
The visualcounter module

Aditya Mahajan

April 1, 2013

\usemodule[visualcounter]

Find TEX documents to be too boring?

Voilà, the visualcounter module!

Make your presentations stand out.

Turn any counter into a picture.

1 1

1 1

The above effect was achieved by first defining a visualitem counter and a symbol

visual that uses that counter:

\definevisualcounter

[visualitem]

[scratchmarks]

[counter=\getvalue{v_strc_itemgroups_counter},

width=1.5bp,

height=1.2ExHeight,

distance=3bp]

\definesymbol[visual][\usevisualcounter{visualitem}]

and then using the symbol visual in an itemization:

\startitemize[visual, ...]

\item ...

\item ...

\stopitemize

2 2

2 2

Notice the counter used for page numbering? That was achieved by first defining a

visualpage counter:

\definevisualcounter

[visualpage]

[mayanumbers]

[

counter=userpage,

maxwidth=\textwidth,

]

and setting it as the footer text:

\setupfootertexts[\usevisualcounter{visualpage}]

3 3

3 3

The above examples show the basic usage of the modules. The module provides

two commands: \definevisualcounter to define a visual counter

\definevisualcounter

[...] % name of the counter

[...] % optional name of the parent counter

[

...=..., % key-value settings

]

and \usevisualcounter to use an already defined counter

\usevisualcounter

[...=...] % key-value settings

{...} % name of the counter

4 4

4 4

1 So, how do I use this?

Visual counters are defined and used in two ways:

Using a low level interface that explicitly sets the current values of the counter,

last count, the METAPOST graphic that draws the counter, and the color palette.

Using higher-level interfaces built on top of the low-level interface that allows you

to specify a structure counter like those used for page numbering, itemizations,

descriptions, etc.

5 5

5 5

1.1 The low-level interface

To begin with, lets not worry about how to define METAPOST graphics that draw the

counter. The module provides a predefined set of visualcounters, and, for now,

we’ll just use those: the scratchmarks counter. Details on defining new counters are

explained later.

Suppose that I want to show that I am on page 6 out of 12 pages:

which uses a predefined counter scratchmarks and was typed as follows:

\usevisualcounter[n=6, last=12]{scratchmarks}

The counter may be made smaller

or may use a different color palette

6 6

6 6

These settings are changed using \setupvisualcounter. In particular, to get a

small counter, use:

\setupvisualcounter[scratchmarks]

[width=1pt, height=8pt, distance=2pt]

and to change the color palette, use:

\setupvisualcounter[scratchmarks][palette=brightred]

where the brightred palette was defined as

\definecolor[bright-red] [h=DE1B1B]

\definecolor[dull-black] [h=2B2B2B]

\definecolor[dull-yellow][h=E9E581]

\definepalet

[brightred]

[past=dull-black, active=bright-red, future=dull-yellow]

7 7

7 7

1.2 The high-level interface

The high level interface is useful to display a ConTEXt counter. Rather than manually

setting the value of n, last, text, and maxtext (the last two are used only by a few

counters), simply set the value of a counter and the other values are automatically

generated. As an example, recall the set up for displaying the page numbers in the

footer:

\definevisualcounter

[visualpage]

[mayanumbers]

[

counter=userpage,

maxwidth=\textwidth,

]

In the above example, userpage is the name of the counter that keeps track of the

user page number.

8 8

8 8

A list of some commonly used ConTEXt counters is given below:

Page numbers userpage

Item group numbers \v_strc_itemgroups_counter1

Enumeration number name of the enumeration

1 Macros names with underscore are internal ConTEXt macros, and generally are not meant to be used in

user code. The easiest way to set the value of counter to \v_strc_itemgroups_counter is to use:

counter=\getvalue{v_strc_itemgroups_counter},

9 9

9 9

2 Changing the color of counters

All counters use three colors: past to display past counters, active to display current

counter, and future to display future counters. To change the color scheme, first

define a new color palette (which is misspelled in ConTEXt is colorpalet):

\definecolorpalet

[...], % Name of the color palette

[

past=..., % any previously defined \CONTEXT{} color

active=..., % any previously defined \CONTEXT{} color

future=..., % any previously defined \CONTEXT{} color

]

10 10

10 10

and then set the color palette of a particular counter either using

\definevisualcounter

[...] % name of the counter

[...] % optional name of the parent counter

[

...,

palette=..., % name of a previously defined colorpalet

...

]

or using

\setupvisualcounter

[...] % name of the counter

[

...,

palette=..., % name of a previously defined colorpalet

...

]

11 11

11 11

3 Changing the size of the counters

All predefined counters have tunable parameters (such as width, height, and distance)

that change the size of the counter. The default sizes are given in terms of EmWidth

or ExHeight; so they adapt to the size of the surrounding text.

12 12

12 12

4 Changing the style of text displayed in the counters

Some visual counters (currently, only the countdown counter) also display text. The

style of this text may be set using:

\setupvisualcounter

[...] % name of the counter

[

...,

style=..., %any valid \CONTEXT{} style

color=..., %any valid \CONTEXT{} color

...

]

Note that changing the font size in the style affects the value of EmWidth and ExHeight

and therefore also scales the counter appropriately. If this is not desirable, then you

also need to set the size of the counter in dimensions that are independent of body-

fontsize.

13 13

13 13

5 Predefined counters

The visualcounter module provides the following predefined counters:

The scratchmarks counter

The mayanumbers counter

The countdown counter

The markers counter

The progressbar counter

The pulseline counter

14 14

14 14

5.1 The scratchmarks counter

The scratchmarks counter is inspired by the fuzzycount counter that is part of the

ConTEXt’s metapost library txt. The output looks as follows:

3 out of 12 4 out of 12 5 out of 12 6 out of 12

The scratchmarks counter has the following tunable parameters:

• width (default 3bp): the width of each stroke

• height (default 3ExHeight): the length of the marker (and strictly speaking, not

the height; the real height is 𝚑𝚎𝚒𝚐𝚑𝚝 × sin(𝚊𝚗𝚐𝚕𝚎)).
• distance (default 0.5EmWidth): the distance between two successive markers.

The distance is measured from the middle of one marker to the middle of the

other (that is, it does not take the width of the stroke into account).

• angle (default 75): the angle of the forward markers. The angle of the backward

marker is -angle. Only angles between -90 and 90 give proper output.

15 15

15 15

For example, the output with width=1.5bp, angle=45 is:

3 out of 12 4 out of 12 5 out of 12 6 out of 12

An angle less than 0 changes the direction of the stroke. For example the output

with width=1.5bp, angle=-45 is:

3 out of 12 4 out of 12 5 out of 12 6 out of 12

16 16

16 16

5.2 The mayanumbers counter

The mayanumbers counter is inspired by the Mayan numbering system that I saw in

the documentary “Breaking the Maya code”. It counter does not strictly follow the

Mayan numbering system. The Mayan numbering system is written vertically; the

output of this counter is horizontal which makes it more useful for displaying page

numbers in presentations.

3 out of 12 4 out of 12

5 out of 12 6 out of 12

The shape of the small and the large markers is as follows:

The shape of the small marker The shape of the large marker

17 17

17 17

The scratchmarks counter has the following tunable parameters:

• width (default value 1EmWidth): The width of the small marker.

• height (default value 1ExHeight): The height of the markers.

• distance (default value width/4): The distance between two small markers. The

distance between each group of four small counters is 2*distance.

For example, to get an output that is half the default size, use the options

width=0.5EmWidth, height=0.5ExHeight.

3 out of 12 4 out of 12 5 out of 12 6 out of 12

18 18

18 18

5.3 The countdown counter

This counter is inspired by the spinning wheel on the iPhone and on Google images.

3 out of 12 4 out of 12 5 out of 12 6 out of 12

The countdown counter may also be used with a text display of the counter.

3 4 5 6

3 out of 12 4 out of 12 5 out of 12 6 out of 12

The example below shows how the counter changes when the number of steps are

increased.

13 out of 24 14 out of 36 25 out of 48 36 out of 60

19 19

19 19

The countdown counter has the following tunable parameters:

• width (default value 1EmWidth) and height (default value 1ExHeight): The maxi-

mum of these two determine the difference between the inner and outer diameter

of the ring.

• text (not set by default): The text to be displayed in the middle of the counter.

• maxtext (not set by default): The diameter of the inner circle is equal to 1.5 times

the maximum of the width and the height of maxtext.

• distance (default value 3EmWidth): The distance between the consecutive mark-

ers along the circumference of the outer circle is equal to distance/last.

For example, to get a continuous circle set distance=0pt:

13 out of 24 14 out of 36 25 out of 48 36 out of 60

When the high level interface is used, i.e., when the option counter=... is set,

the value of text is the converted value of the counter, and the value of maxtext is

the converted value of last counter.

20 20

20 20

5.4 The markers counter

The markers counter is inspired by the section markers displayed by the LATEX beamer

package. This module comes in two shapes: the default shape is circle

3 out of 12

4 out of 12

5 out of 12

6 out of 12

21 21

21 21

The alternative shape is a square, which is selected using

\setupvisualcounter

[...] % name of the counter

[

...

mpsetups=visualcounter::markers:square,

...

]

3 out of 12

4 out of 12

5 out of 12

6 out of 12

22 22

22 22

The visualcounter::markers:square is a predefined alternative shape. Before

discussing how to define a new shape, lets look at the tunable parameters of the

markers counter:

• width (default value 1EmWidth): The width of the each marker.

• distance (default value width/4): The edge to edge distance between successive

markers.

• mpsetups (default value visualcounter::markers:circle): A useMPgraphic that

determines the shape and the display of the markers. The module comes with

three predefined shapes, visualcounter::markers:circle,

visualcounter::markers:square, and visualcounter::markers:star.

To define a new shape, you have to create a useMPgraphic that defines three META

POST macros:

• show_past_marker(expr shift)

• show_active_marker(expr shift)

• show_future_marker(expr shift)

The argument to these macros is the shift calculated based on their position. The

macros are responsible for using the shift amount either for horizontal shift or for

vertical shift, and coloring the markers with appropriate colors. The three colors

from the color palette are available as past_color, active_color, future_color.

23 23

23 23

As an example, lets consider a new visual counter that displays a “star rating”:

1 out of 5 3 out of 5 5 out of 5

For better visual effect, I have also changed the color palette to one that uses same

color for past and current markers. Note that the above alternative is available as

the visualcounter::markers:star option to mpsetups. The following description is

just to explain how to define a new marker.

24 24

24 24

To create such a counter, first create a useMPgraphic as follows (I could have used

any name instead of visualcounter::markers:star):

\startuseMPgraphic{visualcounter::markers:star}

% Copied from http://tug.org/pracjourn/2012-1/hefferon.html

def fullstar =

hide (

z0 = origin;

z1 = (x0, 0.5);

z2 = ((z1 - z0) rotated (360/5)) + z0 ;

z3 = ((z1 - z0) rotated (2*360/5)) + z0 ;

z4 = ((z1 - z0) rotated (3*360/5)) + z0 ;

z5 = ((z1 - z0) rotated (4*360/5)) + z0 ;

z6 = whatever[z1, z3] = whatever[z2, z5];

z7 = whatever[z1, z3] = whatever[z2, z4];

z8 = whatever[z2, z4] = whatever[z3, z5];

z9 = whatever[z1, z4] = whatever[z3, z5];

z10 = whatever[z1, z4] = whatever[z2, z5];

)

(z1 -- z6 -- z2 -- z7 -- z3 -- z8 -- z4

-- z9 -- z5 -- z10 -- cycle)

enddef;

25 25

25 25

def show_star(expr shift, fill_color) =

newpath p;

p := fullstar xyscaled(width, width) shifted (shift, 0);

fill p withcolor fill_color;

draw p withcolor 0.5*fill_color;

enddef;

def show_past_marker(expr shift) =

show_star(shift, past_color);

enddef;

def show_active_marker(expr shift) =

show_star(shift, active_color);

enddef;

def show_future_marker(expr shift) =

show_star(shift, future_color);

enddef;

\stopuseMPgraphic

26 26

26 26

Next, define a new visaulcounter that inherits from markers but uses a different

mpsetups:

\definevisualcounter

[stars]

[markers]

[mpsetups=visualcounter::markers:star, % use "star" marker

width=1.5EmWidth,

distance=0.25EmWidth,

palette=star-colors, % defined elsewhere

last=5, % rating out of 5

]

To use this counter, type:

\usevisualcounter[n=4]{stars}

which gives:

27 27

27 27

5.5 The progressbar counter

The progressbar counter is based on a question on TeX.SE. This counter is not yet

finalized. I am still working on the interface to change the shape of the progress bar,

and perhaps add some shading.

3 out of 12

4 out of 12

5 out of 12

6 out of 12

28 28

28 28

5.6 The pulseline counter

The pulseline counter is based on the heart pulses shown in a heart rate measure-

ment device. This counter is not yet finalized.

3 out of 12 4 out of 12

5 out of 12 6 out of 12

29 29

29 29

