
The braids Package: Documentation
Andrew Stacey

stacey@math.ntnu.no

v1.0 from 2011/05/07

1 Introduction
This is a package for drawing braid diagrams using PGF/TikZ. An example fol-
lows.

\ begin { cente r }
\ begin { t i k z p i c t u r e }
\ bra id [ r o t a t e =90, s t y l e s t rands ={1}{ red } , s t y l e

s t rands ={2}{ blue } , s t y l e s t rands ={3}{ green } ] s_1
s_2^{−1} s_1 s_2^{−1} s_1 s _2^{−1};

\end{ t i k z p i c t u r e }
\end{ cente r }

1

stacey@math.ntnu.no


2 Usage
A braid is specified by the command \braid. The syntax for this command is as\braid
follows:

\braid[style options] (name) at (coordinate) braid-word;
The braid-word is an expression in the braid group, such as s_1 s_2^{-1}.braid-word

The generator labels are not significant. The exponent can be 1, {-1}, or missing
(in which case it defaults to 1, note also that the exponent is read as a TEX-token
so {1} is also legal). Certain other symbols are allowed in the braid-word which
control the rendering of the braid. To get crossings to render at the same height,
separate them with a hyphen (note: no check is made to ensure that the crossings
can legally be put at the same height; caveat emptor). To draw a floor, precede
the braid element by a vertical line. What happens then is that when the braid
is rendered, the coordinates of the rectangle behind that crossing (wide enough
to encompass all the strands) is passed to a command. The intention is that this
command draw something behind the braid. The command is configurable by a
key (see 2.1).

The (optional) name acts a little like the name of a TikZ node. When it isname
specified, the routine that renders the braid also saves certain coordinates as if
they were node anchors. Specifically, coordinate nodes are placed at the centre of
the braid diagram and at the ends of each strand. The centre has the label name,
the strands are labelled name-number-end and name-rev-number-end, where name
is the name given to the braid, number is the number of the strand counting from
the left, and end is either s for the start or e for the end. If the version with rev is
used then the numbers correspond to the final positions of the braids. The name
can also be specified with the name key.

The (optional) at (coordinate) syntax positions the braid at the coordinateat
in the current picture. Due to the implementation, the coordinate has to be
known at the start, but the width and height of the braid are only known at the
end. Therefore, the braid is positioned so that the start of the first strand is at
(coordinate). This can also be specified using the at key.

The style options set the style for the braid strands. They can be groupedstyle options
into three types: options that set up the main parameters for the braid, options
that set the default style for the strands, and options that set up styles for indi-
vidual strands. The options are as follows.

2.1 Style Options
The key number of strands sets the minimum number of strands for the braid.number of strands
The number of strands will grow according to the terms in the braid word so this
merely sets a lower bound. If not set, the number of strands will be determined
by the terms in the braid word.

The key height sets the height of the piece of the braid corresponding to anheight
element in the group.

The key width sets the separation of the strands in the braid.width
The key border height adds a little extra length to the strands at the startborder height

2



and end of the braid.
The style of the strands are controlled by two types of option. Style optionsstyle strands

that are set on the \braid command are passed to every strand. It is also possible
to add style options to individual strands using the key style strands. This
takes two options, a comma-delimited list of strand numbers (which could be just
a single number) and a list of options to be applied to that strand. Thus, the
syntax is style strands={n,m,...}{options}. The strands are numbered by
their starting position. Not all of the standard TikZ style options are possible
due to the way that the strands are constructed. Basically, the options that are
allowed are those that do not require changing the path or drawing it more than
once.

When a floor is requested behind a crossing, the actual way to render it isfloor command
determined by a command. This key allows the user to define that command.
The argument to this key should be the code that should be executed for each
floor. To avoid the hassle of getting the number of hashes right, the command
should take no arguments. Rather, the coordinates of the rectangle are saved in to
macros \floorsx, \floorsy, \floorex, \floorey (these macros will expand to
something like 10pt) and the command should use these to position the drawing.
The default is to draw a line at the top and at the bottom of the rectangle.

In the spirit of separating style and content, the style options for the floors canstyle floors
style all floors be specified separately to the command (of course, they could be built in to the

command). One advantage of this over building them in to the command is to
allow them to be overridden for individual floors. The style all floors sets up
options to be used for all floors, whilst the style floors={n,m,...}{options}
sets up options to be used only for the listed floor. Anything specified in the
floor command will take precedence over both of these.

Any other style options are passed to the underlying TikZ/PGF system and
so may influence how the braid is drawn (but note that not all keys make sense
due to the implementation).

3 Example
Here is a more detailed example.

3



\ begin { cente r }
\ begin { t i k z p i c t u r e }
\ bra id [

s t y l e a l l f l o o r s ={ f i l l =ye l low } ,
s t y l e f l o o r s ={1}{dashed , f i l l =ye l low ! 5 0 ! green } ,
f l o o r command={%
\ f i l l (\ f l o o r s x , \ f l o o r s y ) r e c t a n g l e

(\ f l o o r e x , \ f l o o r e y ) ;
\draw (\ f l o o r s x , \ f l o o r s y ) −− (\ f l o o r e x , \ f l o o r s y ) ;

} ,
l i n e width=2pt ,
s t y l e s t rands ={1}{ red } ,
s t y l e s t rands ={2}{ blue } ,
s t y l e s t rands ={3}{ green }

] ( bra id ) at (2 , 0 ) | s_1−s_3−s_5 | s_2^{−1}−s _4| s_1−s_4
s_2^{−1} s_1−s_3 s_2^{−1}−s _4^{−1};

\ f i l l [ ye l low ] (2 , 0 ) c i r c l e (4 pt ) ;
\ f i l l [ purp le ] ( bra id ) c i r c l e (4 pt ) ;
\node [ at=(braid −3−s ) , pin=north west : s t rand 3 ] {} ;
\node [ at=(braid −3−e ) , pin=south west : s trand 3 ] {} ;
\node [ at=(braid−rev−3−s ) , pin=north ea s t : s t rand 3 ( from

bottom ) ] {} ;
\node [ at=(braid−rev−3−e ) , pin=south ea s t : s t rand 3 ( from

bottom ) ] {} ;
\end{ t i k z p i c t u r e }
\end{ cente r }

4



strand 3

strand 3

strand 3 (from bottom)

strand 3 (from bottom)

5


	1 Introduction
	2 Usage
	2.1 Style Options

	3 Example

