watanabe A Generalization of Lefschetz Elements 157--170
Tadahito Harima and
Toshiaki Maeno and
Hideaki Morita and
Yasuhide Numata and
Akihito Wachi and
Junzo Watanabe $k$-Lefschetz Properties . . . . . . . . 171--188
Tadahito Harima and
Toshiaki Maeno and
Hideaki Morita and
Yasuhide Numata and
Akihito Wachi and
Junzo Watanabe Cohomology Rings and the Strong
Lefschetz Property . . . . . . . . . . . 189--199
Tadahito Harima and
Toshiaki Maeno and
Hideaki Morita and
Yasuhide Numata and
Akihito Wachi and
Junzo Watanabe Invariant Theory and Lefschetz
Properties . . . . . . . . . . . . . . . 201--209
Tadahito Harima and
Toshiaki Maeno and
Hideaki Morita and
Yasuhide Numata and
Akihito Wachi and
Junzo Watanabe The Strong Lefschetz Property and the
Schur--Weyl Duality . . . . . . . . . . 211--234
Tadahito Harima and
Toshiaki Maeno and
Hideaki Morita and
Yasuhide Numata and
Akihito Wachi and
Junzo Watanabe Back Matter . . . . . . . . . . . . . . 235--252
Fred Espen Benth and
Dan Crisan and
Paolo Guasoni and
Konstantinos Manolarakis and
Johannes Muhle-Karbe and
Colm Nee and
Philip Protter Front Matter . . . . . . . . . . . . . . i--ix
Philip Protter A Mathematical Theory of Financial
Bubbles . . . . . . . . . . . . . . . . 1--108
Fred Espen Benth Stochastic Volatility and Dependency in
Energy Markets: Multi-Factor Modelling 109--167
Paolo Guasoni and
Johannes Muhle-Karbe Portfolio Choice with Transaction Costs:
a User's Guide . . . . . . . . . . . . . 169--201
D. Crisan and
K. Manolarakis and
C. Nee Cubature Methods and Applications . . . 203--316
D. Crisan and
K. Manolarakis and
C. Nee Back Matter . . . . . . . . . . . . . . 317--318
Jürgen Herzog A Survey on Stanley Depth . . . . . . . 3--45
Anna Maria Bigatti and
Emanuela De Negri Stanley Decompositions Using CoCoA . . . 47--59
Anna Maria Bigatti and
Emanuela De Negri Front Matter . . . . . . . . . . . . . . 61--61
Adam Van Tuyl A Beginner's Guide to Edge and Cover
Ideals . . . . . . . . . . . . . . . . . 63--94
Adam Van Tuyl Edge Ideals Using Macaulay2 . . . . . . 95--105
Adam Van Tuyl Front Matter . . . . . . . . . . . . . . 107--107
Josep \`Alvarez Montaner Local Cohomology Modules Supported on
Monomial Ideals . . . . . . . . . . . . 109--178
Josep \`Alvarez Montaner and
Oscar Fernández-Ramos Local Cohomology Using Macaulay2 . . . . 179--185
Josep \`Alvarez Montaner and
Oscar Fernández-Ramos Back Matter . . . . . . . . . . . . . . 187--196
Dachun Yang and
Dongyong Yang and
Guoen Hu Front Matter . . . . . . . . . . . . . . i--xiii
Dachun Yang and
Dongyong Yang and
Guoen Hu Front Matter . . . . . . . . . . . . . . 1--3
Dachun Yang and
Dongyong Yang and
Guoen Hu Preliminaries . . . . . . . . . . . . . 5--22
Dachun Yang and
Dongyong Yang and
Guoen Hu Approximations of the Identity . . . . . 23--58
Dachun Yang and
Dongyong Yang and
Guoen Hu The Hardy Space $ H^1 (\mu) $ . . . . . 59--136
Dachun Yang and
Dongyong Yang and
Guoen Hu The Local Atomic Hardy Space $ h^1 (\mu)
$ . . . . . . . . . . . . . . . . . . . 137--214
Dachun Yang and
Dongyong Yang and
Guoen Hu Boundedness of Operators over $
({\mathbb {R}}^D, \mu) $ . . . . . . . . 215--328
Dachun Yang and
Dongyong Yang and
Guoen Hu Littlewood--Paley Operators and Maximal
Operators Related to Approximations of
the Identity . . . . . . . . . . . . . . 329--412
Dachun Yang and
Dongyong Yang and
Guoen Hu Front Matter . . . . . . . . . . . . . . 413--415
Dachun Yang and
Dongyong Yang and
Guoen Hu The Hardy Space $ H^1 (\mathcal {X},
\nu) $ and Its Dual Space $ \mathrm
{RBMO}(\mathcal {X}, \nu) $ . . . . . . 417--481
Dachun Yang and
Dongyong Yang and
Guoen Hu Boundedness of Operators over $
(\mathcal {X}, \nu) $ . . . . . . . . . 483--642
Dachun Yang and
Dongyong Yang and
Guoen Hu Back Matter . . . . . . . . . . . . . . 643--656
Arnaud Debussche and
Michael Högele and
Peter Imkeller Front Matter . . . . . . . . . . . . . . i--xiii
Arnaud Debussche and
Michael Högele and
Peter Imkeller Introduction . . . . . . . . . . . . . . 1--10
Arnaud Debussche and
Michael Högele and
Peter Imkeller The Fine Dynamics of the Chafee--Infante
Equation . . . . . . . . . . . . . . . . 11--43
Arnaud Debussche and
Michael Högele and
Peter Imkeller The Stochastic Chafee--Infante Equation 45--68
Arnaud Debussche and
Michael Högele and
Peter Imkeller The Small Deviation of the Small Noise
Solution . . . . . . . . . . . . . . . . 69--85
Arnaud Debussche and
Michael Högele and
Peter Imkeller Asymptotic Exit Times . . . . . . . . . 87--120
Arnaud Debussche and
Michael Högele and
Peter Imkeller Asymptotic Transition Times . . . . . . 121--130
Arnaud Debussche and
Michael Högele and
Peter Imkeller Localization and Metastability . . . . . 131--149
Arnaud Debussche and
Michael Högele and
Peter Imkeller Back Matter . . . . . . . . . . . . . . 151--165
Sébastien Boucksom and
Philippe Eyssidieux and
Vincent Guedj Introduction . . . . . . . . . . . . . . 1--6
Cyril Imbert and
Luis Silvestre An Introduction to Fully Nonlinear
Parabolic Equations . . . . . . . . . . 7--88
Jian Song and
Ben Weinkove An Introduction to the Kähler--Ricci Flow 89--188
Sébastien Boucksom and
Vincent Guedj Regularizing Properties of the
Kähler--Ricci Flow . . . . . . . . . . . 189--237
Huai-Dong Cao The Kähler--Ricci Flow on Fano Manifolds 239--297
Vincent Guedj Convergence of the Kähler--Ricci Flow on
a Kähler--Einstein Fano Manifold . . . . 299--333
Vincent Guedj Back Matter . . . . . . . . . . . . . . 335--336
Ju-Yi Yen and
Marc Yor Front Matter . . . . . . . . . . . . . . i--ix
Ju-Yi Yen and
Marc Yor Prerequisites . . . . . . . . . . . . . 1--10
Ju-Yi Yen and
Marc Yor Front Matter . . . . . . . . . . . . . . 11--11
Ju-Yi Yen and
Marc Yor The Existence and Regularity of
Semimartingale Local Times . . . . . . . 13--28
Ju-Yi Yen and
Marc Yor Lévy's Representation of Reflecting BM
and Pitman's Representation of $ {\rm
BES}(3) $ . . . . . . . . . . . . . . . 29--41
Ju-Yi Yen and
Marc Yor Paul Lévy's Arcsine Laws . . . . . . . . 43--54
Ju-Yi Yen and
Marc Yor Front Matter . . . . . . . . . . . . . . 55--55
Ju-Yi Yen and
Marc Yor Brownian Excursion Theory: a First
Approach . . . . . . . . . . . . . . . . 57--64
Ju-Yi Yen and
Marc Yor Two Descriptions of $n$: Itô's and
Williams' . . . . . . . . . . . . . . . 65--77
Ju-Yi Yen and
Marc Yor A Simple Path Decomposition of Brownian
Motion Around Time $ t = 1 $ . . . . . . 79--92
Ju-Yi Yen and
Marc Yor The Laws of, and Conditioning with
Respect to, Last Passage Times . . . . . 93--100
Ju-Yi Yen and
Marc Yor Integral Representations Relating $W$
and $n$ . . . . . . . . . . . . . . . . 101--104
Ju-Yi Yen and
Marc Yor Front Matter . . . . . . . . . . . . . . 105--105
Ju-Yi Yen and
Marc Yor The Feynman--Kac Formula and Excursion
Theory . . . . . . . . . . . . . . . . . 107--110
Ju-Yi Yen and
Marc Yor Some Identities in Law . . . . . . . . . 111--131
Ju-Yi Yen and
Marc Yor Back Matter . . . . . . . . . . . . . . 133--138
Christoph Kawan Front Matter . . . . . . . . . . . . . . i--xxii
Christoph Kawan Basic Properties of Control Systems . . 1--42
Christoph Kawan Introduction to Invariance Entropy . . . 43--87
Christoph Kawan Linear and Bilinear Systems . . . . . . 89--105
Christoph Kawan General Estimates . . . . . . . . . . . 107--120
Christoph Kawan Controllability, Lyapunov Exponents, and
Upper Bounds . . . . . . . . . . . . . . 121--150
Christoph Kawan Escape Rates and Lower Bounds . . . . . 151--175
Christoph Kawan Examples . . . . . . . . . . . . . . . . 177--220
Christoph Kawan Back Matter . . . . . . . . . . . . . . 221--272
Martin Burger and
Andrea C. G. Mennucci and
Stanley Osher and
Martin Rumpf Front Matter . . . . . . . . . . . . . . i--vii
Martin Burger and
Stanley Osher A Guide to the TV Zoo . . . . . . . . . 1--70
Alex Sawatzky and
Christoph Brune and
Thomas Kösters and
Frank Wübbeling and
Martin Burger EM--TV Methods for Inverse Problems with
Poisson Noise . . . . . . . . . . . . . 71--142
Martin Rumpf Variational Methods in Image Matching
and Motion Extraction . . . . . . . . . 143--204
Andrea C. G. Mennucci Metrics of Curves in Shape Optimization
and Analysis . . . . . . . . . . . . . . 205--319
Andrea C. G. Mennucci Back Matter . . . . . . . . . . . . . . 321--322
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Front Matter . . . . . . . . . . . . . . i--xvii
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Front Matter . . . . . . . . . . . . . . 1--1
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Preliminaries . . . . . . . . . . . . . 3--50
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Layer Potential Techniques . . . . . . . 51--94
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Front Matter . . . . . . . . . . . . . . 95--95
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Small Volume Expansions . . . . . . . . 97--113
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Generalized Polarization Tensors . . . . 115--131
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Frequency Dependent Generalized
Polarization Tensors . . . . . . . . . . 133--142
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Front Matter . . . . . . . . . . . . . . 143--143
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Multistatic Response Matrix: Statistical
Structure . . . . . . . . . . . . . . . 145--161
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang MSR Matrices Using Multipolar Expansions 163--169
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Front Matter . . . . . . . . . . . . . . 171--171
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Direct Imaging Functionals for
Inclusions in the Continuum
Approximation . . . . . . . . . . . . . 173--188
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Detection and Imaging from MSR
Measurements . . . . . . . . . . . . . . 189--202
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Front Matter . . . . . . . . . . . . . . 203--203
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Reconstruction of GPTs from MSR
Measurements . . . . . . . . . . . . . . 205--210
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Target Identification and Tracking . . . 211--226
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Front Matter . . . . . . . . . . . . . . 227--227
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Time-Reversal and Diffraction Tomography
for Inverse Source Problems . . . . . . 229--238
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Imaging Small Shape Deformations of an
Extended Target from MSR Measurements 239--252
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Nonlinear Optimization Algorithms . . . 253--266
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Front Matter . . . . . . . . . . . . . . 267--267
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang GPT- and $S$-Vanishing Structures for
Near-Cloaking . . . . . . . . . . . . . 269--286
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Anomalous Resonance Cloaking . . . . . . 287--299
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Front Matter . . . . . . . . . . . . . . 301--301
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Numerical Implementations . . . . . . . 303--330
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Numerical Results . . . . . . . . . . . 331--349
Habib Ammari and
Josselin Garnier and
Wenjia Jing and
Hyeonbae Kang and
Mikyoung Lim and
Knut Sòlna and
Han Wang Back Matter . . . . . . . . . . . . . . 351--382
Björn Böttcher and
René Schilling and
Jian Wang Front Matter . . . . . . . . . . . . . . i--xviii
Björn Böttcher and
René Schilling and
Jian Wang A Primer on Feller Semigroups and Feller
Processes . . . . . . . . . . . . . . . 1--30
Björn Böttcher and
René Schilling and
Jian Wang Feller Generators and Symbols . . . . . 31--67
Björn Böttcher and
René Schilling and
Jian Wang Construction of Feller Processes . . . . 69--98
Björn Böttcher and
René Schilling and
Jian Wang Transformations of Feller Processes . . 99--110
Björn Böttcher and
René Schilling and
Jian Wang Sample Path Properties . . . . . . . . . 111--140
Björn Böttcher and
René Schilling and
Jian Wang Global Properties . . . . . . . . . . . 141--165
Björn Böttcher and
René Schilling and
Jian Wang Approximation . . . . . . . . . . . . . 167--175
Björn Böttcher and
René Schilling and
Jian Wang Open Problems . . . . . . . . . . . . . 177--179
Björn Böttcher and
René Schilling and
Jian Wang Back Matter . . . . . . . . . . . . . . 181--202
Itai Benjamini Front Matter . . . . . . . . . . . . . . i--vii
Itai Benjamini Introductory Graph and Metric Notions 1--18
Itai Benjamini On the Structure of Vertex Transitive
Graphs . . . . . . . . . . . . . . . . . 19--21
Itai Benjamini The Hyperbolic Plane and Hyperbolic
Graphs . . . . . . . . . . . . . . . . . 23--31
Itai Benjamini Percolation on Graphs . . . . . . . . . 33--40
Itai Benjamini Local Limits of Graphs . . . . . . . . . 41--51
Itai Benjamini Random Planar Geometry . . . . . . . . . 53--58
Itai Benjamini Growth and Isoperimetric Profile of
Planar Graphs . . . . . . . . . . . . . 59--61
Itai Benjamini Critical Percolation on Non-Amenable
Groups . . . . . . . . . . . . . . . . . 63--68
Itai Benjamini Uniqueness of the Infinite Percolation
Cluster . . . . . . . . . . . . . . . . 69--84
Itai Benjamini Percolation Perturbations . . . . . . . 85--95
Itai Benjamini Percolation on Expanders . . . . . . . . 97--105
Itai Benjamini Harmonic Functions on Graphs . . . . . . 107--120
Itai Benjamini Nonamenable Liouville Graphs . . . . . . 121--124
Itai Benjamini Back Matter . . . . . . . . . . . . . . 125--132
Peter E. Kloeden and
Christian Pötzsche Front Matter . . . . . . . . . . . . . . i--xviii
Peter E. Kloeden and
Christian Pötzsche Front Matter . . . . . . . . . . . . . . 1--1
Peter E. Kloeden and
Christian Pötzsche Nonautonomous Dynamical Systems in the
Life Sciences . . . . . . . . . . . . . 3--39
Michael Marcondes de Freitas and
Eduardo D. Sontag Random Dynamical Systems with Inputs . . 41--87
Martin Wechselberger and
John Mitry and
John Rinzel Canard Theory and Excitability . . . . . 89--132
Martin Wechselberger and
John Mitry and
John Rinzel Front Matter . . . . . . . . . . . . . . 133--133
Kevin K. Lin Stimulus-Response Reliability of
Biological Networks . . . . . . . . . . 135--161
Philip T. Clemson and
Spase Petkoski and
Tomislav Stankovski and
Aneta Stefanovska Coupled Nonautonomous Oscillators . . . 163--197
Germán A. Enciso Multisite Mechanisms for
Ultrasensitivity in Signal Transduction 199--224
Gilbert Koch and
Johannes Schropp Mathematical Concepts in
Pharmacokinetics and Pharmacodynamics
with Application to Tumor Growth . . . . 225--250
Eva Herrmann and
Yusuke Asai Viral Kinetic Modeling of Chronic
Hepatitis C and B Infection . . . . . . 251--268
Christina Surulescu and
Nicolae Surulescu Some Classes of Stochastic Differential
Equations as an Alternative Modeling
Approach to Biomedical Problems . . . . 269--307
Christina Surulescu and
Nicolae Surulescu Back Matter . . . . . . . . . . . . . . 309--314
Péter Major Front Matter . . . . . . . . . . . . . . i--xiii
Péter Major On a Limit Problem . . . . . . . . . . . 1--8
Péter Major Wick Polynomials . . . . . . . . . . . . 9--14
Péter Major Random Spectral Measures . . . . . . . . 15--26
Péter Major Multiple Wiener--Itô Integrals . . . . . 27--42
Péter Major The Proof of Itô's Formula: The Diagram
Formula and Some of Its Consequences . . 43--64
Péter Major Subordinated Random Fields: Construction
of Self-similar Fields . . . . . . . . . 65--79
Péter Major On the Original Wiener--Itô Integral . . 81--86
Péter Major Non-central Limit Theorems . . . . . . . 87--112
Péter Major History of the Problems: Comments . . . 113--122
Péter Major Back Matter . . . . . . . . . . . . . . 123--128
Wolf-Jürgen Beyn and
Luca Dieci and
Nicola Guglielmi and
Ernst Hairer and
Jesús María Sanz-Serna and
Marino Zennaro Front Matter . . . . . . . . . . . . . . i--ix
Paola Console and
Ernst Hairer Long-Term Stability of Symmetric
Partitioned Linear Multistep Methods . . 1--37
J. M. Sanz-Serna Markov Chain Monte Carlo and Numerical
Differential Equations . . . . . . . . . 39--88
Wolf-Jürgen Beyn and
Denny Otten and
Jens Rottmann-Matthes Stability and Computation of Dynamic
Patterns in PDEs . . . . . . . . . . . . 89--172
Luca Dieci and
Alessandra Papini and
Alessandro Pugliese and
Alessandro Spadoni Continuous Decompositions and Coalescing
Eigenvalues for Matrices Depending on
Parameters . . . . . . . . . . . . . . . 173--264
Nicola Guglielmi and
Marino Zennaro Stability of Linear Problems: Joint
Spectral Radius of Sets of Matrices . . 265--313
Nicola Guglielmi and
Marino Zennaro Back Matter . . . . . . . . . . . . . . 315--316
Luca Capogna and
Pengfei Guan and
Cristian E. Gutiérrez and
Annamaria Montanari Front Matter . . . . . . . . . . . . . . i--xi
Luca Capogna $ L^\infty $-Extremal Mappings in AMLE
and Teichmüller Theory . . . . . . . . . 1--46
Pengfei Guan Curvature Measures, Isoperimetric Type
Inequalities and Fully Nonlinear PDEs 47--94
Cristian E. Gutiérrez Refraction Problems in Geometric Optics 95--150
Annamaria Montanari On the Levi Monge--Ampére Equation . . . 151--208
Annamaria Montanari Back Matter . . . . . . . . . . . . . . 209--212
Miguel A. Sainz and
Joaquim Armengol and
Remei Calm and
Pau Herrero and
Lambert Jorba and
Josep Vehi Front Matter . . . . . . . . . . . . . . i--xvi
Miguel A. Sainz and
Joaquim Armengol and
Remei Calm and
Pau Herrero and
Lambert Jorba and
Josep Vehi Intervals . . . . . . . . . . . . . . . 1--16
Miguel A. Sainz and
Joaquim Armengol and
Remei Calm and
Pau Herrero and
Lambert Jorba and
Josep Vehi Modal Intervals . . . . . . . . . . . . 17--37
Miguel A. Sainz and
Joaquim Armengol and
Remei Calm and
Pau Herrero and
Lambert Jorba and
Josep Vehi Modal Interval Extensions . . . . . . . 39--72
Miguel A. Sainz and
Joaquim Armengol and
Remei Calm and
Pau Herrero and
Lambert Jorba and
Josep Vehi Interpretability and Optimality . . . . 73--120
Miguel A. Sainz and
Joaquim Armengol and
Remei Calm and
Pau Herrero and
Lambert Jorba and
Josep Vehi Interval Arithmetic . . . . . . . . . . 121--141
Miguel A. Sainz and
Joaquim Armengol and
Remei Calm and
Pau Herrero and
Lambert Jorba and
Josep Vehi Equations and Systems . . . . . . . . . 143--158
Miguel A. Sainz and
Joaquim Armengol and
Remei Calm and
Pau Herrero and
Lambert Jorba and
Josep Vehi Twins and $ f^\ast $ Algorithm . . . . . 159--183
Miguel A. Sainz and
Joaquim Armengol and
Remei Calm and
Pau Herrero and
Lambert Jorba and
Josep Vehi Marks . . . . . . . . . . . . . . . . . 185--228
Miguel A. Sainz and
Joaquim Armengol and
Remei Calm and
Pau Herrero and
Lambert Jorba and
Josep Vehi Intervals of Marks . . . . . . . . . . . 229--264
Miguel A. Sainz and
Joaquim Armengol and
Remei Calm and
Pau Herrero and
Lambert Jorba and
Josep Vehi Some Related Problems . . . . . . . . . 265--305
Miguel A. Sainz and
Joaquim Armengol and
Remei Calm and
Pau Herrero and
Lambert Jorba and
Josep Vehi Back Matter . . . . . . . . . . . . . . 307--318
Donald A. Dawson and
Andreas Greven Front Matter . . . . . . . . . . . . . . i--xvii
Donald A. Dawson and
Andreas Greven Introduction . . . . . . . . . . . . . . 1--10
Donald A. Dawson and
Andreas Greven Mean-Field Emergence and Fixation of
Rare Mutants in the Fisher--Wright Model
with Two Types . . . . . . . . . . . . . 11--38
Donald A. Dawson and
Andreas Greven Formulation of the Multitype and
Multiscale Model . . . . . . . . . . . . 39--53
Donald A. Dawson and
Andreas Greven Formulation of the Main Results in the
General Case . . . . . . . . . . . . . . 55--104
Donald A. Dawson and
Andreas Greven A Basic Tool: Dual Representations . . . 105--145
Donald A. Dawson and
Andreas Greven Long-Time Behaviour: Ergodicity and
Non-ergodicity . . . . . . . . . . . . . 147--159
Donald A. Dawson and
Andreas Greven Mean-Field Emergence and Fixation of
Rare Mutants: Concepts, Strategy and a
Caricature Model . . . . . . . . . . . . 161--165
Donald A. Dawson and
Andreas Greven Methods and Proofs for the
Fisher--Wright Model with Two Types . . 167--375
Donald A. Dawson and
Andreas Greven Emergence with $ M \geq 2 $ Lower Order
Types (Phases $0$, $1$, $2$) . . . . . . 377--714
Donald A. Dawson and
Andreas Greven The General $ (M, M) $-Type Mean-Field
Model: Emergence, Fixation and Droplets 715--780
Donald A. Dawson and
Andreas Greven Neutral Evolution on $ E_1 $ After
Fixation (Phase 3) . . . . . . . . . . . 781--786
Donald A. Dawson and
Andreas Greven Re-equilibration on Higher Level $ E_1 $
(Phase 4) . . . . . . . . . . . . . . . 787--810
Donald A. Dawson and
Andreas Greven Iteration of the Cycle I: Emergence and
Fixation on $ E_2 $ . . . . . . . . . . 811--828
Donald A. Dawson and
Andreas Greven Iteration of the Cycle II: Extension to
the General Multilevel Hierarchy . . . . 829--837
Donald A. Dawson and
Andreas Greven Winding-Up: Proofs of the Theorems
$3$--$ 11$ . . . . . . . . . . . . . . . 839--839
Donald A. Dawson and
Andreas Greven Back Matter . . . . . . . . . . . . . . 841--858
Raphael Kruse Front Matter . . . . . . . . . . . . . . i--xiv
Raphael Kruse Introduction . . . . . . . . . . . . . . 1--10
Raphael Kruse Stochastic Evolution Equations in
Hilbert Spaces . . . . . . . . . . . . . 11--49
Raphael Kruse Optimal Strong Error Estimates for
Galerkin Finite Element Methods . . . . 51--84
Raphael Kruse A Short Review of the Malliavin Calculus
in Hilbert Spaces . . . . . . . . . . . 85--108
Raphael Kruse A Malliavin Calculus Approach to Weak
Convergence . . . . . . . . . . . . . . 109--127
Raphael Kruse Numerical Experiments . . . . . . . . . 129--153
Raphael Kruse Back Matter . . . . . . . . . . . . . . 155--180
Andrea Braides Front Matter . . . . . . . . . . . . . . i--xi
Andrea Braides Introduction . . . . . . . . . . . . . . 1--6
Andrea Braides Global Minimization . . . . . . . . . . 7--24
Andrea Braides Parameterized Motion Driven by Global
Minimization . . . . . . . . . . . . . . 25--52
Andrea Braides Local Minimization as a Selection
Criterion . . . . . . . . . . . . . . . 53--66
Andrea Braides Convergence of Local Minimizers . . . . 67--78
Andrea Braides Small-Scale Stability . . . . . . . . . 79--89
Andrea Braides Minimizing Movements . . . . . . . . . . 91--101
Andrea Braides Minimizing Movements Along a Sequence of
Functionals . . . . . . . . . . . . . . 103--128
Andrea Braides Geometric Minimizing Movements . . . . . 129--143
Andrea Braides Different Time Scales . . . . . . . . . 145--158
Andrea Braides Stability Theorems . . . . . . . . . . . 159--171
Andrea Braides Back Matter . . . . . . . . . . . . . . 173--176
Daniele Angella Front Matter . . . . . . . . . . . . . . i--xxv
Daniele Angella Preliminaries on (Almost-)Complex
Manifolds . . . . . . . . . . . . . . . 1--63
Daniele Angella Cohomology of Complex Manifolds . . . . 65--94
Daniele Angella Cohomology of Nilmanifolds . . . . . . . 95--150
Daniele Angella Cohomology of Almost-Complex Manifolds 151--232
Daniele Angella Back Matter . . . . . . . . . . . . . . 233--264
Stanislav Hencl and
Pekka Koskela Front Matter . . . . . . . . . . . . . . i--xi
Stanislav Hencl and
Pekka Koskela Introduction . . . . . . . . . . . . . . 1--15
Stanislav Hencl and
Pekka Koskela Continuity . . . . . . . . . . . . . . . 17--39
Stanislav Hencl and
Pekka Koskela Openness and Discreteness . . . . . . . 41--61
Stanislav Hencl and
Pekka Koskela Images and Preimages of Null Sets . . . 63--79
Stanislav Hencl and
Pekka Koskela Homeomorphisms of Finite Distortion . . 81--105
Stanislav Hencl and
Pekka Koskela Integrability of $ J_f $ and $ 1 / J_f $ 107--121
Stanislav Hencl and
Pekka Koskela Final Comments . . . . . . . . . . . . . 123--138
Stanislav Hencl and
Pekka Koskela Back Matter . . . . . . . . . . . . . . 139--178
Tatsuo Nishitani Front Matter . . . . . . . . . . . . . . i--viii
Tatsuo Nishitani Introduction . . . . . . . . . . . . . . 1--29
Tatsuo Nishitani Necessary Conditions for Strong
Hyperbolicity . . . . . . . . . . . . . 31--84
Tatsuo Nishitani Two by Two Systems with Two Independent
Variables . . . . . . . . . . . . . . . 85--160
Tatsuo Nishitani Systems with Nondegenerate
Characteristics . . . . . . . . . . . . 161--229
Tatsuo Nishitani Back Matter . . . . . . . . . . . . . . 231--240
Takashi Kumagai Front Matter . . . . . . . . . . . . . . i--x
Takashi Kumagai Introduction . . . . . . . . . . . . . . 1--2
Takashi Kumagai Weighted Graphs and the Associated
Markov Chains . . . . . . . . . . . . . 3--19
Takashi Kumagai Heat Kernel Estimates: General Theory 21--41
Takashi Kumagai Heat Kernel Estimates Using Effective
Resistance . . . . . . . . . . . . . . . 43--58
Takashi Kumagai Heat Kernel Estimates for Random
Weighted Graphs . . . . . . . . . . . . 59--64
Takashi Kumagai Alexander--Orbach Conjecture Holds When
Two-Point Functions Behave Nicely . . . 65--77
Takashi Kumagai Further Results for Random Walk on IIC 79--93
Takashi Kumagai Random Conductance Model . . . . . . . . 95--134
Takashi Kumagai Back Matter . . . . . . . . . . . . . . 135--150
Manfred Knebusch and
Tobias Kaiser Front Matter . . . . . . . . . . . . . . i--xii
Manfred Knebusch and
Tobias Kaiser Overrings and PM-Spectra . . . . . . . . 1--57
Manfred Knebusch and
Tobias Kaiser Approximation Theorems . . . . . . . . . 59--121
Manfred Knebusch and
Tobias Kaiser Kronecker Extensions and Star Operations 123--178
Manfred Knebusch and
Tobias Kaiser Back Matter . . . . . . . . . . . . . . 179--192
Christian Weiß Front Matter . . . . . . . . . . . . . . i--xvi
Christian Weiß Introduction . . . . . . . . . . . . . . 1--10
Christian Weiß Background . . . . . . . . . . . . . . . 11--37
Christian Weiß Teichmüller Curves . . . . . . . . . . . 39--51
Christian Weiß Twisted Teichmüller Curves . . . . . . . 53--59
Christian Weiß Stabilizer and Maximality . . . . . . . 61--84
Christian Weiß Calculations for Twisted Teichmüller
Curves . . . . . . . . . . . . . . . . . 85--119
Christian Weiß Prym Varieties and Teichmüller Curves . . 121--125
Christian Weiß Lyapunov Exponents . . . . . . . . . . . 127--133
Christian Weiß Kobayashi Curves Revisited . . . . . . . 135--144
Christian Weiß Back Matter . . . . . . . . . . . . . . 145--168
Siegfried Bosch Front Matter . . . . . . . . . . . . . . i--viii
Siegfried Bosch Introduction . . . . . . . . . . . . . . 1--5
Siegfried Bosch Front Matter . . . . . . . . . . . . . . 7--7
Siegfried Bosch Tate Algebras . . . . . . . . . . . . . 9--29
Siegfried Bosch Affinoid Algebras and Their Associated
Spaces . . . . . . . . . . . . . . . . . 31--63
Siegfried Bosch Affinoid Functions . . . . . . . . . . . 65--91
Siegfried Bosch Towards the Notion of Rigid Spaces . . . 93--116
Siegfried Bosch Coherent Sheaves on Rigid Spaces . . . . 117--147
Siegfried Bosch Front Matter . . . . . . . . . . . . . . 149--149
Siegfried Bosch Adic Rings and Their Associated Formal
Schemes . . . . . . . . . . . . . . . . 151--173
Siegfried Bosch Raynaud's View on Rigid Spaces . . . . . 175--214
Siegfried Bosch More Advanced Stuff . . . . . . . . . . 215--227
Siegfried Bosch Back Matter . . . . . . . . . . . . . . 229--256
Krzysztof Burdzy Front Matter . . . . . . . . . . . . . . i--xii
Krzysztof Burdzy Brownian Motion . . . . . . . . . . . . 1--10
Krzysztof Burdzy Probabilistic Proofs of Classical
Theorems . . . . . . . . . . . . . . . . 11--19
Krzysztof Burdzy Overview of the ``Hot Spots'' Problem 21--29
Krzysztof Burdzy Neumann Eigenfunctions and Eigenvalues 31--39
Krzysztof Burdzy Synchronous and Mirror Couplings . . . . 41--62
Krzysztof Burdzy Parabolic Boundary Harnack Principle . . 63--75
Krzysztof Burdzy Scaling Coupling . . . . . . . . . . . . 77--87
Krzysztof Burdzy Nodal Lines . . . . . . . . . . . . . . 89--96
Krzysztof Burdzy Neumann Heat Kernel Monotonicity . . . . 97--105
Krzysztof Burdzy Reflected Brownian Motion in Time
Dependent Domains . . . . . . . . . . . 107--131
Krzysztof Burdzy Back Matter . . . . . . . . . . . . . . 133--140
William Chen and
Anand Srivastav and
Giancarlo Travaglini Front Matter . . . . . . . . . . . . . . i--xvi
William Chen and
Anand Srivastav and
Giancarlo Travaglini Front Matter . . . . . . . . . . . . . . 1--1
William Chen and
Maxim Skriganov Upper Bounds in Classical Discrepancy
Theory . . . . . . . . . . . . . . . . . 3--69
Dmitriy Bilyk Roth's Orthogonal Function Method in
Discrepancy Theory and Some New
Connections . . . . . . . . . . . . . . 71--158
Luca Brandolini and
Giacomo Gigante and
Giancarlo Travaglini Irregularities of Distribution and
Average Decay of Fourier Transforms . . 159--220
József Beck Superirregularity . . . . . . . . . . . 221--316
József Beck Front Matter . . . . . . . . . . . . . . 317--317
Nils Hebbinghaus and
Anand Srivastav Multicolor Discrepancy of Arithmetic
Structures . . . . . . . . . . . . . . . 319--424
Nikhil Bansal Algorithmic Aspects of Combinatorial
Discrepancy . . . . . . . . . . . . . . 425--457
Lasse Kliemann Practical Algorithms for Low-Discrepancy
$2$-Colorings . . . . . . . . . . . . . 459--484
Lasse Kliemann Front Matter . . . . . . . . . . . . . . 485--485
Ákos Magyar On the Distribution of Solutions to
Diophantine Equations . . . . . . . . . 487--538
Josef Dick and
Friedrich Pillichshammer Discrepancy Theory and Quasi-Monte Carlo
Integration . . . . . . . . . . . . . . 539--619
Carola Doerr and
Michael Gnewuch and
Magnus Wahlström Calculation of Discrepancy Measures and
Applications . . . . . . . . . . . . . . 621--678
Carola Doerr and
Michael Gnewuch and
Magnus Wahlström Back Matter . . . . . . . . . . . . . . 679--698
Aldo Conca and
Sandra Di Rocco and
Jan Draisma and
June Huh and
Bernd Sturmfels and
Filippo Viviani Front Matter . . . . . . . . . . . . . . i--vii
Aldo Conca Koszul Algebras and Their Syzygies . . . 1--31
Jan Draisma Noetherianity up to Symmetry . . . . . . 33--61
June Huh and
Bernd Sturmfels Likelihood Geometry . . . . . . . . . . 63--117
Sandra Di Rocco Linear Toric Fibrations . . . . . . . . 119--147
Filippo Viviani A Tour on Hermitian Symmetric Manifolds 149--239
Filippo Viviani Back Matter . . . . . . . . . . . . . . 241--242
Stefan Witzel Front Matter . . . . . . . . . . . . . . i--xvi
Stefan Witzel Basic Definitions and Properties . . . . 1--44
Stefan Witzel Finiteness Properties of $ \mathbf
{G}(F_q[t]) $ . . . . . . . . . . . . . 45--79
Stefan Witzel Finiteness Properties of $ \mathbf
{G}(F_q[t, t^{-1}]) $ . . . . . . . . . 81--97
Stefan Witzel Back Matter . . . . . . . . . . . . . . 99--116
Owen Dearricott and
Fernando Galaz-García and
Lee Kennard and
Catherine Searle and
Gregor Weingart and
Wolfgang Ziller Front Matter . . . . . . . . . . . . . . i--vii
Wolfgang Ziller Riemannian Manifolds with Positive
Sectional Curvature . . . . . . . . . . 1--19
Catherine Searle An Introduction to Isometric Group
Actions with Applications to Spaces with
Curvature Bounded from Below . . . . . . 21--43
Fernando Galaz-Garcia A Note on Maximal Symmetry Rank,
Quasipositive Curvature, and Low
Dimensional Manifolds . . . . . . . . . 45--55
Owen Dearricott Lectures on $n$-Sasakian Manifolds . . . 57--109
Lee Kennard On the Hopf Conjecture with Symmetry . . 111--116
Gregor Weingart An Introduction to Exterior Differential
Systems . . . . . . . . . . . . . . . . 117--196
Gregor Weingart Back Matter . . . . . . . . . . . . . . 197--198
Lou van den Dries and
Jochen Koenigsmann and
H. Dugald Macpherson and
Anand Pillay and
Carlo Toffalori and
Alex J. Wilkie Front Matter . . . . . . . . . . . . . . i--vii
Dugald Macpherson and
Carlo Toffalori Model Theory in Algebra, Analysis and
Arithmetic: a Preface . . . . . . . . . 1--11
Anand Pillay Some Themes Around First Order Theories
Without the Independence Property . . . 13--33
A. J. Wilkie Lectures on the Model Theory of Real and
Complex Exponentiation . . . . . . . . . 35--53
Lou van den Dries Lectures on the Model Theory of Valued
Fields . . . . . . . . . . . . . . . . . 55--157
Jochen Koenigsmann Undecidability in Number Theory . . . . 159--195
Jochen Koenigsmann Back Matter . . . . . . . . . . . . . . 197--198
Christian Bär and
Christian Becker Front Matter . . . . . . . . . . . . . . i--viii
Christian Bär and
Christian Becker Differential Characters and Geometric
Chains . . . . . . . . . . . . . . . . . 1--90
Christian Becker Relative Differential Cohomology . . . . 91--180
Christian Becker Back Matter . . . . . . . . . . . . . . 181--189
Daniel Scott Farley and
Ivonne Johanna Ortiz Front Matter . . . . . . . . . . . . . . i--x
Daniel Scott Farley and
Ivonne Johanna Ortiz Introduction . . . . . . . . . . . . . . 1--8
Daniel Scott Farley and
Ivonne Johanna Ortiz Three-Dimensional Point Groups . . . . . 9--21
Daniel Scott Farley and
Ivonne Johanna Ortiz Arithmetic Classification of Pairs $ (L,
H) $ . . . . . . . . . . . . . . . . . . 23--39
Daniel Scott Farley and
Ivonne Johanna Ortiz The Split Three-Dimensional
Crystallographic Groups . . . . . . . . 41--43
Daniel Scott Farley and
Ivonne Johanna Ortiz A Splitting Formula for Lower Algebraic
$K$-Theory . . . . . . . . . . . . . . . 45--57
Daniel Scott Farley and
Ivonne Johanna Ortiz Fundamental Domains for the Maximal
Groups . . . . . . . . . . . . . . . . . 59--79
Daniel Scott Farley and
Ivonne Johanna Ortiz The Homology Groups $ H_n^\varGamma
(E_{\mathcal {FIN}}(\varGamma); \mathbb
{K} \mathbb {Z}^{- \infty }) $ . . . . . 81--98
Daniel Scott Farley and
Ivonne Johanna Ortiz Fundamental Domains for Actions on
Spaces of Planes . . . . . . . . . . . . 99--117
Daniel Scott Farley and
Ivonne Johanna Ortiz Cokernels of the Relative Assembly Maps
for $ \mathcal {V} \mathcal {C}_\infty $ 119--136
Daniel Scott Farley and
Ivonne Johanna Ortiz Summary . . . . . . . . . . . . . . . . 137--141
Daniel Scott Farley and
Ivonne Johanna Ortiz Back Matter . . . . . . . . . . . . . . 143--150
Elena Shchepakina and
Vladimir Sobolev and
Michael P. Mortell Front Matter . . . . . . . . . . . . . . i--xiii
Elena Shchepakina and
Vladimir Sobolev and
Michael P. Mortell Introduction . . . . . . . . . . . . . . 1--23
Elena Shchepakina and
Vladimir Sobolev and
Michael P. Mortell Slow Integral Manifolds . . . . . . . . 25--42
Elena Shchepakina and
Vladimir Sobolev and
Michael P. Mortell The Book of Numbers . . . . . . . . . . 43--80
Elena Shchepakina and
Vladimir Sobolev and
Michael P. Mortell Representations of Slow Integral
Manifolds . . . . . . . . . . . . . . . 81--92
Elena Shchepakina and
Vladimir Sobolev and
Michael P. Mortell Singular Singularly Perturbed Systems 93--110
Elena Shchepakina and
Vladimir Sobolev and
Michael P. Mortell Reduction Methods for Chemical Systems 111--117
Elena Shchepakina and
Vladimir Sobolev and
Michael P. Mortell Specific Cases . . . . . . . . . . . . . 119--139
Elena Shchepakina and
Vladimir Sobolev and
Michael P. Mortell Canards and Black Swans . . . . . . . . 141--182
Elena Shchepakina and
Vladimir Sobolev and
Michael P. Mortell Appendix: Proofs . . . . . . . . . . . . 183--198
Elena Shchepakina and
Vladimir Sobolev and
Michael P. Mortell Back Matter . . . . . . . . . . . . . . 199--214
François Rouvi\`ere Front Matter . . . . . . . . . . . . . . i--xxi
François Rouvi\`ere The Kashiwara--Vergne Method for Lie
Groups . . . . . . . . . . . . . . . . . 1--49
François Rouvi\`ere Convolution on Homogeneous Spaces . . . 51--56
François Rouvi\`ere The Role of $e$-Functions . . . . . . . 57--117
François Rouvi\`ere $e$-Functions and the
Campbell--Hausdorff Formula . . . . . . 119--175
François Rouvi\`ere Back Matter . . . . . . . . . . . . . . 177--198
Bo'az Klartag and
Emanuel Milman Front Matter . . . . . . . . . . . . . . i--ix
Dominique Bakry and
Marguerite Zani Dyson Processes Associated with
Associative Algebras: The Clifford Case 1--37
Itai Benjamini Gaussian Free Field on Hyperbolic
Lattices . . . . . . . . . . . . . . . . 39--45
Itai Benjamini and
Pascal Maillard Point-to-Point Distance in First Passage
Percolation on (Tree) $ \times Z $ . . . 47--51
Zbigniew B\locki A Lower Bound for the Bergman Kernel and
the Bourgain--Milman Inequality . . . . 53--63
Jean Bourgain An Improved Estimate in the Restricted
Isometry Problem . . . . . . . . . . . . 65--70
Jean Bourgain On Eigenvalue Spacings for the $1$-D
Anderson Model with Singular Site
Distribution . . . . . . . . . . . . . . 71--83
Jean Bourgain On the Local Eigenvalue Spacings for
Certain Anderson--Bernoulli Hamiltonians 85--96
Jean Bourgain On the Control Problem for Schrödinger
Operators on Tori . . . . . . . . . . . 97--105
Ronen Eldan and
Joseph Lehec Bounding the Norm of a Log-Concave
Vector Via Thin-Shell Estimates . . . . 107--122
Dmitry Faifman and
Bo'az Klartag and
Vitali Milman On the Oscillation Rigidity of a
Lipschitz Function on a High-Dimensional
Flat Torus . . . . . . . . . . . . . . . 123--131
Dan Florentin and
Vitali Milman and
Alexander Segal Identifying Set Inclusion by Projective
Positions and Mixed Volumes . . . . . . 133--145
Omer Friedland and
Yosef Yomdin Vitushkin-Type Theorems . . . . . . . . 147--157
Apostolos Giannopoulos and
Emanuel Milman $M$-Estimates for Isotropic Convex
Bodies and Their $ L_q$-Centroid Bodies 159--182
Uri Grupel Remarks on the Central Limit Theorem for
Non-convex Bodies . . . . . . . . . . . 183--198
Benjamin Jaye and
Fedor Nazarov Reflectionless Measures and the
Mattila--Melnikov--Verdera Uniform
Rectifiability Theorem . . . . . . . . . 199--229
Bo'az Klartag Logarithmically-Concave Moment Measures
I . . . . . . . . . . . . . . . . . . . 231--260
Alexander Koldobsky Estimates for Measures of Sections of
Convex Bodies . . . . . . . . . . . . . 261--271
Alexander V. Kolesnikov and
Emanuel Milman Remarks on the KLS Conjecture and
Hardy-Type Inequalities . . . . . . . . 273--292
Rafa\l Lata\la Modified Paouris Inequality . . . . . . 293--307
Michel Ledoux Remarks on Gaussian Noise Stability,
Brascamp--Lieb and Slepian Inequalities 309--333
Claude Dellacherie and
Servet Martinez and
Jaime San Martin Front Matter . . . . . . . . . . . . . . i--x
Claude Dellacherie and
Servet Martinez and
Jaime San Martin Introduction . . . . . . . . . . . . . . 1--3
Claude Dellacherie and
Servet Martinez and
Jaime San Martin Inverse $M$-Matrices and Potentials . . 5--55
Claude Dellacherie and
Servet Martinez and
Jaime San Martin Ultrametric Matrices . . . . . . . . . . 57--84
Claude Dellacherie and
Servet Martinez and
Jaime San Martin Graph of Ultrametric Type Matrices . . . 85--117
Claude Dellacherie and
Servet Martinez and
Jaime San Martin Filtered Matrices . . . . . . . . . . . 119--163
Claude Dellacherie and
Servet Martinez and
Jaime San Martin Hadamard Functions of Inverse
$M$-Matrices . . . . . . . . . . . . . . 165--213
Claude Dellacherie and
Servet Martinez and
Jaime San Martin Back Matter . . . . . . . . . . . . . . 215--238
Daniel Robertz Front Matter . . . . . . . . . . . . . . i--viii
Daniel Robertz Introduction . . . . . . . . . . . . . . 1--4
Daniel Robertz Formal Methods for PDE Systems . . . . . 5--117
Daniel Robertz Differential Elimination for Analytic
Functions . . . . . . . . . . . . . . . 119--231
Daniel Robertz Back Matter . . . . . . . . . . . . . . 233--285
Gilberto Bini and
Fabio Felici and
Margarida Melo and
Filippo Viviani Front Matter . . . . . . . . . . . . . . i--x
Gilberto Bini and
Fabio Felici and
Margarida Melo and
Filippo Viviani Introduction . . . . . . . . . . . . . . 1--16
Gilberto Bini and
Fabio Felici and
Margarida Melo and
Filippo Viviani Singular Curves . . . . . . . . . . . . 17--26
Gilberto Bini and
Fabio Felici and
Margarida Melo and
Filippo Viviani Combinatorial Results . . . . . . . . . 27--44
Gilberto Bini and
Fabio Felici and
Margarida Melo and
Filippo Viviani Preliminaries on GIT . . . . . . . . . . 45--59
Gilberto Bini and
Fabio Felici and
Margarida Melo and
Filippo Viviani Potential Pseudo-Stability Theorem . . . 61--72
Gilberto Bini and
Fabio Felici and
Margarida Melo and
Filippo Viviani Stabilizer Subgroups . . . . . . . . . . 73--80
Gilberto Bini and
Fabio Felici and
Margarida Melo and
Filippo Viviani Behavior at the Extremes of the Basic
Inequality . . . . . . . . . . . . . . . 81--90
Gilberto Bini and
Fabio Felici and
Margarida Melo and
Filippo Viviani A Criterion of Stability for Tails . . . 91--105
Gilberto Bini and
Fabio Felici and
Margarida Melo and
Filippo Viviani Elliptic Tails and Tacnodes with a Line 107--116
Gilberto Bini and
Fabio Felici and
Margarida Melo and
Filippo Viviani A Stratification of the Semistable Locus 117--130
Gilberto Bini and
Fabio Felici and
Margarida Melo and
Filippo Viviani Semistable, Polystable and Stable Points
(Part I) . . . . . . . . . . . . . . . . 131--139
Gilberto Bini and
Fabio Felici and
Margarida Melo and
Filippo Viviani Stability of Elliptic Tails . . . . . . 141--147
Gilberto Bini and
Fabio Felici and
Margarida Melo and
Filippo Viviani Semistable, Polystable and Stable Points
(Part II) . . . . . . . . . . . . . . . 149--154
Gilberto Bini and
Fabio Felici and
Margarida Melo and
Filippo Viviani Geometric Properties of the GIT Quotient 155--165
Gilberto Bini and
Fabio Felici and
Margarida Melo and
Filippo Viviani Extra Components of the GIT Quotient . . 167--170
Gilberto Bini and
Fabio Felici and
Margarida Melo and
Filippo Viviani Compactifications of the Universal
Jacobian . . . . . . . . . . . . . . . . 171--195
Gilberto Bini and
Fabio Felici and
Margarida Melo and
Filippo Viviani Appendix: Positivity Properties of
Balanced Line Bundles . . . . . . . . . 197--203
Gilberto Bini and
Fabio Felici and
Margarida Melo and
Filippo Viviani Back Matter . . . . . . . . . . . . . . 205--214
Catherine Donati-Martin and
Antoine Lejay and
Alain Rouault Front Matter . . . . . . . . . . . . . . i--viii
Sergey Bocharov and
Simon C. Harris Branching Random Walk in an
Inhomogeneous Breeding Potential . . . . 1--32
A. E. Kyprianou and
J-L. Pérez and
Y.-X. Ren The Backbone Decomposition for Spatially
Dependent Supercritical Superprocesses 33--59
Lucian Beznea and
Iulian C\^\impean On Bochner--Kolmogorov Theorem . . . . . 61--70
Jacques Franchi Small Time Asymptotics for an Example of
Strictly Hypoelliptic Heat Kernel . . . 71--103
Koléh\`e A. Coulibaly-Pasquier Onsager--Machlup Functional for
Uniformly Elliptic Time-Inhomogeneous
Diffusion . . . . . . . . . . . . . . . 105--123
Xi Geng and
Zhongmin Qian and
Danyu Yang $G$-Brownian Motion as Rough Paths and
Differential Equations Driven by
$G$-Brownian Motion . . . . . . . . . . 125--193
Ismaël Bailleul Flows Driven by Banach Space-Valued
Rough Paths . . . . . . . . . . . . . . 195--205
Christian Léonard Some Properties of Path Measures . . . . 207--230
P. Cattiaux and
A. Guillin Semi Log-Concave Markov Diffusions . . . 231--292
Carlo Marinelli and
Michael Röckner On Maximal Inequalities for Purely
Discontinuous Martingales in Infinite
Dimensions . . . . . . . . . . . . . . . 293--315
Walter Schachermayer Admissible Trading Strategies Under
Transaction Costs . . . . . . . . . . . 317--331
A. E. Kyprianou and
A. R. Watson Potentials of Stable Processes . . . . . 333--343
Julien Letemplier and
Thomas Simon Unimodality of Hitting Times for Stable
Processes . . . . . . . . . . . . . . . 345--357
Mathieu Rosenbaum and
Marc Yor On the Law of a Triplet Associated with
the Pseudo-Brownian Bridge . . . . . . . 359--375
Jean Brossard and
Michel Émery and
Christophe Leuridan Skew-Product Decomposition of Planar
Brownian Motion and Complementability 377--394
Vilmos Prokaj On the Exactness of the
Lévy-Transformation. . . . . . . . . . . 395--400
Yinshan Chang Multi-Occupation Field Generates the
Borel--Sigma-Field of Loops . . . . . . 401--410
Ramon van Handel Ergodicity, Decisions, and Partial
Information . . . . . . . . . . . . . . 411--459
Laurent Serlet Invariance Principle for the Random Walk
Conditioned to Have Few Zeros . . . . . 461--472
Dario Trevisan A Short Proof of Stein's Universal
Multiplier Theorem . . . . . . . . . . . 473--479
Benjamin Sambale Front Matter . . . . . . . . . . . . . . i--xiii
Benjamin Sambale Front Matter . . . . . . . . . . . . . . 1--1
Benjamin Sambale Definitions and Facts . . . . . . . . . 3--17
Benjamin Sambale Open Conjectures . . . . . . . . . . . . 19--22
Benjamin Sambale Front Matter . . . . . . . . . . . . . . 23--23
Benjamin Sambale Quadratic Forms . . . . . . . . . . . . 25--32
Benjamin Sambale The Cartan Method . . . . . . . . . . . 33--46
Benjamin Sambale A Bound in Terms of Fusion Systems . . . 47--61
Benjamin Sambale Essential Subgroups and Alperin's Fusion
Theorem . . . . . . . . . . . . . . . . 63--70
Benjamin Sambale Reduction to Quasisimple Groups and the
Classification . . . . . . . . . . . . . 71--78
Benjamin Sambale Front Matter . . . . . . . . . . . . . . 79--79
Benjamin Sambale Metacyclic Defect Groups . . . . . . . . 81--94
Benjamin Sambale Products of Metacyclic Groups . . . . . 95--125
Benjamin Sambale Bicyclic Groups . . . . . . . . . . . . 127--157
Benjamin Sambale Defect Groups of $p$-Rank $2$ . . . . . 159--165
Benjamin Sambale Minimal Non-abelian Defect Groups . . . 167--179
Benjamin Sambale Small Defect Groups . . . . . . . . . . 181--203
Benjamin Sambale Abelian Defect Groups . . . . . . . . . 205--217
Benjamin Sambale Blocks with Few Characters . . . . . . . 219--227
Benjamin Sambale Back Matter . . . . . . . . . . . . . . 229--246
Stefan Liebscher Front Matter . . . . . . . . . . . . . . i--xii
Stefan Liebscher Front Matter . . . . . . . . . . . . . . 1--1
Stefan Liebscher Introduction . . . . . . . . . . . . . . 3--12
Stefan Liebscher Methods and Concepts . . . . . . . . . . 13--19
Stefan Liebscher Cosymmetries . . . . . . . . . . . . . . 21--23
Stefan Liebscher Front Matter . . . . . . . . . . . . . . 25--25
Stefan Liebscher Transcritical Bifurcation . . . . . . . 27--34
Stefan Liebscher Poincaré--Andronov--Hopf Bifurcation . . 35--41
Stefan Liebscher Application: Decoupling in Networks . . 43--47
Stefan Liebscher Application: Oscillatory Profiles in
Systems of Hyperbolic Balance Laws . . . 49--54
Stefan Liebscher Front Matter . . . . . . . . . . . . . . 55--55
Stefan Liebscher Degenerate Transcritical Bifurcation . . 57--65
Stefan Liebscher Degenerate Poincaré--Andronov--Hopf
Bifurcation . . . . . . . . . . . . . . 67--79
Stefan Liebscher Bogdanov--Takens Bifurcation . . . . . . 81--102
Stefan Liebscher Zero-Hopf Bifurcation . . . . . . . . . 103--108
Stefan Liebscher Double-Hopf Bifurcation . . . . . . . . 109--113
Stefan Liebscher Application: Cosmological Models of
Bianchi Type, the Tumbling Universe . . 115--118
Stefan Liebscher Application: Fluid Flow in a Planar
Channel, Spatial Dynamics with
Reversible Bogdanov--Takens Bifurcation 119--128
Stefan Liebscher Front Matter . . . . . . . . . . . . . . 129--129
Stefan Liebscher Codimension-One Manifolds of Equilibria 131--133
Stefan Liebscher Summary and Outlook . . . . . . . . . . 135--137
Stefan Liebscher Back Matter . . . . . . . . . . . . . . 139--144
Antoine Ducros and
Charles Favre and
Johannes Nicaise Front Matter . . . . . . . . . . . . . . i--xix
Antoine Ducros and
Charles Favre and
Johannes Nicaise Front Matter . . . . . . . . . . . . . . 1--1
Michael Temkin Introduction to Berkovich Analytic
Spaces . . . . . . . . . . . . . . . . . 3--66
Antoine Ducros Étale Cohomology of Schemes and Analytic
Spaces . . . . . . . . . . . . . . . . . 67--118
Charles Favre Countability Properties of Some
Berkovich Spaces . . . . . . . . . . . . 119--132
Charles Favre Front Matter . . . . . . . . . . . . . . 133--133
Antoine Ducros Cohomological Finiteness of Proper
Morphisms in Algebraic Geometry: a
Purely Transcendental Proof, Without
Projective Tools . . . . . . . . . . . . 135--140
Bertrand Rémy and
Amaury Thuillier and
Annette Werner Bruhat--Tits Buildings and Analytic
Geometry . . . . . . . . . . . . . . . . 141--202
Bertrand Rémy and
Amaury Thuillier and
Annette Werner Front Matter . . . . . . . . . . . . . . 203--203
Mattias Jonsson Dynamics on Berkovich Spaces in Low
Dimensions . . . . . . . . . . . . . . . 205--366
Jean-Pierre Otal Compactification of Spaces of
Representations After Culler, Morgan and
Shalen . . . . . . . . . . . . . . . . . 367--413
Jean-Pierre Otal Back Matter . . . . . . . . . . . . . . 415--416
Volker Schmidt Front Matter . . . . . . . . . . . . . . i--xxiv
Dominic Schuhmacher Stein's Method for Approximating Complex
Distributions, with a View towards Point
Processes . . . . . . . . . . . . . . . 1--30
Bart\lomiej B\laszczyszyn and
Dhandapani Yogeshwaran Clustering Comparison of Point
Processes, with Applications to Random
Geometric Models . . . . . . . . . . . . 31--71
Claudia Redenbach and
André Liebscher Random Tessellations and their
Application to the Modelling of Cellular
Materials . . . . . . . . . . . . . . . 73--93
Volker Schmidt and
Gerd Gaiselmann and
Ole Stenzel Stochastic $3$D Models for the
Micro-structure of Advanced Functional
Materials . . . . . . . . . . . . . . . 95--141
Dominique Jeulin Boolean Random Functions . . . . . . . . 143--169
Viktor Bene\vs and
Jakub Stan\uek and
Bla\vzena Kratochvílová and
Ond\vrej \vSedivý Random Marked Sets and Dimension
Reduction . . . . . . . . . . . . . . . 171--203
Viktor Bene\vs and
Michaela Proke\vsová and
Kate\vrina Sta\vnková Helisová and
Markéta Zikmundová Space-Time Models in Stochastic Geometry 205--232
Eva B. Vedel Jensen and
Allan Rasmusson Rotational Integral Geometry and Local
Stereology --- with a View to Image
Analysis . . . . . . . . . . . . . . . . 233--255
Ulrich Stadtmüller and
Marta Zampiceni An Introduction to Functional Data
Analysis . . . . . . . . . . . . . . . . 257--292
Alexander Bulinski Some Statistical Methods in Genetics . . 293--320
Evgeny Spodarev and
Elena Shmileva and
Stefan Roth Extrapolation of Stationary Random
Fields . . . . . . . . . . . . . . . . . 321--368
Dirk P. Kroese and
Zdravko I. Botev Spatial Process Simulation . . . . . . . 369--404
Wilfrid S. Kendall Introduction to Coupling-from-the-Past
using R . . . . . . . . . . . . . . . . 405--439
Wilfrid S. Kendall Back Matter . . . . . . . . . . . . . . 441--466
Ka\"\is Ammari and
Serge Nicaise Front Matter . . . . . . . . . . . . . . i--xi
Ka\"\is Ammari and
Serge Nicaise Some Backgrounds . . . . . . . . . . . . 1--35
Ka\"\is Ammari and
Serge Nicaise Stabilization of Second Order Evolution
Equations by a Class of Unbounded
Feedbacks . . . . . . . . . . . . . . . 37--60
Ka\"\is Ammari and
Serge Nicaise Stabilization of Second Order Evolution
Equations with Unbounded Feedback with
Delay . . . . . . . . . . . . . . . . . 61--71
Ka\"\is Ammari and
Serge Nicaise Asymptotic Behaviour of Concrete
Dissipative Systems . . . . . . . . . . 73--146
Ka\"\is Ammari and
Serge Nicaise Systems with Delay . . . . . . . . . . . 147--168
Ka\"\is Ammari and
Serge Nicaise Back Matter . . . . . . . . . . . . . . 169--180
Jacek Banasiak and
Mustapha Mokhtar-Kharroubi Front Matter . . . . . . . . . . . . . . i--xi
Wilson Lamb Applying Functional Analytic Techniques
to Evolution Equations . . . . . . . . . 1--46
Adam Bobrowski Boundary Conditions in Evolutionary
Equations in Biology . . . . . . . . . . 47--92
Ernesto Estrada Introduction to Complex Networks:
Structure and Dynamics . . . . . . . . . 93--131
Jacek Banasiak Kinetic Models in Natural Sciences . . . 133--198
Philippe Laurençot Weak Compactness Techniques and
Coagulation Equations . . . . . . . . . 199--253
Ryszard Rudnicki Stochastic Operators and Semigroups and
Their Applications in Physics and
Biology . . . . . . . . . . . . . . . . 255--318
Mustapha Mokhtar-Kharroubi Spectral Theory for Neutron Transport 319--386
Anna Marciniak-Czochra Reaction-Diffusion-ODE Models of Pattern
Formation . . . . . . . . . . . . . . . 387--438
Mapundi Kondwani Banda Nonlinear Hyperbolic Systems of
Conservation Laws and Related
Applications . . . . . . . . . . . . . . 439--493
Mapundi Kondwani Banda Back Matter . . . . . . . . . . . . . . 495--496
Denis Belomestny and
Fabienne Comte and
Valentine Genon-Catalot and
Hiroki Masuda and
Markus Reiß Front Matter . . . . . . . . . . . . . . i--xv
Denis Belomestny and
Markus Reiß Estimation and Calibration of Lévy Models
via Fourier Methods . . . . . . . . . . 1--76
Fabienne Comte and
Valentine Genon-Catalot Adaptive Estimation for Lévy Processes 77--177
Hiroki Masuda Parametric Estimation of Lévy Processes 179--286
Hiroki Masuda Back Matter . . . . . . . . . . . . . . 287--288
Sigrun Bodine and
Donald A. Lutz Front Matter . . . . . . . . . . . . . . i--xi
Sigrun Bodine and
Donald A. Lutz Introduction, Notation, and Background 1--10
Sigrun Bodine and
Donald A. Lutz Asymptotic Integration for Differential
Systems . . . . . . . . . . . . . . . . 11--67
Sigrun Bodine and
Donald A. Lutz Asymptotic Representation for Solutions
of Difference Systems . . . . . . . . . 69--117
Sigrun Bodine and
Donald A. Lutz Conditioning Transformations for
Differential Systems . . . . . . . . . . 119--177
Sigrun Bodine and
Donald A. Lutz Conditioning Transformations for
Difference Systems . . . . . . . . . . . 179--208
Sigrun Bodine and
Donald A. Lutz Perturbations of Jordan Differential
Systems . . . . . . . . . . . . . . . . 209--232
Sigrun Bodine and
Donald A. Lutz Perturbations of Jordan Difference
Systems . . . . . . . . . . . . . . . . 233--236
Sigrun Bodine and
Donald A. Lutz Applications to Classes of Scalar Linear
Differential Equations . . . . . . . . . 237--294
Sigrun Bodine and
Donald A. Lutz Applications to Classes of Scalar Linear
Difference Equations . . . . . . . . . . 295--368
Sigrun Bodine and
Donald A. Lutz Asymptotics for Dynamic Equations on
Time Scales . . . . . . . . . . . . . . 369--391
Sigrun Bodine and
Donald A. Lutz Back Matter . . . . . . . . . . . . . . 393--404
Hatice Boylan Front Matter . . . . . . . . . . . . . . i--xix
Hatice Boylan Finite Quadratic Modules . . . . . . . . 1--17
Hatice Boylan Weil Representations of Finite Quadratic
Modules . . . . . . . . . . . . . . . . 19--64
Hatice Boylan Jacobi Forms over Totally Real Number
Fields . . . . . . . . . . . . . . . . . 65--101
Hatice Boylan Singular Jacobi Forms . . . . . . . . . 103--122
Hatice Boylan Back Matter . . . . . . . . . . . . . . 123--132
David Alonso-Gutiérrez and
Jesús Bastero Front Matter . . . . . . . . . . . . . . i--x
David Alonso-Gutiérrez and
Jesús Bastero The Conjectures . . . . . . . . . . . . 1--64
David Alonso-Gutiérrez and
Jesús Bastero Main Examples . . . . . . . . . . . . . 65--101
David Alonso-Gutiérrez and
Jesús Bastero Relating the Conjectures . . . . . . . . 103--135
David Alonso-Gutiérrez and
Jesús Bastero Back Matter . . . . . . . . . . . . . . 137--150
Paolo Butt\`a and
Guido Cavallaro and
Carlo Marchioro Front Matter . . . . . . . . . . . . . . i--xiv
Paolo Butt\`a and
Guido Cavallaro and
Carlo Marchioro Gas of Point Particles . . . . . . . . . 1--41
Paolo Butt\`a and
Guido Cavallaro and
Carlo Marchioro Vlasov Approximation . . . . . . . . . . 43--61
Paolo Butt\`a and
Guido Cavallaro and
Carlo Marchioro Motion of a Body Immersed in a Vlasov
System . . . . . . . . . . . . . . . . . 63--100
Paolo Butt\`a and
Guido Cavallaro and
Carlo Marchioro Motion of a Body Immersed in a Stokes
Fluid . . . . . . . . . . . . . . . . . 101--116
Paolo Butt\`a and
Guido Cavallaro and
Carlo Marchioro Back Matter . . . . . . . . . . . . . . 117--136
P. R. Kumar and
Martin J. Wainwright and
Riccardo Zecchina Front Matter . . . . . . . . . . . . . . i--vii
Fabio Fagnani and
Sophie M. Fosson and
Chiara Ravazzi Some Introductory Notes on Random Graphs 1--26
Carlo Baldassi and
Alfredo Braunstein and
Abolfazl Ramezanpour and
Riccardo Zecchina Statistical Physics and Network
Optimization Problems . . . . . . . . . 27--49
Martin J. Wainwright Graphical Models and Message-Passing
Algorithms: Some Introductory Lectures 51--108
P. R. Kumar Bridging the Gap Between Information
Theory and Wireless Networking . . . . . 109--135
P. R. Kumar Back Matter . . . . . . . . . . . . . . 137--138
Sara van de Geer Front Matter . . . . . . . . . . . . . . i--xiii
Sara van de Geer Introduction . . . . . . . . . . . . . . 1--4
Sara van de Geer The Lasso . . . . . . . . . . . . . . . 5--25
Sara van de Geer The Square-Root Lasso . . . . . . . . . 27--39
Sara van de Geer The Bias of the Lasso and Worst Possible
Sub-directions . . . . . . . . . . . . . 41--60
Sara van de Geer Confidence Intervals Using the Lasso . . 61--74
Sara van de Geer Structured Sparsity . . . . . . . . . . 75--101
Sara van de Geer General Loss with Norm-Penalty . . . . . 103--119
Sara van de Geer Empirical Process Theory for Dual Norms 121--131
Sara van de Geer Probability Inequalities for Matrices 133--137
Sara van de Geer Inequalities for the Centred Empirical
Risk and Its Derivative . . . . . . . . 139--150
Sara van de Geer The Margin Condition . . . . . . . . . . 151--165
Sara van de Geer Some Worked-Out Examples . . . . . . . . 167--197
Sara van de Geer Brouwer's Fixed Point Theorem and
Sparsity . . . . . . . . . . . . . . . . 199--214
Sara van de Geer Asymptotically Linear Estimators of the
Precision Matrix . . . . . . . . . . . . 215--221
Sara van de Geer Lower Bounds for Sparse Quadratic Forms 223--231
Sara van de Geer Symmetrization, Contraction and
Concentration . . . . . . . . . . . . . 233--238
Sara van de Geer Chaining Including Concentration . . . . 239--253
Sara van de Geer Metric Structure of Convex Hulls . . . . 255--266
Sara van de Geer Back Matter . . . . . . . . . . . . . . 267--276
Palle Jorgensen and
Steen Pedersen and
Feng Tian Front Matter . . . . . . . . . . . . . . i--xxvi
Palle Jorgensen and
Steen Pedersen and
Feng Tian Introduction . . . . . . . . . . . . . . 1--16
Palle Jorgensen and
Steen Pedersen and
Feng Tian Extensions of Continuous Positive
Definite Functions . . . . . . . . . . . 17--46
Palle Jorgensen and
Steen Pedersen and
Feng Tian The Case of More General Groups . . . . 47--66
Palle Jorgensen and
Steen Pedersen and
Feng Tian Examples . . . . . . . . . . . . . . . . 67--92
Palle Jorgensen and
Steen Pedersen and
Feng Tian Type I vs. Type II Extensions . . . . . 93--113
Palle Jorgensen and
Steen Pedersen and
Feng Tian Spectral Theory for Mercer Operators,
and Implications for $ {\rm Ext}(F) $ 115--150
Palle Jorgensen and
Steen Pedersen and
Feng Tian Green's Functions . . . . . . . . . . . 151--169
Palle Jorgensen and
Steen Pedersen and
Feng Tian Comparing the Different RKHSs $ \mathcal
{H}_F $ and $ \mathcal {H}_K $ . . . . . 171--191
Palle Jorgensen and
Steen Pedersen and
Feng Tian Convolution Products . . . . . . . . . . 193--195
Palle Jorgensen and
Steen Pedersen and
Feng Tian Models for, and Spectral Representations
of, Operator Extensions . . . . . . . . 197--216
Palle Jorgensen and
Steen Pedersen and
Feng Tian Overview and Open Questions . . . . . . 217--218
Palle Jorgensen and
Steen Pedersen and
Feng Tian Back Matter . . . . . . . . . . . . . . 219--233
Annalisa Buffa and
Giancarlo Sangalli Front Matter . . . . . . . . . . . . . . i--ix
Carla Manni and
Hendrik Speleers Standard and Non-standard CAGD Tools for
Isogeometric Analysis: a Tutorial . . . 1--69
Vibeke Skytt and
Tor Dokken Models for Isogeometric Analysis from
CAD . . . . . . . . . . . . . . . . . . 71--86
L. Beirão da Veiga and
A. Buffa and
G. Sangalli and
R. Vázquez An Introduction to the Numerical
Analysis of Isogeometric Methods . . . . 87--154
John A. Evans and
Thomas J. R. Hughes Isogeometric Compatible Discretizations
for Viscous Incompressible Flow . . . . 155--193
John A. Evans and
Thomas J. R. Hughes Back Matter . . . . . . . . . . . . . . 195--196
Patrick Popescu-Pampu Front Matter . . . . . . . . . . . . . . i--xvii
Patrick Popescu-Pampu The $ \gamma \acute {\varepsilon } \nu o
\varsigma $ According to Aristotle . . . 1--1
Patrick Popescu-Pampu Front Matter . . . . . . . . . . . . . . 3--3
Patrick Popescu-Pampu Descartes and the New World of Curves 5--6
Patrick Popescu-Pampu Newton and the Classification of Curves 7--8
Patrick Popescu-Pampu When Integrals Hide Curves . . . . . . . 9--10
Patrick Popescu-Pampu Jakob Bernoulli and the Construction of
Curves . . . . . . . . . . . . . . . . . 11--13
Patrick Popescu-Pampu Fagnano and the Lemniscate . . . . . . . 15--16
Patrick Popescu-Pampu Euler and the Addition of Lemniscatic
Integrals . . . . . . . . . . . . . . . 17--18
Patrick Popescu-Pampu Legendre and Elliptic Functions . . . . 19--20
Patrick Popescu-Pampu Abel and the New Transcendental
Functions . . . . . . . . . . . . . . . 21--22
Patrick Popescu-Pampu A Proof by Abel . . . . . . . . . . . . 23--24
Patrick Popescu-Pampu Abel's Motivations . . . . . . . . . . . 25--26
Patrick Popescu-Pampu Cauchy and the Integration Paths . . . . 27--30
Patrick Popescu-Pampu Puiseux and the Permutations of Roots 31--33
Patrick Popescu-Pampu Riemann and the Cutting of Surfaces . . 35--40
Patrick Popescu-Pampu Riemann and the Birational Invariance of
Genus . . . . . . . . . . . . . . . . . 41--42
Patrick Popescu-Pampu The Riemann--Roch Theorem . . . . . . . 43--44
Patrick Popescu-Pampu A Reinterpretation of Abel's Works . . . 45--49
Patrick Popescu-Pampu Jordan and the Topological
Classification . . . . . . . . . . . . . 51--52
Patrick Popescu-Pampu Clifford and the Number of Holes . . . . 53--57
Patrick Popescu-Pampu Clebsch and the Choice of the Term
``Genus'' . . . . . . . . . . . . . . . 59--61
Viorel Barbu and
Giuseppe Da Prato and
Michael Röckner Front Matter . . . . . . . . . . . . . . i--ix
Viorel Barbu and
Giuseppe Da Prato and
Michael Röckner Introduction . . . . . . . . . . . . . . 1--18
Viorel Barbu and
Giuseppe Da Prato and
Michael Röckner Equations with Lipschitz Nonlinearities 19--47
Viorel Barbu and
Giuseppe Da Prato and
Michael Röckner Equations with Maximal Monotone
Nonlinearities . . . . . . . . . . . . . 49--93
Viorel Barbu and
Giuseppe Da Prato and
Michael Röckner Variational Approach to Stochastic
Porous Media Equations . . . . . . . . . 95--106
Viorel Barbu and
Giuseppe Da Prato and
Michael Röckner $ L^1 $-Based Approach to Existence
Theory for Stochastic Porous Media
Equations . . . . . . . . . . . . . . . 107--131
Viorel Barbu and
Giuseppe Da Prato and
Michael Röckner The Stochastic Porous Media Equations in
$ \mathbb {R}^d $ . . . . . . . . . . . 133--165
Viorel Barbu and
Giuseppe Da Prato and
Michael Röckner Transition Semigroup . . . . . . . . . . 167--195
Viorel Barbu and
Giuseppe Da Prato and
Michael Röckner Back Matter . . . . . . . . . . . . . . 197--204
James Damon and
Peter Giblin and
Gareth Haslinger Front Matter . . . . . . . . . . . . . . i--x
James Damon and
Peter Giblin and
Gareth Haslinger Front Matter . . . . . . . . . . . . . . 1--1
James Damon and
Peter Giblin and
Gareth Haslinger Introduction . . . . . . . . . . . . . . 3--10
James Damon and
Peter Giblin and
Gareth Haslinger Overview . . . . . . . . . . . . . . . . 11--20
James Damon and
Peter Giblin and
Gareth Haslinger Front Matter . . . . . . . . . . . . . . 21--21
James Damon and
Peter Giblin and
Gareth Haslinger Apparent Contours for Projections of
Smooth Surfaces . . . . . . . . . . . . 23--33
James Damon and
Peter Giblin and
Gareth Haslinger Abstract Classification of Singularities
Preserving Features . . . . . . . . . . 35--39
James Damon and
Peter Giblin and
Gareth Haslinger Singularity Equivalence Groups Capturing
Interactions . . . . . . . . . . . . . . 41--71
James Damon and
Peter Giblin and
Gareth Haslinger Methods for Classification of
Singularities . . . . . . . . . . . . . 73--99
James Damon and
Peter Giblin and
Gareth Haslinger Methods for Topological Classification
of Singularities . . . . . . . . . . . . 101--114
James Damon and
Peter Giblin and
Gareth Haslinger Front Matter . . . . . . . . . . . . . . 115--115
James Damon and
Peter Giblin and
Gareth Haslinger Stratifications of Generically
Illuminated Surfaces with Geometric
Features . . . . . . . . . . . . . . . . 117--134
James Damon and
Peter Giblin and
Gareth Haslinger Realizations of Abstract Mappings
Representing Projection Singularities 135--155
James Damon and
Peter Giblin and
Gareth Haslinger Statements of the Main Classification
Results . . . . . . . . . . . . . . . . 157--177
James Damon and
Peter Giblin and
Gareth Haslinger Front Matter . . . . . . . . . . . . . . 179--179
James Damon and
Peter Giblin and
Gareth Haslinger Stable View Projections and Transitions
Involving Shade/Shadow Curves on a
Smooth Surface (SC) . . . . . . . . . . 181--191
James Damon and
Peter Giblin and
Gareth Haslinger Transitions Involving Views of Geometric
Features (FC) . . . . . . . . . . . . . 193--212
James Damon and
Peter Giblin and
Gareth Haslinger Front Matter . . . . . . . . . . . . . . 213--213
James Damon and
Peter Giblin and
Gareth Haslinger Transitions Involving Geometric Features
and Shade/Shadow Curves (SFC) . . . . . 215--241
James Damon and
Peter Giblin and
Gareth Haslinger Classifications of Stable Multilocal
Configurations and Their Generic
Transitions . . . . . . . . . . . . . . 243--252
James Damon and
Peter Giblin and
Gareth Haslinger Back Matter . . . . . . . . . . . . . . 253--257
Michel Boileau and
Gerard Besson and
Carlo Sinestrari and
Gang Tian Front Matter . . . . . . . . . . . . . . i--xi
Gérard Besson The Differentiable Sphere Theorem (After
S. Brendle and R. Schoen) . . . . . . . 1--19
Michel Boileau Thick/Thin Decomposition of
Three-Manifolds and the Geometrisation
Conjecture . . . . . . . . . . . . . . . 21--70
Carlo Sinestrari Singularities of Three-Dimensional Ricci
Flows . . . . . . . . . . . . . . . . . 71--104
Gang Tian Notes on Kähler--Ricci Flow . . . . . . . 105--136
Gang Tian Back Matter . . . . . . . . . . . . . . 137--138
Toshiyuki Kobayashi and
Toshihisa Kubo and
Michael Pevzner Front Matter . . . . . . . . . . . . . . i--ix
Toshiyuki Kobayashi and
Toshihisa Kubo and
Michael Pevzner Introduction . . . . . . . . . . . . . . 1--12
Toshiyuki Kobayashi and
Toshihisa Kubo and
Michael Pevzner Symmetry Breaking Operators and
Principal Series Representations of $ G
= O(n + 1, 1) $ . . . . . . . . . . . . 13--30
Toshiyuki Kobayashi and
Toshihisa Kubo and
Michael Pevzner $F$-method for Matrix-Valued
Differential Operators . . . . . . . . . 31--39
Toshiyuki Kobayashi and
Toshihisa Kubo and
Michael Pevzner Matrix-Valued $F$-method for $ O(n + 1,
1)$ . . . . . . . . . . . . . . . . . . 41--49
Toshiyuki Kobayashi and
Toshihisa Kubo and
Michael Pevzner Application of Finite-Dimensional
Representation Theory . . . . . . . . . 51--65
Toshiyuki Kobayashi and
Toshihisa Kubo and
Michael Pevzner $F$-system for Symmetry Breaking
Operators $ (j = i - 1, i {\rm case})$ 67--85
Toshiyuki Kobayashi and
Toshihisa Kubo and
Michael Pevzner $F$-system for Symmetry Breaking
Operators $ (j = i - - 2, i + 1 {\rm
case})$ . . . . . . . . . . . . . . . . 87--91
Toshiyuki Kobayashi and
Toshihisa Kubo and
Michael Pevzner Basic Operators in Differential Geometry
and Conformal Covariance . . . . . . . . 93--109
Toshiyuki Kobayashi and
Toshihisa Kubo and
Michael Pevzner Identities of Scalar-Valued Differential
Operators $ {\mathfrak {D}_l^\mu } $ . . 111--119
Toshiyuki Kobayashi and
Toshihisa Kubo and
Michael Pevzner Construction of Differential Symmetry
Breaking Operators . . . . . . . . . . . 121--129
Toshiyuki Kobayashi and
Toshihisa Kubo and
Michael Pevzner Solutions to Problems A and B for $
(S^n, S^{n - 1}) $ . . . . . . . . . . . 131--139
Toshiyuki Kobayashi and
Toshihisa Kubo and
Michael Pevzner Intertwining Operators . . . . . . . . . 141--153
Toshiyuki Kobayashi and
Toshihisa Kubo and
Michael Pevzner Matrix-Valued Factorization Identities 155--172
Toshiyuki Kobayashi and
Toshihisa Kubo and
Michael Pevzner Appendix: Gegenbauer Polynomials . . . . 173--184
Toshiyuki Kobayashi and
Toshihisa Kubo and
Michael Pevzner Back Matter . . . . . . . . . . . . . . 185--192