
MKII

MKIV

C
O

N
T

EX
T

C
O

N
T

EX
T

1

Contents

Introduction 3

I From MkII to MkIV 5

II How Lua fits in 7

III Initialization revised 19

IV An example: CalcMath 23

V Going utf 27

VI A fresh look at fonts 31

VII Token speak 47

VIII How about performance 57

IX Nodes and attributes 65

X Dirty tricks 75

XI Going beta 79

XII Zapfing fonts 87

XIII Arabic 99

XIV Colors redone 105

XV Chinese, Japanese and Korean, aka CJK 115

XVI Optimization 121

XVII XML revisioned 127

XVIIIBreaking apart 141

XIX Collecting garbage 147

2

Introduction 3

Introduction

In this document I will keep track of the transition of ConTEXt from MkII to MkIV, the latter

being the Lua aware version.

The development of LuaTEX started with a few email exchanges between me and Hartmut

Henkel. I had played a bit with Lua in SciTE and somehow felt that it would fit into TEX

quite well. Hartmut made me a version of pdfTEX which provided a\lua command. After

exploring this road a bit Taco Hoekwater took over and we quickly reached a point where

the pdfTEX development team could agree on following this road to the future.

The development was boosted by a substantial grant from Colorado State University in

the context of the Oriental TEX Project of Idris Samawi Hamid. This project aims at bringing

features into TEX that will permit ConTEXt to do high quality Arabic typesetting. Due to this

grant Taco could spent substantial time on development, which in turn meant that I could

start playing with more advanced features.

This document is not so much a users manual as a history of the development. Consider

it a collection of articles, and some chapters indeed have ended up in the journals of user

groups. Things may evolve and the way things are done may change, but it felt right to

keep track of the process this way. Keep in mind that some features may have changed

while LuaTEX matured.

Just for the record: development in the LuaTEX project is done by Taco Hoekwater, Hart-

mut Henkel and Hans Hagen. Eventually, the stable versions will become pdfTEX version 2

and other members of the pdfTEX team will be involved in development and mainte-

nance. In order to prevent problems due to new and maybe even slightly incompatible

features, pdfTEX version 1 will be kept around as well, but no fundamentally new features

will be added to it. For practical reasons we use LuaTEX as the name of the development

version but also for pdfTEX 2. That way we can use both engines side by side.

This document is also one of our test cases. Here we use traditional TEX fonts (for math),

Type1 and OpenType fonts. We use color and include test code. Taco and I always test new

versions of LuaTEX (the program) and MkIV (the macros and Lua code) with this document

before a new version is released. Keep tuned,

Hans Hagen, Hasselt NL,

August 2006 and beyond

http://www.luatex.org

4

From MkII to MkIV 5

I From MkII to MkIV

Sometime in 2005 the development of LuaTEX started, a further development of pdfTEX

and a precursor to pdfTEX version 2. This TEX variant will provide:

• 21--32 bit internals plus a code cleanup

• flexible support for OpenType fonts

• an internal utf data flow

• the bidirectional typesetting of Aleph

• Lua callbacks to the most relevant TEX internals

• some extensions to TEX (for instance math)

• an efficient way to communicate with MetaPost

In the tradition of TEX this successor will be downward compatible in most essential parts

and in the end, there is still pdfTEX version 1 as fall back.

In the mean time we have seen another unicode variant show up, X ETEX which is under

active development, uses external libraries, provides access to the fonts on the operating

system, etc.

From the beginning, ConTEXt always worked with all engines. This was achieved by con-

ditional code blocks: depending on what engine was used, different code was put in the

format and/or used at runtime. Users normally were unaware of this. Examples of engi-

nes are ε-TEX, Aleph, and X ETEX. Because nowadays all engines provide the ε-TEX features,

in August 2006 we decided to consider those features to be present and drop provid-

ing the standard TEX compatible variants. This is a small effort because all code that is

sensitive for optimization already has ε-TEX code branches for many years.

However, with the arrival of LuaTEX, we need a more drastic approach. Quite some exist-

ing code can go away and will be replaced by different solutions. Where TEX code ends

up in the format file, along with its state, Lua code will be initiated at run time, after a Lua

instance is started. ConTEXt reserves its own instance of Lua.

Most of this will go unnoticed for the users because the user interface will not change. For

developers however, we need to provide a mechanism to deal with these issues. This is

why, for the first time in ConTEXt's history we will officially use a kind of version tag. When

we changed the low level interface from Dutch to English we jokingly talked of version 2.

So, it makes sense to follow this lead.

6 From MkII to MkIV

• ConTEXt MkI At that moment we still had a low level Dutch interface, invisible for

users but not for developers.

• ConTEXt MkII We now have a low level English interface, which (as we indeed saw

happen) triggers more development by users.

• ConTEXt MkIV This is the next generation of ConTEXt, with parts re--implemented.

It's an at some points drastic system overhaul.

Keep in mind that the functionality does not change, although in some places, for in-

stance fonts, MkIV may provide additional functionality. The reason why most users will

not notice the difference (maybe apart from performance and convenience) is that at the

user interface level nothing changes (most of it deals with typesetting, not with low level

details).

The hole in the numbering permits us to provide a MkIII version as well. Once X ETEX is

stable, we may use that slot for X ETEX specific implementations.

As per August 2006 the banner is adapted to this distinction:

... ver: 2006.09.06 22:46 MK II fmt: 2006.9.6 ...

... ver: 2006.09.06 22:47 MK IV fmt: 2006.9.6 ...

This numbering system is reflected at the file level in such a way that we can keep devel-

oping the way we do, i.e. no files all over the place, in subdirectories, etc.

Most of the system's core files are not affected, but some may be, like those dealing with

fonts, input- and output encodings, file handling, etc. Those files may come with different

suffixes:

• somefile.tex: the main file, implementing the interface and common code

• somefile.mkii: mostly existing code, suitable for good old TEX (ε-TEX, pdfTEX, Aleph).

• somefile.mkiv: code optimized for use with LuaTEX, which could follow completely

different approaches

• somefile.lua: Lua code, loaded at format generation time and/or runtime

As said, some day somefile.mkiii code may show up. Which variant is loaded is de-

termined automatically at format generation time as well as at run time.

How Lua fits in 7

II How Lua fits in

introduction

Here I will discuss a few of the experiments that drove the development of LuaTEX. It

describes the state of affairs around the time that we were preparing for tug 2006. This

development was pretty demanding for Taco and me but also much fun. We were in a

kind of permanent Skype chat session, with binaries flowing in one direction and TEX and

Lua code the other way. By gradually replacing (even critical) components of ConTEXt we

had a real test bed and torture tests helped us to explore and debug at the same time.

Because Taco uses linux as platform and I mostly use MS Windows, we could investigate

platform dependent issues conveniently. While reading this text, keep in mind that this

is just the beginning of the game.

I will not provide sample code here. When possible, the MkIV code transparantly re-

places MkII code and users will seldom notices that something happens in different way.

Of course the potential is there and future extensions may be unique to MkIV.

compatibility

The first experiments, already conducted with the experimental versions involved run-

time conversion of one type of input into another. An example of this is the (TI) calcula-

tor math input handler that converts a rather natural math sequence into TEX and feeds

that back into TEX. This mechanism eventually will evolve into a configurable math input

handler. Such applications are unique to MkIV code and will not be backported to MkII.

The question is where downward compatibility will become a problem. We don't ex-

pect many problems, apart from occasional bugs that result from splitting the code base,

mostly because new features will not affect older functionality. Because we have to re-

organize the code base a bit, we also use this opportunity to start making a variant of

ConTEXt which consists of building blocks: MetaTEX. This is less interesting for the aver-

age user, but may be of interest for those using ConTEXt in workflows where only part of

the functionality is needed.

metapost

Of course, when I experiment with such new things, I cannot let MetaPost leave un-

touched. And so, in the early stage of LuaTEX development I decided to play with two

MetaPost related features: conversion and runtime processing.

Conversion from MetaPost output to pdf is currently done in pure TEX code. Apart from

convenience, this has the advantage that we can let TEX take care of font inclusions. The

8 How Lua fits in

tricky part of this conversion is that MetaPost output has some weird aspects, like dvips

specific linewidth snapping. Another nasty element in the conversion is that we need to

transform paths when pens are used. Anyhow, the converter has reached a rather stable

state by now.

One of the ideas with MetaPost version 1+ is that we will have an alternative output mode.

In the perspective of LuaTEX it makes sense to have a Lua output mode. Whatever con-

verter we use, it needs to deal with MetaFun specials. These are responsible for special

features like transparency, graphic inclusion, shading, and more. Currently we misuse

colors to signal such features, but the new pre/post path hooks permit more advanced

implementations. Experimenting with such new features is easier in Lua than in TEX.

The MkIV converter is a multi--pass converter. First we clean up the MetaPost output, next

we convert the PostScript code into Lua calls. We assume that this Lua code eventually

can be output directly from MetaPost. We then evaluate this converted Lua blob, which

results in TEX commands. Think of:

1.2 setlinejoin

turned into:

mp.setlinejoin(1.2)

becoming:

\PDFcode{1.2 j}

which is, when the pdfTEX driver is active, equivalent to:

\pdfliteral{1.2 j}

Of course, when paths are involved, more things happen behind the scenes, but in the

end an mp.path enters the Lua machinery.

When the MkIV converter reached a stable state, tests demonstrated then the code was

upto 20% slower that the pure TEX alternative on average graphics, and but faster when

many complex path transformations (due to penshapes) need to be done. This slowdown

was due to the cleanup (using expressions) and intermediate conversion. Because Taco

develops LuaTEX as well as maintains and extends MetaPost, we conducted experiments

that combine features of these programs. As a result of this, shortcuts found their way

into the MetaPost output.

Cleaning up the MetaPost output using Lua expressions takes relatively much time. How-

ever, starting with version 0.970 MetaPost uses a preamble, which permits not only short

commands, but also gets rid of the weird linewidth and filldraw related PostScript con-

structs. The moderately complex graphic that we use for testing (figure II.I) takes over 16

How Lua fits in 9

o e p s

Figure II.I converter test figure

seconds when converted 250 times. When we enable shortcuts we can avoid part of the

cleanup and runtime goes down to under 7.5 seconds. This is significantly faster than the

MkII code. We did experiments with simulated Lua output from MetaPost and then the

MkIV converter really flies. The values on Taco's system are given between parenthesis.

prologues/mpprocset 1/0 1/1 2/02/1

MkII 8.5 (5.7) 8.0 (5.5) 8.8 8.5

MkIV 16.1 (10.6) 7.2 (4.5) 16.3 7.4

The main reason for the huge difference in the MkIV times is that we do a rigourous

cleanup of the older MetaPost output in order avoid messy the messy (but fast) code

that we use in the MkII converter. Think of:

0 0.5 dtransform truncate idtransform setlinewidth pop
closepath gsave fill grestore stroke

In the MkII converter, we push every number or keyword on a stack and use keywords as

trigger points. In the MkIV code we convert the stack based PostScript calls to Lua func-

tion calls. Lines as shown are converted to single calls first. When prologues is set to 2,

such line no longer show up and are replaced by simple calls accompanied by defini-

tions in the preamble. Not only that, instead of verbose keywords, one or two character

shortcuts are used. This means that the MkII code can be faster when procsets are used

because shorter strings end up in the stack and comparison happens faster. On the other

hand, when no procsets are used, the runtime is longer because of the larger preamble.

Because the converter is used outside ConTEXt as well, we support all combinations in

order not to get error messages, but the converter is supposed to work with the following

settings:

10 How Lua fits in

prologues := 1 ;
mpprocset := 1 ;

We don't need to set prologues to 2 (font encodings in file) or 3 (also font resources

in file). So, in the end, the comparison in speed comes down to 8.0 seconds for MkII

code and 7.2 seconds for the MkIV code when using the latest greatest MetaPost. When

we simulate Lua output from MetaPost, we end up with 4.2 seconds runtime and when

MetaPost could produce the converter's TEX commands, we need only 0.3 seconds for

embedding the 250 instances. This includes TEX taking care of handling the specials, some

of which demand building moderately complex pdf data structures.

But, conversion is not the only factor in convenient MetaPost usage. First of all, runtime

MetaPost processing takes time. The actual time spent on handling embedded MetaPost

graphics is also dependent on the speed of starting up MetaPost, which in turn depends

on the size of the TEX trees used: the bigger these are, the more time kpse spends on load-

ing the ls-R databases. Eventually this bottleneck may go away when we have MetaPost

as a library. (In ConTEXt one can also run MetaPost between runs. Which method is faster,

depends on the amount and complexity of the graphics.)

Another factor in dealing with MetaPost, is the usage of text in a graphic (btex, textext,

etc.). Taco Hoekwater, Fabrice Popineau and I did some experiments with a persistent

MetaPost session in the background in order to simulate a library. The results look very

promising: the overhead of embedded MetaPost graphics goes to nearly zero, especially

when we also let the parent TEX job handle the typesetting of texts. A side effect of these

experiments was a new mechanism in ConTEXt (and MetaFun) where TEX did all typeset-

ting of labels, and MetaPost only worked with an abstract representation of the result.

This way we can completely avoid nested TEX runs (the ones triggered by MetaPost). This

also works ok in MkII mode.

Using a persistent MetaPost run and piping data into it is not the final solution if only

because the terminal log becomes messed up too much, and also because intercepting

errors is real messy. In the end we need a proper library approach, but the experiments

demonstrated that we needed to go this way: handling hundreds of complex graphics

that hold typeset paragraphs (being slanted and rotated and more by MetaPost), tooks

mere seconds compared to minutes when using independent MetaPost runs for each

job.

characters

Because LuaTEX is utf based, we need a different way to deal with input encoding. For

this purpose there are callbacks that intercept the input and convert it as needed. For

context this means that the regime related modules get a Lua based counterparts. As a

How Lua fits in 11

prelude to advanced character manipulations, we already load extensive unicode and

conversion tables, with the benefit of being able to handle case handling with Lua.

The character tables are derived from unicode tables and MkII ConTEXt data files and

generated using mtxtools. The main character table is pretty large, and this made us

experiment a bit with efficiency. It was in this stage that we realized that it made sense to

use precompiled Lua code (using luac). During format generation we let ConTEXt keep

track of used Lua files and compiled them on the fly. For a production run, the compiled

files were loaded instead.

Because at that stage LuaTEX was already a merge between pdfTEX and Aleph, we had

to deal with pretty large format files. About that moment the ConTEXt format with the

english user interface amounted to:

date luatex pdftex xetex aleph

2006-09-18 9 552 042 7 068 643 8 374 996 7 942 044

One reason for the large size of the format file is that the memory footprint of a 32 bit TEX

is larger than that of good old TEX, even with some of the clever memory allocation tech-

niques as used in LuaTEX. After some experiments where size and speed were measured

Taco decided to compress the format using a level 3 zip compression. This brilliant move

lead to the following size:

date luatex pdftex xetex aleph

2006-10-23 3 135 568 7 095 775 8 405 764 7 973 940

The first zipped versions were smaller (around 2.3 meg), but in the meantime we moved

the Lua code into the format and the character related tables take some space.

How stable are the mentioned numbers? Ten months after writing the previous text we get the

following numbers:

date luatex pdftex xetex aleph

2007-08-16 5 603 676 7 505 925 8 838 538 8 369 206

They are all some 400K larger, which is probably the result of changes in hyphenation pat-

terns (we now load them all, some several times depending on the font encodings used).

Also, some extra math support has been brought in the kernel and we predefine a few

more things. However, LuaTEX's format has become much larger! Partly this is the result of

more Lua code, especially OpenType font handling and attributes related code. The extra

TEX code is probably compensated by the removal of obsolete (at least for MkIV) code.

However, the significantly larger number is mostly there because a different compression

algorithm is used: speed is now favoured over efficiency.

12 How Lua fits in

debugging

In the process of experimenting with callbacks I played a bit with handling TEX error in-

formation. An option is to generate an html page instead of spitting out the usual blob of

into on the terminal. In figure II.II and figure II.III you can see an example of this.

Figure II.II An example error screen.

Playing with such features gives us an impression of what kind of access we need to TEX's

internals. It also formed a starting point for conversion routines and a mechanism for

embedding Lua code in html pages generated by ConTEXt.

file io

Replacing TEX's in- and output handling is non--trival. Not only is the code quite inter-

woven in the web2c source, but there is also the kpse library to deal with. This means

that quite some callbacks are needed to handle the different types of files. Also, there is

output to the log and terminal to take care of.

Getting this done took us quite some time and testing and debugging was good for some

headaches. The mechanisms changed a few times, and TEX and Lua code was thrown

How Lua fits in 13

Figure II.III An example debug screen.

away as soon as better solutions came around. Because we were testing on real docu-

ments, using a fully loaded ConTEXt we could converge to a stable version after a while.

Getting this io stuff done is tightly related to generating the format and starting up LuaTEX.

If you want to overload the file searching and io handling, you need overload as soon

as possible. Because LuaTEX is also supposed to work with the existing kpse library, we

still have that as fallback, but in principle one could think of a kpse free version, in which

case the default file searching is limited to the local path and memory initialization also

reverts to the hard coded defaults. A complication is that the soure code has kpse calls

and references to kpse variables all over the place, so occasionally we run into interesting

bugs.

Anyhow, while Taco hacked his way around the code, I converted my existing Ruby based

kpse variant into Lua and started working from that point. The advantage of having our

own io handler is that we can go beyond kpse. For instance, since LuaTEX has, among a

few others, the zip libraries linked in, we can read from zip files, and keep all TEX related

files in tds compliant zip files as well. This means that one can say:

\input zip::somezipfile::somefile.tex
\input zip://somezipfile.zip/somepath/somefile.tex

14 How Lua fits in

and use similar references to access files. Of course we had to make sure that kpse like

searching in the tds (standardized TEX trees) works smoothly. There are plans to link the

curl library into LuaTEX, so that we can go beyong this and access repositories.

Of course, in order to be more or less kpse and web2c compliant, we also need to support

this paranoid file handling, so we provide mechanisms for that as well. In addition, we

provide ways to create sandboxes for system calls.

Getting to intercept all log output (well, most log output) was a problem in itself. For this

I used a (preliminary) xml based log format, which will make log parsing easier. Because

we have full control over file searching, opening and closing, we can also provide more

information about what files are loaded. For instance we can now easily trace what tfm

files TEX reads.

Implementing additional methods for locating and opening files is not that complex be-

cause the library that ships with ConTEXt is already prepared for this. For instance, imple-

menting support for:

\input http://www.someplace.org/somepath/somefile.tex

involved a few lines of code, most of which deals with caching the files. Because we

overload the whole io handling, this means that the following works ok:

\placefigure
[][]
{http handling}
{\externalfigure

[http://www.pragma-ade.com/show-gra.pdf]
[page=1,width=\textwidth]}

Other protocols, like ftp are also supported, so one can say:

\typefile {ftp://anonymous:@ctan.org/tex-archive/systems\
/knuth/lib/plain.tex}

On the agenda is playing with database, but by the time that we enter that stage linking

the curl libraries into LuaTEX should have taken place.

verbatim

The advance of LuaTEX also permitted us to play with a long standing wish of catcode

tables, a mechanism to quickly switch between different ways of treating input characters.

An example of a place where such changes take place is verbatim (and in ConTEXt also

when dealing with xml input).

How Lua fits in 15

MetaPost
Graphics

Once upon a time we started using METAPOST, the
graphic companion to TEX. Since then it has been
our main tool for making graphics. Welcome to our
little showcase. You can click on the graphic to
show the real thing.

Figure II.IV http handling

We already had encountered the phenomena that when piping back results from Lua to

TEX, we needed to take care of catcodes so that TEX would see the input as we wished.

Earlier experiments with applying \scantokens to a result and thereby interpreting the

result conforming the current catcode regime was not sufficient or at least not handy

enough, especially in the perspective of fully expandable Lua results. To be honest, the

\scantokenscommand was rather useless for this purposes due to its pseudo file nature

and its end--of--file handling but in LuaTEX we now have a convenient \scantextokens
which has no side effects.

Once catcode tables were in place, and the relevant ConTEXt code adapted, I could start

playing with one of the trickier parts of TEX programming: typesetting TEX using TEX, or

verbatim. Because in ConTEXt verbatim is also related to buffering and pretty printing,

all these mechanism were handled at once. It proved to be a pretty good testcase for

writing Lua results back to TEX, because anything you can imagine can and will interfere

(line endings, catcode changes, looking ahead for arguments, etc). This is one of the

areas where MkIV code will make things look more clean and understandable, especially

because we could move all kind of postprocessing (needed for pretty printing, i.e. syntax

highlighting) to Lua. Interesting is that the resulting code is not beforehand faster.

16 How Lua fits in

Pretty printing 1000 small (one line) buffers and 5000 simple \type commands perform

as follows:

TEX normal TEX pretty Lua normal Lua pretty

buffer 2.5 (2.35) 4.5 (3.05) 2.2 (1.8) 2.5 (2.0)

inline 7.7 (4.90) 11.5 (7.25) 9.1 (6.3) 10.9 (7.5)

Between braces the runtime on Taco's more modern machine is shown. It's not that easy

to draw conclusions from this because TEX uses files for buffers and with Lua we store

buffers in memory. For inline verbatim, Lua call's bring some overhead, but with more

complex content, this becomes less noticable. Also, the Lua code is probably less opti-

mized than the TEX code, and we don't know yet what benefits a Just In Time Lua compiler

will bring.

xml

Interesting is that the first experiments with xml processing don't show the expected gain

in speed. This is due to the fact that the ConTEXt xml parser is highly optimized. However,

if we want to load a whole xml file, for instance the formal ConTEXt interface specification

cont-en.xml, then we can bring down loading time (as well as TEX memory usage) down

from multiple seconds to a blink of the eyes. Experiments with internal mappings and

manipulations demonstrated that we may not so much need an alternative for the current

parser, but can add additional, special purpose ones.

We may consider linking xsltproc into LuaTEX, but this is yet undecided. After all, the

problem of typesetting does not really change, so we may as well keep the process of

manipulating and typesetting separated.

multipass data

Those who know ConTEXt a bit will know that it may need multiple passes to typeset a

document. ConTEXt not only keeps track of index entries, list entries, cross references,

but also optimizes some of the output based on information gathered in previous passes.

Especially so called two--pass data and positional information puts some demands on

memory and runtime. Two--pass data is collapsed in lists because otherwise we would

run out of memory (at least this was true years ago when these mechanisms were intro-

duced). Positional information is stored in hashes and has always put a bit of a burden on

the size of a so called utility file (ConTEXt stores all information in one auxiliary file).

These two datatypes were the first we moved to a Lua auxiliary file and eventually all

information will move there. The advantage is that we can use efficient hashes (without

limitations) and only need to run over the file once. And Lua is incredibly fast in loading

the tables where we keep track of these things. For instance, a test file storing and reading

How Lua fits in 17

10.000 complex positions takes 3.2 seconds runtime with LuaTEX but 8.7 seconds with

traditional pdfTEX. Imagine what this will save when dealing with huge files (400 page

300 Meg files) that need three or more passes to be typeset. And, now we can without

problems bump position tracking to milions of positions.

18

Initialization revised 19

III Initialization revised

Initializing LuaTEX in such a way that it does what you want it to do your way can be tricky.

This has to do with the fact that if we want to overload certain features (using callbacks)

we need to do that before the orginals start doing their work. For instance, if we want

to install our own file handling, we must make sure that the built--in file searching does

not get initialized. This is particularly important when the built in search engine is based

on the kpse library. In that case the first serious file access will result in loading the ls-R
filename databases, which will take an amount of time more or less linear with the size

of the TEX trees. Among the reasons why we want to replace kpse are the facts that we

want to access zip files, do more specific file searches, use http, ftp and whatever comes

around, integrate ConTEXt specific methods, etc.

Although modern operating systems will cache files in memory, creating the internal data

structures (hashes) from the rather dumb files take some time. On the machine where I

was developing the first experimental LuaTEX code, we're talking about 0.3 seconds for

pdfTEX. One would expect a Lua based alternative to be slower, but it is not. This may

be due to the different implementation, but for sure the more efficient file cache plays

a role as well. So, by completely disabling kpse, we can have more advanced io related

features (like reading from zip files) at about the same speed (or even faster). In due time

we will also support progname (and format) specific caches, which speeds up loading. In

case one wonders why we bother about a mere few hundreds of milliseconds: imagine

frequent runs from an editor or sub--runs during a job. In such situation every speed up

matters.

So, back to initialization: how do we initialize LuaTEX. The method described here is de-

veloped for ConTEXt but is not limited to this macro package; when one tells TEXexec to

generate formats using the --luatex directive, it will generate the ConTEXt formats as

well as mptopdf using this engine.

For practical reasons, the Lua based io handler is kpse compliant. This means that the

normal texmf.cnf and ls-R files can be used. However, their content is converted in

a more Lua friendly way. Although this can be done at runtime, it makes more sense to

to this in advance using luatools. The files involved are:

input raw input runtime input runtime fallback

ls-R files.luc files.lua
texmf.lua temxf.cnf configuration.luc configuration.lua

In due time luatools will generate the directory listing itself (for this some extra libraries

need to be linked in). The configuration file(s) eventually will move to a Lua table format,

and when a texmf.lua file is present, that one will be used.

20 Initialization revised

luatools --generate

This command will generate the relevant databases. Optionally you can provide--minimize
which will generate a leaner database, which in turn will bring down loading time to (on

my machine) about 0.1 sec instead of 0.2 seconds. The --sort option will give nicer

intermediate (.lua) files that are more handy for debugging.

When done, you can use luatools roughly in the same manner as kpsewhich, for instance

to locate files:

luatools texnansi-lmr10.tfm
luatools --all tufte.tex

You can also inspect its internal state, for instance with:

luatools --variables --pattern=TEXMF
luatools --expansions --pattern=context

This will show you the (expanded) variables from the configuration files. Normally you

don't need to go that deep into the belly.

The luatools script can also generate a format and run LuaTEX. For ConTEXt this is nor-

mally done with the TEXexec wrapper, for instance:

texexec --make --all --luatex

When dealing with this process we need to keep several things in mind:

• LuaTEX needs a Lua startup file in both ini and runtime mode

• these files may be the same but may also be different

• here we use the same files but a compiled one in runtime mode

• we cannot yet use a file location mechanism

A .luc file is a precompiled Lua chunk. In order to guard consistency between Lua code

and tex code, ConTEXt will preload all Lua code and store them in the bytecode table

provided by LuaTEX. How this is done, is another story. Contrary to these tables, the ini-

tialization code can not be put into the format, if only because at that stage we still need

to set up memory and other parameters.

In our case, especially because we want to overload the io handler, we want to store

the startup file in the same path as the format file. This means that scripts that deal with

format generation also need to take care of (relocating) the startup file. Normally we will

use TEXexec but we can also use luatools.

Say that we want to make a plain format. We can call luatools as follows:

Initialization revised 21

luatools --ini plain

This will give us (in the current path):

120,808 plain.fmt
2,650 plain.log

80,767 plain.lua
64,807 plain.luc

From now on, only the plain.fmt and plain.luc file are important. Processing a file

test \end

can be done with:

luatools --fmt=./plain.fmt test

This returns:

This is luaTeX, Version 3.141592-0.1-alpha-20061018 (Web2C 7.5.5)
(./test.tex [1])
Output written on test.dvi (1 page, 260 bytes).
Transcript written on test.log.

which looks rather familiar. Keep in mind that at this stage we still run good old Plain TEX.

In due time we will provide a few files that will making work with Lua more convenient

in Plain TEX, but at this moment you can already use for instance \directlua.

In case you wonder how this is related to ConTEXt, well only to the extend that it uses a

couple of rather generic ConTEXt related Lua files.

ConTEXt users can best use TEXexec which will relocate the format related files to the reg-

ular engine path. In luatools terms we have two choices:

luatools --ini cont-en
luatools --ini --compile cont-en

The difference is that in the first casecontext.lua is used as startup file. This Lua file cre-

ates thecont-en.luc runtime file. In the second call luatools will create acont-en.lua
file and compile that one. An even more specific call would be:

luatools --ini --compile --luafile=blabla.lua cont-en
luatools --ini --compile --lualibs=bla-1.lua,bla-2.lua cont-en

22 Initialization revised

This call does not make much sense for ConTEXt. Keep in mind that luatools does not

set up user specific configurations, for instance the --all switch in TEXexec will set up all

patterns.

I know that it sounds a bit messy, but till we have a more clear picture of where LuaTEX is

heading this is the way to proceed. The average ConTEXt user won't notice those details,

because TEXexec will take care of things.

Currently we follow the tds and web2c conventions, but in the future we may follow dif-

ferent or additional approaches. This may as well be driven by more complex io models.

For the moment extensions still fit in. For instance, in order to support access to remote

resources and related caching, we have added to the configuration file the variable:

TEXMFCACHE = $TMP;$TEMP;$TMPDIR;$HOME;$TEXMFVAR;$VARTEXMF;.

An example: CalcMath 23

IV An example: CalcMath

introduction

For a long time TEX's way of coding math has dominated the typesetting world. However,

this kind of coding is not that well suited for non academics, like schoolkids. Often kids

do know how to key in math because they use advanced calculators. So, when a couple

of years ago we were implementing a workflow where kids could fill in their math work-

books (with exercises) on--line, it made sense to support so called Texas Instruments math

input. Because we had to parse the form data anyway, we could use a [[and]] as math

delimiters instead of $. The conversion too place right after the form was received by the

web server.

sin(x) + x^2 + x^(1+x) + 1/x^2 sin(x) + x2 + x1+x + 1
x2

mean(x+mean(y)) x+ y

int(a,b,c)
∫ a
b c

(1+x)/(1+x) + (1+x)/(1+(1+x)/(1+x)) 1+x
1+x + 1+x

1+ 1+x
1+x

10E-2 10× 10−2

(1+x)/x 1+x
x

(1+x)/12 1+x
12

(1+x)/-12 1+x
−12

1/-12 1
−12

12x/(1+x) 12x
1+x

exp(x+exp(x+1)) ex+e
x+1

abs(x+abs(x+1)) + pi + inf |x+ |x+ 1||+ π + inf

Dx Dy dx
dx

dy
dx

D(x+D(y)) d
dx

(x+ d
dx

(y))

Df(x) f ′(x)

g(x) g(x)

sqrt(sin^2(x)+cos^2(x))
√

sin2(x) + cos2(x)

By combining Lua with TEX, we can do the conversion from calculator math to TEX imme-

diately, without auxiliary programs or complex parsing using TEX macros.

24 An example: CalcMath

tex

In a ConTEXt source one can use the \calcmath command, as in:

The strange formula \calcmath {sqrt(sin^2(x)+cos^2(x))} boils
down to ...

One needs to load the module first, using:

\usemodule[calcmath]

Because the amount of code involved is rather small, eventually we may decide to add

this support to the MkIV kernel.

xml

Coding math in TEX is rather efficient. In xml one needs way more code. Presentation

MathML provides a few basic constructs and boils down to combining those building

blocks. Content MathML is better, especially from the perspective of applications that

need to do interpret the formulas. It permits for instance the ConTEXt content MathML

handler to adapt the rendering to cultural driven needs. The OpenMath way of coding is

like content MathML, but more verbose with less tags. Calculator math is more restrictive

than TEX math and less verbose than any of the xml variants. It looks like:

<icm>sqrt(sin^2(x)+cos^2(x))</icm> test

And in display mode:

<dcm>sqrt(sin^2(x)+cos^2(x))</dcm> test

speed

This script (which you can find in the ConTEXt distribution as soon as the MkIV code vari-

ants are added) is the first real TEX related Lua code that I wrote; so far I had only written

some wrapping and spell checking code for the SciTE editor. It also made a nice demo

for a couple of talks that I held at usergroup meetings. The script has a lot of expressions.

These convert one string into another. They are less powerful than regular expressions,

but pretty fast and adequate. The feature I miss most is alternation like(l|st)uckbut it's

a small price to pay. As the Lua manual explains: adding a posix compliant regexp parser

would take more lines of code than Lua currently does.

On my machine, running this first version took 3.5 seconds for 2500 times typesetting

the previously shown square root of sine and cosine. Of this, 2.1 seconds were spent on

typesetting and 1.4 seconds on converting. After optimizing the code, 0.8 seconds were

An example: CalcMath 25

used for conversion. A stand alone Lua takes .65 seconds, which includes loading the

interpreter. On a test of 25.000 sample conversions, we could gain some 20% conversion

time using the LuaJIT just in time compiler.

26

Going utf 27

V Going utf

LuaTEX only understands input codes in the Universal Character Set Transformation For-

mat, aka ucs Transformation Format, better known as: utf. There is a good reason for this

universal view on characters: whatever support gets hard coded into the programs, it's

never enough, as 25 years of TEX history have clearly demonstrated. Macro packages often

support more or less standard input encodings, as well as local standards, user adapted

ones, etc.

There is enough information on the Internet and in books about what exactly is utf. If you

don't know the details yet: utf is a multi--byte encoding. The characters with a bytecode

up to 127 map onto their normal ascii representation. A larger number indicates that the

following bytes are part of the character code. Up to 4 bytes make an utf-8 code, while

utf-16 always uses two pairs of bytes.

byte 1 byte 2 byte 3 byte 4 unicode

192--223 128--191 0x80--0x7ff

224--239 128--191 128--191 0x800--0xffff

240--247 128--191 128--191 128--191 0x10000--0x1ffff

In utf-8 the characters in the range 128--191 are illegal as first characters. The characters

254 and 255 are completely illegal and should not appear at all since they are related to

utf-16.

Instead of providing a never-complete truckload of other input formats, LuaTEX sticks to

one input encoding but at the same time provides hooks that permits users to write filters

that preprocess their input into utf.

While writing the LuaTEX code as well as the ConTEXt input handling, we experimented a

lot. Right from the beginning we had a pretty clear picture of what we wanted to achieve

and how it could be done, but in the end arrived at solutions that permitted fast and

efficient Lua scripting as well as a simple interface.

What is involved in handling any input encoding and especially utf?. First of all, we

wanted to support utf-8 as well as utf-16. LuaTEX implements utf-8 rather straightfor-

ward: it just assumes that the input is usable utf. This means that it does not combine

characters. There is a good reason for this: any automation needs to be configurable

(on/off) and the more is done in the core, the slower it gets.

In Unicode, when a character is followed by an ‘accent’, the standard may prescribe that

these two characters are replaced by one. Of course, when characters turn into glyphs,

and when no matching glyph is present, we may need to decompose any character into

components and paste them together from glyphs in fonts. Therefore, as a first step, a

28 Going utf

collapser was written. In the (pre)loaded Lua tables we have stored information about

what combination of characters need to be combined into another character.

So, an a followed by an ` becomes à and an e followed by " becomes ë. This process is

repeated till no more sequences combine. After a few alternatives we arrived at a solution

that is acceptably fast: mere milliseconds per average page. Experiments demonstrated

that we can not gain much by implementing this in pure C, but we did gain some speed

by using a dedicated loop--over--utf--string function.

A second utf related issue is utf-16. This coding scheme comes in two endian variants.

We wanted to do the conversion in Lua, but decided to play a bit with a multi--byte file

read function. After some experiments we quickly learned that hard coding such meth-

ods in TEX was doomed to be complex, and the whole idea behind LuaTEX is to make

things less complex. The complexity has to do with the fact that we need some control

over the different linebreak triggers, that is, (combinations of) character 10 and/or 13. In

the end, the multi--byte readers were removed from the code and we ended up with a

pure Lua solution, which could be sped up by using a multi--byte loop--over--string func-

tion.

Instead of hard coding solutions in LuaTEX a couple of fast loop--over--string functions

were added to the Lua string function repertoire and the solutions were coded in Lua. We

did extensive timing with huge utf-16 encoded files, and are confident that fast solutions

can be found. Keep in mind that reading files is never the bottleneck anyway. The only

drawback of an efficient utf-16 reader is that the file is loaded into memory, but this is

hardly a problem.

Concerning arbitrary input encodings, we can be brief. It's rather easy to loop over a

string and replace characters in the 0--255 range by their utf counterparts. All one needs

is to maintain conversion tables and TEX macro packages have always done that.

Yet another (more obscure) kind of remapping concerns those special TEX characters. If

we use a traditional TEX auxiliary file, then we must make sure that for instance percent

signs, hashes, dollars and other characters are handled right. If we set the catcode of

the percent sign to ‘letter’, then we get into trouble when such a percent sign ends up in

the table of contents and is read in under a different catcode regime (and becomes for

instance a comment symbol). One way to deal with such situations is to temporarily move

the problematic characters into a private Unicode area and deal with them accordingly.

In that case they no longer can interfere.

Where do we handle such conversions? There are two places where we can hook con-

verters into the input.

Going utf 29

1. each time when we read a line from a file, i.e. we can hook conversion code into the

read callbacks

2. using the special process_input_buffer callback which is called whenever TEX

needs a new line of input

Because we can overload the standard file open and read functions, we can easily hook

the utf collapse function into the readers. The same is true for the utf-16 handler. In

ConTEXt, for performance reasons we load such files into memory, which means that we

also need to provide a special reader to TEX. When handling utf-16, we don't need to

combine characters so that stage is skipped then.

So, to summarize this, here is what we do in ConTEXt. Keep in mind that we overload the

standard input methods and therefore have complete control over how LuaTEX locates

and opens files.

1. When we have a utf file, we will read from that file line by line, and combine charac-

ters when collapsing is enabled.

2. When LuaTEX wants to open a file, we look into the first bytes to see if it is a utf-16

file, in either big or little endian format. When this is the case, we load the file into

memory, convert the data to utf-8, identify lines, and provide a reader that will give

back the file linewise.

3. When we have been told to recode the input (i.e. when we have enabled an input

regime) we use the normal line--by--line reader and convert those lines on the fly into

valid utf. No collapsing is needed.

Because we conduct our experiments in ConTEXt MkIV the code that we provide may

look a bit messy and more complex than the previous description may suggest. But keep

in mind that a mature macro package needs to adapt to what users are accustomed to.

The fact that LuaTEX moved on to utf input does not mean that all the tools that users use

and the files that they have produced over decades automagically convert as well.

Because we are now living in a utf world, we need to keep that in mind when we do

tricky things with sequences of characters, for instance in processing verbatim. When

we implement verbatim in pure TEX we can do as before, but when we let Lua kick in,

we need to use string methods that are utf-aware. In addition to the linked-in Unicode

library, there are dedicated iterator functions added to the string namespace; think of:

for c in string.utfcharacters(str) do
something_with(c)

end

Occasionally we need to output raw 8-bit code, for instance to dvi or pdf backends

(specials and literals). Of course we could have cooked up a truckload of conversion

30 Going utf

functions for this, but during one of our travels to a TEX conference, we came up with the

following trick.

We reserve the top 256 values of the Unicode range, starting at hexadecimal value 0x110000,

for byte output. When writing to an output stream, that offset will be subtracted. So,

0x1100A9 is written out as hexadecimal byte value A9, which is the decimal value 169,

which in the Latin 1 encoding is the slot for the copyright sign.

A fresh look at fonts 31

VI A fresh look at fonts

readers

Now that we have the file system, Lua script integration, input encoding and basic logging

in place, we have arrived at fonts. Although today OpenType fonts are the fashion, we still

need to deal with TEX's native font machinery. Although Latin Modern and the TEX Gyre

collection will bring us many free OpenType fonts, we can be sure that for a long time Type1

variants will be used as well, and when one has lots of bought fonts, replacing them with

OpenType updates is not always an option. And so, reimplementing the readers for TEX

Font Metrics (tfm files) and Virtual Fonts (vf files), was the first step.

Because Aleph font handling was integrated already, Taco decided to combine the tfm

and ofm readers into a new one. The combined loader is written in C and produces tables

that are accessible from within Lua. A problem is that once a font is used, one cannot

simply change its metrics. So, we have to make sure that we apply changes before a font

is actually used:

\font\test=texnansi-lmr at 31.415 pt
\test Yet another nice Kate Bush song: Pi

In this example, any change to the fontmetrics has to be done before test is invoked.

For this purpose the define_font callback is provided. Below you see an experimental

overload:

callback.register("define_font", function (name,area,size)
return fonts.patches.process(font.read_tfm(name,size))

end)

Thefonts.patched.process function (currently in ConTEXt MkIV) implements a mech-

anism for tweaking the font parameters in between. In order to get an idea of further

features we played a bit with ligature replacement, character spacing, kern tweaking etc.

Think of such a function (or a chain of functions) doing things similar to:

callback.register("define_font", function (name,area,size)
local tfmblob = font.read_tfm(name,size) -- build in loader
tfmblob.characters[string.byte("f")].ligatures = nil
return tfmblob -- datastructure that TeX will use internally

end)

Of course the above definition is not complete, if only because we need to handle chained

ligatures as well (fl followed by i).

32 A fresh look at fonts

In practice we prefer a more abstract interface (at the macro level) but the idea stays the

same. Interesting is that having access to the internals this way already makes our TEX live

more interesting. (We cannot demonstrate this trickery here because when this docu-

ment is processed you cannot be sure if the experimental interface is still in place.)

When playing with this we ran into problems with file searching. When performing the

backend role, LuaTEX will look in the TEX tree if there is a corresponding virtual file. It took

a while and a bit of tracing (which is not that hard in the Lua based reader) to figure out that

the omega related path definitions in texmf.cnf files were not correct, something that

went unnoticed because omega never had a backend integrated and the dvi processors

did multiple searches to get around this.

Currently, if you want to enable extensive tracing of file searching and loading, you can

set an environment variable:

MTX.INPUT.TRACE=3

This will produce a lot of information about what file is asked for, what types (tex, font, etc)

determines the search, along what paths is being searched, what readers and locators are

used (file, zip, protocol), etc.

AFM

While Taco implemented the virtual font reader ---eventually its data will be merged with

the tfm table--- I started playing with constructing tfm tables directly. Because ConTEXt

has a rather systematic naming scheme, we can rather easily see which encoding we are

dealing with. This means that in principle we can throw all encoded tfm files out of our

tree and construct the tables using the afm file and an encoding vector.

It took us a good day to figure out the details, but in the end we were able to trick LuaTEX

into using afm files. With a bit of internal caching it was even reasonable fast. When the

basic conversion mechanism was written we tried to compare the results with existing

tfm metrics as generated by afm2tfm and afm2pl. Doing so was less trivial than we first

thought. To mention a few aspects:

• heights and depths have a limited number of values in TEX

• we need to convert to TEX's scaled points

• rounding errors of one scaled point occur

• afm2tfm can only add kerns when virtual fonts are used

• afm2tfm adds some extra ligatures and also does some kern magic

• afm2pl adds even more kerns

• the tools remove kern pars between digits

A fresh look at fonts 33

In this perspective we need not be too picky on what exactly a ligature is. An example

of a ligature is fi and such a character can be in the font. In the tfm file, the definition

of f contains information about what to do when it's followed by an i: it has to insert a

reference (character number) pointing to the fi glyph.

However, because TEX was written in ascii time space, there was a problem of how to

get access to for instance the Spanish quotation and exclamation marks. Here the liga-

ture mechanism available in the tfm format was misused in the sense that a combination

of exclam and quoteleft becomes exclamdown. In a similar fashion will two single

quotes become a double quote. And every TEXie knows that multiple hyphens combine

into -- (endash) and --- (emdash), where the later one is achieved by defining a ligature

between an endash and a hyphen.

Of course we have to deal with conversions from afm units (1000 per em) to TEX's scaled

points. Such conversions may be sensitive for rounding errors. Because we noticed dif-

ferences of one scaled point, I tried several strategies to get the results consistent but

so far I didn't manage to find out where these differences come from. Rounding errors

seem to be rather random and I have no clue what strategy the regular converters follow.

Another fuzzy area are the font parameters (visible as font dimensions for users): I wonder

how many users really know what values are used and why.

You may wonder to what extend this rounding problem will influence consistent type-

setting. We have no reason to assume that the rounding error is operating system depen-

dent. This leaves the different methods used and personally I have no problems with the

direct reader being not 100% compatible with the regular tools. First of all it's an illusion

to think that TEX distributions are stable over the years. Fonts and conversion tools are

being updated every now and then, and metrics change over time (apart from Computer

Modern which is stable by definition). Also, pattern file are updated, so paragraphs may

be broken into lines different anyway. If you really want stability, then you need to store

the fonts and patterns with your document.

As we already mentioned, the regular converter programs add kerns as well. Treating

common glyph shapes similar is not uncommon in ConTEXt so I decided to provide meth-

ods for adding ‘missing’ kerns. For example, with regards to kerning, we can treateacute
the same way as ane. Some ligatures, likeaeorfi, need to be seen from two sides: when

looked at from the left side they resemble an a and f, but when kerned at their right, they

are to be treated as e and i.

So, when all this is taken care of, we will have a reasonable robust and compatible way

to deal with afm files and when this variant is enabled, we can prune our TEX trees pretty

well. Also, now that we have font related tables, we can start moving tables built out of

TEX macros (think of protruding and hz) to Lua, which will not only save us much hash

entries but also permits us faster implementations.

34 A fresh look at fonts

The question may arise why there is no hard coded afm reader. Although some speed up

can be achieved by reading the table with afm data directly, there would still be the issue

of making that table accessible for manipulations as described (costs time too). The afm

format is human readable contrary to the tfm format and therefore they can conveniently

be processed by Lua. Also, the possible manipulations may differ per macro package,

user, and even documents. The changes of users and developers reaching an agreement

about such issues is near zero. By writing the reader in Lua, a macro package writer can

also implement caching mechanisms that suits the package. Also, keep in mind that we

often only need to load about four afm files or a few more when we mix fonts.

In my main tree (regular distributions) there are some 350 files in texnansi encoding

that take over 2 MByte. My personal font tree has over a thousand such entries which

means that we can prune the tree considerably when we use the afm loader. Why bother

about tfm when afm can do the job.

In order to reduce the overhead in reading the afm file, we now use external caching,

which (in ConTEXt MkIV) boils down to serializing the internal afm tables and compiling

them to bytecode. As a result, the runtime becomes comparable to a run using regular

tfm files. On this document usign the afm reader (cached) takes some .3 seconds more

on 8 seconds total (28 pages in Optima Nova with a couple of graphics).

While we were playing with this, Hermann Zapf surprised me by sending me a cd with

his marvelous new Palatino Sans. So, instead of generating tfm metrics, I decided to use

ttf2afm to generate me an afm file from the TrueType files and use these metrics. It

worked right out of the box which means that one can copy a set of font files directly

from the source to the tree. In a demo document the Palatino Sans came out quite well

and so we will use this font to explore the upcoming Open Type features.

Because we now have less font resources (only two files per font) we decided to get away

from the spread--all--over--the--tree paradigm. For this we introduced

../fonts/data/vendor/collection

like:

../fonts/data/tex/latin-modern

../fonts/data/tex-gyre/bonum

../fonts/data/linotype/optima-nova

../fonts/data/linotype/palatino-nova

../fonts/data/linotype/palatino-sans

Of course one needs to adapt the related font paths in the configuration files but getting

that done in tex distributions is another story.

A fresh look at fonts 35

map files

Reading an afm file is only part of the game. Because we bypass the regular tfm reader

we may internally end up with different names of fonts (and/or files). This also means

that the map files that map an internal name onto an font (outline) file may be of no use.

The map file also specifies the encoding file which maps character numbers onto names

used in font files.

The map file maps a font name to a (preferable outline) font resource file. This can be a

file with suffix pfb, ttf, otf or alike. When we convert am afm file into a more suitable

format, we also store the associated (outline) filename, that we use later when we assem-

ble the map line data (we use \pdfmapline to tell LuaTEX how to prepare and embed a

file.

Eventually LuaTEX will take care of all these issues itself thereby rendering map files and

encoding files kind of useless. When loading an afm file we already have to read en-

coding files, so we have all the information available that normally goes into the map

file. While conducting experiments with reading afm files, we therefore could use the

\pdfmapline primitive to push the right entries into font inclusion machinery. Because

ConTEXt already handles map data itself we could easily hook this into the normal han-

dlers for that. (There are some nasty synchronization issues involved in handling map

entries in general but we will not bother you with that now).

Although eventually we may get rid of map files, we also used the general map file han-

dling in ConTEXt as a playground for the xml handler that we wrote in Lua. Playing with

many map files (a few KBytes) coded in xml format, or with one big map file (easily 800

MBytes) makes a good test case for loading and dumping

But why bother too much about map files in LuaTEX . . . they will go away anyway.

OTF & TTF

One of the reasons for starting the LuaTEX development was that we wanted to be able

to use OpenType (and TrueType) fonts in pdfTEX. As a prelude (and kind of transition) we

first dealt with Type1 using either tfm or afm. For TEX it does not really matter what font

is used, it only deals with dimensions and generic characteristics. Of course, when fonts

offer more advanced possibilities, we may need more features in the TEX kernel, but think

of hz or protruding as provided by pdfTEX: it's not part of the font (specification) but of the

engine. The same is actually true for kerning and ligature building, although here the font

(data) may provide the information needed to deal with it properly.

OpenType fonts come with features. Examples of features are using oldstyle figures or tab-

ular digits instead of the default ones. Dealing with such issues boils down to replac-

ing one character representation by another or treating combinations of character in the

36 A fresh look at fonts

input differently depending on the circumstances. There can be relationships between

languages and scripts, but, as TEXies know, other relationships exist as well, for instance

between content and visualization.

Therefore, it will be no surprise that LuaTEX does not simply implement the OpenType

specification as such. On the one hand it implements a way to load information stored

in the font, on the other hand it implements mechanisms to fullfil the demands of such

fonts and more. The glue between both is done with Lua. In the simple case of ligatures

and kerns this goes as follows. A user (or macropackage) specified a font, and this call can

be intercepted using a callback. This callback can use a built in function that loads an otf

or ttf font. From this table, a font table is constructed that is passed on to TEX. The con-

struction may involve building ligature and kerning tables using the information present

in the font file, but it may as well mean more. So, given a bare LuaTEX system, OpenType

font support is not giving you automatically handling of features, or more precisely, there

is no hard coded support for features.

This may sound as a disadvantage but as soon as you start looking at how TEX users use

their system (in most cases by using a macro package) you may understand that flexibility

is larger this way. Instead of adding more and more control and exceptions, and thereby

making the kernel more instable and complex, we delegate control to the macro pack-

age. The advantage is that there are no (everlasting) discussions on how to deal with things

and in the end the user will use a high level interface anyway. Of course the macro pack-

age needs proper access to the font's internals, but this is provided: the code used for

reading in the data comes from FontForge (an advanced font editor) and is presented via

Lua tables in a well organized way.

Given that users expect OpenType features to be supported, how do we provide an inter-

face. In ConTEXt the user interface has always be an important aspect and consistency is

a priority. On the other hand, there has been the tradition of specifying the size explicity

and a new custom introduced by X ETEX to enhance fontname with directives. Traditional

TEX provides:

\font \name filename [optional size]

X ETEX accepts

\font \name "fontname[:optional features]" [optional size]
\font \name fontname[:optional features] [optional size]

Instead of a fontname one can pass a filename between square brackets. LuaTEX handles:

\font \name anything [optional size]
\font \name {anything} [optional size]

where anything as well as the size are passed on to the callback.

A fresh look at fonts 37

This permits us to implement a traditional specification, support X ETEX like definitions, and

easily pass information from a macro package down to the callback as well. Interpreting

anything is done in Lua.

While implementing the Lua side of the loader we took a similar approach as the afm

reader and cached intermediate tables as well as keep track of font names (in addition

to filenames). In order to be able to quickly determine the (internal) font name of an

OpenType font, special loader functions are provided.

The size is kind of special, because we can have specifications like

at 10pt
at 3ex
at \dimexpr\bodyfontsize+1pt\relax

This means that we need to handle that on the TEX side and pass the calculated value to

the callback.

Virtual fonts have a rather special nature. They permit you to define variations of fonts

using other fonts and special (dvi related) operators. However, from the perspective of

TEX itself they don't exist at all. When you create a virtual font you also end up with a

tfm file and TEX only needs this file, which defined characters in terms of a width, height,

depth and italic correction as well as associates characters with kerning pairs and liga-

tures. TEX leaves it to the backend to deal the actual glyphs and therefore the backend

will be confronted by the internals of a virtual font. Because pdfTEX and therefore LuaTEX

has the backend built in, it is capable of handling virtual fonts information.

In LuaTEX you can build your own virtual font and this will suit us well. It permits us for

instance to complete fonts that lack certain characters (glyphs) and thereby let us get rid

of ugly macro based fallback trickery. Although in ConTEXt we will provide a high level

interface, we will give you a taste of Lua here.

callback.register("define_font", function(name,size)
if name == "demo" then

local f = font.read_tfm('texnansi-lmr10',size)
if f then

local capscale, digscale = 0.85, 0.75
f.name, f.type = name, 'virtual'
f.fonts = {

{ name="texnansi-lmr10" , size=size },
{ name="texnansi-lmss10", size=size*capscale },
{ name="texnansi-lmtt10", size=size*digscale }

}
for k,v in pairs(f.characters) do

38 A fresh look at fonts

local chr = utf.char(k)
if chr:find("[A-Z]") then

v.width = capscale*v.width
v.commands = {

{"special","pdf: 1 0 0 rg"},
{"font",2}, {"char",k},
{"special","pdf: 0 g"}

}
elseif chr:find("[0-9]") then

v.width = digscale*v.width
v.commands = {

{"special","pdf: 0 0 1 rg"},
{"font",3}, {"char",k},
{"special","pdf: 0 g"}

}
else

v.commands = {
{"font",1}, {"char",k}

}
end

end
return f

end
end
return font.read_tfm(name,size)

end)

Here we define a virtual font that uses three real fonts and which font is used depends on

the kind of character we're dealing with (inreal world situations we can best use the MkIV

function that tells what class a character belongs to). The commands table determines

what glyphs comes out in what way. We use a bit of literal pdf code to color the special

characters but generally color is not handled at the font level.

This example can be used like:

\font\test=demo \test
Hi there, this is the first (number 1) example of playing with
Virtual Fonts, some neat feature of \TeX, once you have access
to it. For instance, we can misuse it to fill in gaps in fonts.

During development of this mechanism, we decided to save some redundant loading by

permitting id's in the fonts array:

A fresh look at fonts 39

callback.register("define_font", function(name,size)
if name == "demo" then

local f = font.read_tfm('texnansi-lmr10',size)
if f then

local id = font.define(f)
local capscale, digscale = 0.85, 0.75
f.name, f.type = name, 'virtual'
f.fonts = {

{ id=id },
{ name="texnansi-lmss10", size=size*capscale },
{ name="texnansi-lmtt10", size=size*digscale }

}
for k,v in pairs(f.characters) do

local chr = utf.char(k)
if chr:find("[A-Z]") then

v.width = capscale*v.width
v.commands = {

{"special","pdf: 1 0 0 rg"},
{"slot",2,k},
{"special","pdf: 0 g"}

}
elseif chr:find("[0-9]") then

v.width = digscale*v.width
v.commands = {

{"special","pdf: 0 0 1 rg"},
{"slot",3,k},
{"special","pdf: 0 g"}

}
else

v.commands = {
{"slot",1,k}

}
end

end
return f

end
end
return font.read_tfm(name,size)

end)

Hardwiring fontnames in callbacks this way does not deserve a price and In the experi-

mental ConTEXt code we used calls like where demo is an installed feature.

40 A fresh look at fonts

Hi there, this is the first (number 1) example of playing with Virtual Fonts, some neat feature of TEX,
once you have access to it. For instance, we can misuse it to fill in gaps in fonts.

Keep in mind that this is just an example. In practice we will not do such things at the font

level but by manipulating TEX's internals.

While developing this functionality and especially when Taco was programming the back-

end functionality, we used more sane MkIV code. Think of (still Lua) definitions like:

\ctxlua {
fonts.define.methods.install("weird", {

{ "copy-range", "lmroman10-regular" } ,
{ "copy-char", "lmroman10-regular", 65, 66 } ,
{ "copy-range", "lmsans10-regular", 0x0100, 0x01FF } ,
{ "copy-range", "lmtypewriter10-regular", 0x0200, 0xFF00 }

,
{ "fallback-range", "lmtypewriter10-regular", 0x0000, 0x0200

}
})

}

Again, this is not the final user interface, but it shows the direction we're heading. The

result looks like:

\font\test={myfont@weird} \test
\eacute \rcaron \adoublegrave \char65

This shows up as:

éřȁB

Here the @ tells the (new) ConTEXt font handler what constructor should be used.

Because some testers already have X ETEX font support files, we also support a X ETEX like

definition syntax.

\font\test={lmroman10-regular:dlig;liga}\test
f i fi ffi \crlf
f i f\kern0pti f\kern0ptf\kern0pti \crlf
\char64259 \space\char64256 \char105 \space \char102\char102\char105

This gives:

f i fi ffi
f i fi ffi
ffi ffi ffi

A fresh look at fonts 41

We are quite tolerant with regards to this specification and will provide less dense meth-

ods as well. Of course we need to implement a whole bunch of features but we will do

this in such a way that we give users full control.

encodings

By now we've reached a stage where we can get rid of font encodings. We now have

the full unicode range available and no longer depend on the font encoding when we

hyphenate. In a previous chapter we discussed the difference in size between formats.

date luatex pdftex

2006-10-23 3 135 568 7 095 775

2007-02-18 3 373 206 7 426 451

2007-02-19 3 060 103 7 426 451

The size of the formats has grown a bit due to a few more patterns and a extra preloaded

encoding. But the LuaTEX format shrinks some 10% now that we can get rid of encoding

support. Some support for encodings is still present, so that one can keep using the metric

files that are installed (for instance in project related trees that have special fonts) although

afm/Type1 files or OpenType fonts will be used when available.

A couple of years from now, we may throw away some Lua code related to encodings.

files

TEX distributions tend to be rather large, both in terms of files and bytes. Fonts take most

of the space. The merged TEXLive 2007 trees contain some 60.000 files that take 1.123

MBytes. Of this, 25.000 files concern fonts totaling to 431 MBytes. A recent ConTEXt

distribution spans 1200 files and 20 MBytes and a bit more when third party modules are

taken into account. The fonts in TEXLive are distributed as follows:

format files bytes

AFM 1.769 123.068.970 443 22.290.132

TFM 10.613 44.915.448 2.346 8.028.920

VF 3.798 6.322.343 861 1.391.684

TYPE1 2.904 180.567.337 456 18.375.045

TRUETYPE 22 1.494.943

OPENTYPE 144 17.571.732

ENC 268 782.680

MAP 406 6.098.982 110 129.135

OFM 39 10.309.792

OVF 39 413.352

42 A fresh look at fonts

OVP 22 2.698.027

SOURCE 4.736 25.932.413

We omitted the more obscure file types. The last two columns show the numbers for one

of my local font trees.

In due time we will see a shift from Type1 to OpenType and TrueType files and because these

fonts are more complete, they may take some more space. More important is that the TEX

specific font metric files will phase out and the less Type1 fonts we have, the less afm com-

panions we need (afm files are not compressed and therefore relatively large). Mapping

and encoding files can also go away.

In LuaTEX we can do with less files, but the number of bytes may grow a bit depending

on how much is catched (especially fonts). Anyhow, we can safely assume that a LuaTEX

based distributions will carry less files and less bytes around.

fallbacks

Do we need virtual fonts? Currently in ConTEXt, when a font encoding is chosen, a fall-

back mechanism steps in as soon as a character is not in the encoding. So far, so good. But

occasionally we run into a font that does not (completely) fits an encoding and we end

up with defining a non standard one. In traditional TEX a side effects of font encodings is

that they relate to hyphenation. ConTEXt can deal with that comfortably and multiple in-

stances of the same set of hyphenation patterns can be loaded, but for custom encodings

this is kind of cumbersome.

In LuaTEX we have just one font encoding: Unicode. When OpenType fonts are used, we

don't expect many problems related to missing glyphs, but you can bet on it that they will

occur. This is where in ConTEXt MkIV fallbacks will be used and this will be implemented

using vitual fonts. The advantage of using virtual fonts is that we still deal with proper

characters and hyphenation will take place as expected. And since virtual fonts can be

defined on the fly, we can be flexible in our implementation. We can think of generic

fallbacks, not much different than macro based representations, or font specific ones,

where we even may rely on MetaPost for generating the glyph data.

How do we define a fall back character. When building this mechanism I used the ‘¢’ as

an example. A cent symbol is roughly defined as follows:

local t = table.fastcopy(g.characters[0x0063]) -- mkiv function
local s = fonts.tfm.scaled(g.fonts[1].size) -- mkiv function
t.commands = {

{"push"},
{"slot", 1, c},

A fresh look at fonts 43

{"pop"},
{"right", .5*t.width},
{"down", .2*t.height},
{"rule", 1.4*t.height, .02*s}

}
t.height = 1.2*t.height
t.depth = 0.2*t.height

Here, g is a loaded font (table) which has type virtual. The first font in the fonts array

is the main font. What happens here is the following: we assign the characteristics of ‘c’

to the cent symbol (this includes kerning and dimensions) and then define a command

sequence that draws the ‘c’ and a vertical rule through it.

The real code is slightly more complicated because we need to take care of italic proper-

ties when applicable and because we have added some tracing too. While playing with

this kind of things, it becomes clear what features are handy, and the reason that we now

have a virtual command comment is that it permits us to implement tracing (using for in-

stance color specials).

c c c c š é ä ü Ǒ Ǐ ḅ
c c c c š é ä ü Ǒ Ǐ ḅ
The previous lines are typeset using a similar specification as mentioned before:

\font\test=lmroman10-regular@demo-2

Without the fallbacks we get:

c ¢ c ¢ š é ä ü
c ¢ c ¢ š é ä ü
And with normal (non forced fallbacks) it looks as follows. As it happens, this font has a

cent symbol so no fallback is needed.

c ¢ c ¢ š é ä ü Ǒ Ǐ ḅ
c ¢ c ¢ š é ä ü Ǒ Ǐ ḅ
The font definition callback intercepts the demo-2 and a couple of chained lua functions

make sure that characters missing in the font are replaced by fallbacks. In the case of miss-

ing composed characters, they are constructed from their components. In this particular

example we have told the handler to assume that all composed characters are missing.

44 A fresh look at fonts

memory

Traditional TEX has been designed for speed and a small memory footprint. Todays im-

plementations are considerably more generous with the amount of memory that you can

use (hash, fonts, main memory, patterns, backend, etc). Depending on how complicated

a document layout it, memory may run into tens of megabytes.

Because LuaTEX is not only suitable for wide fonts, but also does away with some of the

optimizations in the TEX code that complicate extensions, it has a larger footprint that

pdfTEX. When implementing the OpenType font basics, we did quite some tests with re-

spect to memory usage. Getting the numbers right is non trivial because the Lua garbage

collector is interfering. For instance, on my machine a test file with the regular ConTEXt

setup of of Latin Modern fonts made Lua allocate 130 MB, while the same run on Taco's

machine took 100 MB.

When a font data table is constructed, it is handled over to TEX, and turned into the in-

ternal font data structures. During the construction of that TABLE at the Lua end, ConTEXt

MkIV disables the garbage collector. By doing this, the time needed to construct and

scale a font can be halved. Curious to the amount of memory involved in passing such a

table, I added the following piece of code:

if type(fontdata) == "table" then
local s = statistics.luastate_bytes
local t = table.copy(fontdata)
local d = statistics.luastate_bytes-s
texio.write_nl(string.format("table memory footprint: %s",d))

end

It turned out that a Regular Latin Modern font (OpenType) takes around 800 KB. However,

more interesting was that by adding this snippet of testcode which duplicted the table

in order to measure its size, the total memory footprint dropped to 100 MB (about the

amount used on Taco's machine). This demonstrates that one should be very careful with

drawing conclusions.

Because fonts are rather important in TEX and because there can be lots of them used, it

makes sense to keep an eye on memory as well as performance. Because many manipu-

lations now take place in Lua, it no longer makes sense to let TEX buffer fonts. In plain TEX

one finds these magic

\font\preloaded=cmr10
\font\preloaded=cmr12

lines. The second definitions obscures the first, but the cmr10 stays loaded.

A fresh look at fonts 45

\font\one=cmr10 at 10pt
\font\two=cmr10 at 10pt

These two definitions make TEX load the font only once. However, since we can now

delegate loading to Lua, TEX no longer helps us there. For instance, TEX has no knowledge

to what extend this cmr10 font has been manipulated and therefore both instances may

actually differ.

When you use a callback to define the font, TEX passes a font id number. You can use

this number as a reference to a loaded font (that is, passed to TEX). If instead of a table,

you return a number, TEX will reuse the already loaded font. This feature can save you

a lot of time, especially when a macro package (like ConTEXt) defines fonts dynamically

which means that when grouping is used, fonts get (re)defined a lot. Of course additional

caching can take place at the Lua end, but there one needs to take into account more

than just the scaled instance. Think of OpenType features or virtual font properties. The

following are quite certainly different setups, in spite of the common size.

\font\one=lmr10@demo-1 at 10pt
\font\two=lmr10@demo-2 at 10pt

When scaling a font, one not only needs to handle the regular glyph dimensions, but also

the kerning tables. We found out that dealing with such issues takes some 25% of the time

spent on loading Latin Modern fonts that have rather extensive kerning tables. When cre-

ating a virtual font, copying glyph tables may happen a lot. Deep copying tables takes a

bit of time. This is one of the reasons why we discussed (and consider) some dedicated

support functions so that copying and recalculating tables happens faster (less costly hash

lookups and such). On the other hand, the time wasted on calculations (including round-

ing to scaled points) can be neglected.

The following table shows what happens when we enforce a different garbage collecting

scheme. This test was triggered by another experiment where at regular time, for instance

after a pag eis shipped out, say

collectgarbage("collect")

However, such a complete sweep has drastic consequences for the runtime. But, since

the memory footprint becomes 10--15% less by doing so, we played a bit with

collectgarbage("setstepmul", somenumber)

When processing a not so large file but one that loads a bunch of open type fonts, we get

the following values. The left set is on linux (Taco's machine) and the right set in mine.

stepmul run (s) mem (MB) run (s) mem (MB)

200 1.58 69.14 5.6 84.17

46 A fresh look at fonts

1000 1.63 69.14 6.5 72.32

2000 1.64 60.66 6.8 73.53

10000 1.71 59.94 7.0 72.30

Since I use an old laptop running Windows with a probably different TEX configuration

(fonts), and under some load, both columns don't compare well, but the general idea is

the same. For practical usage a value of 1000 is probably best, especially because mem-

ory intensive font and script loading only happens at the first couple of pages.

Token speak 47

VII Token speak

tokenization

Most TEX users only deal with (keyed in) characters and (produced) output. Some will play

with boxes, skips and kerns or maybe even leaders (repeated sequences of the former).

Others will be grateful that macro package writers take care of such things.

Macro writers on the other hand deal properties of characters, like catcodes and a truck-

load of other codes, with lists made out of boxes, skips, kerns and penalties but even they

cannot look much deeper into TEX's internals. Their deeper understanding comes from

reading the TEXbook or even looking at the source code.

When someone enters the magic world of TEX and starts asking around on a bit, he or she

will at some point get confronted with the concept of ‘tokens’. A token is what ends up

in TEX after characters have entered its machinery. Sometimes it even seems that one is

only considered a qualified macro writer if one can talk the right token--speak. So what

are those magic tokens and how can LuaTEX shed light on this.

In a moment we will show examples of how LuaTEX turns characters into tokens, but when

looking at those sequences, you need to keep a few things in mind:

• A sequence of characters that starts with an escape symbol (normally this is the back-

slash) is looked up in the hash table (which relates those names to meanings) and re-

placed by its reference. Such a reference is much faster than looking up the sequence

each time.

• Characters can have special meanings, for instance a dollar is often used to enter and

exit math mode, and a percent symbol starts a comment and hides everything follow-

ing it on the same line. These meanings are determined by the character's catcode.

• All the characters that will end up actually typeset have catcode ‘letter’ or ‘other’ as-

signed. A sequence of items with catcode ‘letter’ is considered a word and can po-

tentially become hyphenated.

examples

We will now provide a few examples of how TEX sees your input.

Hi there!

Hi there!

cmd chr id name

48 Token speak

letter 72 H
letter 105 i
spacer 32
letter 116 t
letter 104 h
letter 101 e
letter 114 r
letter 101 e
other_char 33 !

Here we see three kind ot tokens. At this stage a space is still recognizable as such but

later this will become a skip. In our current setup, the exclamation mark is not a letter.

Hans \& Taco use Lua\TeX \char 33\relax

Hans & Taco use LuaTEX!

cmd chr id name

letter 72 H
letter 97 a
letter 110 n
letter 115 s
spacer 32
char_given 38 131112 &
spacer 32
letter 84 T
letter 97 a
letter 99 c
letter 111 o
spacer 32
letter 117 u
letter 115 s
letter 101 e
spacer 32
letter 76 L
letter 117 u
letter 97 a
long_call 470538 131700 TeX
char_num 0 132590 char
other_char 51 3
other_char 51 3
relax 1114112 134452 relax

Token speak 49

Here we see a few new tokens, a ‘char_given’ and a ‘call’. The first represents a \chardef
i.e. a reference to a character slot in a font, and the second one a macro that will expand to

the TEX logo. Watch how the space after a control sequence is eaten up. The exclamation

mark is a direct reference to character slot 33.

\noindent {\bf Hans} \par \hbox{Taco} \endgraf

Hans

Taco

cmd chr id name

start_par 0 158918 noindent
left_brace 123
long_call 368999 131372 bf
letter 72 H
letter 97 a
letter 110 n
letter 115 s
right_brace 125
spacer 32
par_end 1114112 131830 par
make_box 123 132640 hbox
left_brace 123
letter 84 T
letter 97 a
letter 99 c
letter 111 o
right_brace 125
spacer 32
par_end 1114112 144234 endgraf

As you can see, some primitives and macro's that are bound to them (like \endgraf)

have an internal representation on top of their name.

before \dimen2=10pt after \the\dimen2

before after 10.0pt

cmd chr id name

letter 98 b
letter 101 e
letter 102 f
letter 111 o

50 Token speak

letter 114 r
letter 101 e
spacer 32
assign_box_dir 2 134262 dimen
other_char 50 2
other_char 61 =
other_char 49 1
other_char 48 0
letter 112 p
letter 116 t
spacer 32
letter 97 a
letter 102 f
letter 116 t
letter 101 e
letter 114 r
spacer 32
top_bot_mark 0 131847 the
assign_box_dir 2 134262 dimen
other_char 50 2

As you can see, registers are not explicitly named, one needs the associated register code

to determine it's character (a dimension in our case).

before \inframed[width=3cm]{whatever} after

before whatever after

cmd chr id name

letter 98 b
letter 101 e
letter 102 f
letter 111 o
letter 114 r
letter 101 e
spacer 32
long_call 187371 1326018 inframed
other_char 91 [
letter 119 w
letter 105 i
letter 100 d
letter 116 t
letter 104 h

Token speak 51

other_char 61 =
other_char 51 3
letter 99 c
letter 109 m
other_char 93]
left_brace 123
letter 119 w
letter 104 h
letter 97 a
letter 116 t
letter 101 e
letter 118 v
letter 101 e
letter 114 r
right_brace 125
spacer 32
letter 97 a
letter 102 f
letter 116 t
letter 101 e
letter 114 r

As you can see, even when control sequences are collapsed into a reference, we still end

up with many tokens, and because each token has three properties (cmd, chr and id) in

practice we end up with more memory used after tokenization.

compound|-|word

compound-word

cmd chr id name

letter 99 c
letter 111 o
letter 109 m
letter 112 p
letter 111 o
letter 117 u
letter 110 n
letter 100 d
long_call 135958 125 |
other_char 45 -
long_call 135958 125 |
letter 119 w

52 Token speak

letter 111 o
letter 114 r
letter 100 d

This example uses an active character to handle compound words (a ConTEXt feature).

hm, \directlua 0 { tex.sprint("Hello World") }

hm, Hello World!

cmd chr id name

letter 104 h
letter 109 m
other_char 44 ,
spacer 32
the 23 183917 directlua
other_char 48 0
spacer 32
left_brace 123
spacer 32
letter 116 t
letter 101 e
letter 120 x
other_char 46 .
letter 115 s
letter 112 p
letter 114 r
letter 105 i
letter 110 n
letter 116 t
other_char 40 (
other_char 34 "
letter 72 H
letter 101 e
letter 108 l
letter 108 l
letter 111 o
spacer 32
letter 87 W
letter 111 o
letter 114 r
letter 108 l
letter 100 d

Token speak 53

other_char 33 !
other_char 34 "
other_char 41)
spacer 32
right_brace 125

The previous example shows what happens when we include a bit of lua code . . . it is

just seen as regular input, but when the string is passed to Lua, only the chr property is

passed, so we no longer can distinguish between letters and other characters.

A macro definition converts to tokens as follows.

[B][A]

cmd chr id name

set_box 0 131778 def
expand_after 0 132496 Test
mac_param 35
other_char 49 1
mac_param 35
other_char 50 2
left_brace 123
other_char 91 [
mac_param 35
other_char 50 2
other_char 93]
other_char 91 [
mac_param 35
other_char 49 1
other_char 93]
right_brace 125
spacer 32
expand_after 0 132496 Test
left_brace 123
letter 65 A
right_brace 125
left_brace 123
letter 66 B
right_brace 125

As we already mentioned, a token has three properties. More details can be found in the

reference manual so we will not go into much detail here. A stupid callback looks like:

callback.register('token_filter', token.get_next)

54 Token speak

In principle you can calltoken.get_next anytime you want to intercept a token. In that

case you can feed back tokens into TEX by using a trick like:

function tex.printlist(data)
callback.register('token_filter', function ()

callback.register('token_filter', nil)
return data

end)
end

Another example of usage is:

callback.register('token_filter', function ()
local t = token.get_next
local cmd, chr, id = t[1], t[2], t[3]
-- do something with cmd, chr, id
return { cmd, chr, id }

end)

There is a whole repertoire of related functions, one is token.create, which can be

used as:

tex.printlist{
token.create("hbox"),
token.create(utf.byte("{"), 1),
token.create(utf.byte("?"), 12),
token.create(utf.byte("}"), 2),

}

This results in: ?

While playing with this we made a few auxiliary functions which permit things like:

tex.printlist (table.unnest ({
tokens.hbox,
tokens.bgroup,
tokens.letters("12345"),
tokens.egroup,

}))

Unnesting is needed because the result of the letters call is a table, and the print-
list function wants a flattened table.

The result looks like: 12345

Token speak 55

cmd chr id name

make_box 123 132640 hbox
left_brace 123
letter 49 1
letter 50 2
letter 51 3
letter 52 4
letter 53 5
right_brace 125

In practice, manipulating tokens or constructing lists of tokens this way is rather cumber-

some, but at least we now have some kind of access, if only for illustrative purposes.

\hbox{12345\hbox{54321}}

can also be done by saying:

tex.sprint("\\hbox{12345\\hbox{54321}}")

or under ConTEXt's basic catcode regime:

tex.sprint(tex.ctxcatcodes, "\\hbox{12345\\hbox{54321}}")

If you like it the hard way:

tex.printlist (table.unnest ({
tokens.hbox,

tokens.bgroup,
tokens.letters("12345"),
tokens.hbox,

tokens.bgroup,
tokens.letters(string.reverse("12345")),

tokens.egroup,
tokens.egroup

}))

This method may attract those who dislike the traditional TEX syntax for doing the same

thing. Okay, a carefull reader will notice that reversing the string in TEX takes a bit more

trickery, so . . .

56

How about performance 57

VIII How about performance

remark

The previous chapters already spent some words on performance and memory usage. By

the time that Taco and I were implementing, discussing and testing the callbacks related

to node lists, we were already convinced that in all areas covered so far (file management,

handling input characters, dealing with fonts, conversion to tokens, string and table ma-

nipulation, enz.) the TEX--Lua pair was up to the task And so we were quite confident that

processing nodes was not only an important aspect of LuaTEX but also quite feasable in

terms of performance (after all we needed it in order to deal with advanced typesetting

of Arab). When Taco was dealing with the TEX side of the story, I was experimenting with

possible mechanisms at the Lua end.

At the same time I got the opportunity to speed up the MetaPost to pdf converter and

both activities involved some timing. Here I report some of the observations that we

made in this process.

parsing

Expressions in Lua are powerful and definitely faster than regular expressions found in

other languages, but they have some limits. Most noticeably is the lack of alternation. In

Ruby one can say:

str = "there is no gamma in here, just an beta"

if str =~ /(alph|bet|delt)a/ then
print($1)

end

but in Lua you need a few more lines:

str = "there is no gamma in here, just an beta"

for _, v in pairs({'alpha','beta','delta'}) do
local s = str:match(v)
if s then

print(s)
break

end
end

58 How about performance

Interesting is that upto now I didn't really miss alternation but it may as well be that the

lack of it drove me to come up with different solutions. For ConTEXt MkIV the MetaPost

to pdf converter has been rewritten in Lua. This is a prelude to direct Lua output from

MetaPost but I needed the exercise. It was among the first Lua code in MkIV.

Progressive (sequential) parsing of the data is an option, and is done in MkII using pure

TEX. We collect words and compare them to PostScript directives and act accordingly.

The messy parts are scanning the preamble, which has specials to be dealt with as well as

lots of unpredictable code to skip, and thefshow command which adds text to a graphic.

But real dirty are the code fragments that deal with setting the line width and penshapes

so the cleanup of this takes some time.

In Lua a different approach is taken. There is an mp table which collects a lot of functions

that more or less reflect the output of MetaPost. The functions take care of generating the

right pdf code and also handle the transformations needed because of the differences

between PostScript and pdf.

The sequential PostScript that comes from MetaPost is collected in one string and con-

verted using gsub into a sequence of Lua function calls. Before this can be done, some

cleanup takes place. The resulting string is then executed as Lua code.

As an example:

1 0 0 2 0 0 curveto

becomes

mp.curveto(1,0,0,2,0,0)

which results in:

\pdfliteral{1 0 0 2 0 0 c}

In between, the path is stored and transformed which is needed in the case of penshapes,

where some PostScript feature is used that is not available in pdf.

During the development of LuaTEX a new feature was added to Lua: lpeg. Withlpeg you

can define text scanners. In fact, you can build parsers for languages quite conveniently

so without doubt we will see it show up all over MkIV.

Since I needed an exercise to get accustomed with lpeg, I rewrote the mentioned con-

verter. I'm sure that a better implementation is possible than I did (after all, PostScript is

a language) but I went for a speedy solution. The following table shows some timings.

gsub lpeg

How about performance 59

2.5 0.5 100 times test graphic

9.2 1.9 100 times big graphic

The test graphic has about everything that MetaPost can output, including special tricks

that deal with transparency and shading. The big one is just four copies of the test graphic.

So, the lpeg based variant is about 5 times faster than the original variant. I'm not saying

that the original implementation is that brilliant, but a 5 time improvement is rather nice

especially when you consider that lpeg is still experimental and each version performs

better. The tests were done with lpeg version 0.5 which performs slightly faster than its

predecessor.

It's worth mentioning that the original gsub based variant was already a bit improved

compared to its first implementation. There we collected the TEX (pdf) code in a table

and passed it in its concatenated form to TEX. Because the Lua to TEX interface is by now

quite efficient we can just pass the intermediate results directly to TEX.

file io

The repertore of functions that deal with individual characters in Lua is small. This does

not bother us too much because the individual character is not what TEX is mostly dealing

with. A character or sequence of characters becomes a token (internally represented by

a table) and tokens result in nodes (again tables, but larger). There are many more tokens

involved than nodes: in ConTEXt a ratio of 200 tokens on 1 node are not uncommon. A

letter like x become a token, but the control sequence \command also ends up as one

token. Later on, thisxmay become a character node, possibly surrounded by some kern-

ing. The input characters width result in 5 tokens, but may not end up as nodes at all, for

instance when they are part of a key/value pair in the argument to a command.

Just as there is no guaranteed one--to--one relationship between input characters and

tokens, there is no straight relation between tokens and nodes. When dealing with input

it is good to keep in mind that because of these interpretation stages one can never say

that 1 megabyte of input characters ends up as 1 million something in memory. Just think

of how many megabytes of macros get stored in a format file much smaller than the sum

of bytes.

We only deal with characters or sequences of bytes when reading from an input medium.

There are many ways to deal with the input. For instance one can process the input lines

as TEX sees them, in which case TEX takes care of the utf input. When we're dealing with

other input encodings we can hook code into the file openers and readers and convert

the raw data ourselves. We can for instance read in a file as a whole, convert it using the

normal expression handlers or the byte(pair) iterators that LuaTEX provides, or we can go

real low level using native Lua code, as in:

60 How about performance

do
local function nextbyte(f)

return f:read(1)
end

function io.bytes(f)
return nextbyte, f

end
end

f = io.open("somefile.dat")
for b in io.bytes(f) do

do_something(b)
end
f:close()

Of course in practice one will need to integrate this into one of the reader callback, but

the principle stays the same. In case you wonder if calling functions for each byte is fast

enough . . . it's more than fast enough for normal purposes, especially if we keep in mind

that other tasks like reading of, preparing of and dealing with fonts of processing token

lists take way more time. You can be sore that when half a second runtime is spent on

reading a file, processing may take minutes. If one wants to sqeeze more performance

out of this part, it's always an option to write special libraries for that, but this is beyond

standard LuaTEX. We found out that the speed of loading data from files in Lua is mostly

related to the small size of Lua's file buffer. Reading data stored in tables is extremely fast,

and even faster when precompiled into bytecode.

tables

When Taco and I were experimenting with the callbacks that intercept tokens and nodes,

we wondered what the impact would be on performance. Although in MkIV we allocate

quite some memory due to font handling, we were pretty sure that handling TEX's internal

lists also could have their impact. Data related to fonts is not always subjected to garbage

collection, simply because it's to be available permanently. List processing on the other

hand involves a lot of temporary allocated tables. During a run a real huge amount of to-

kens passes the machinery. When digested, they become nodes. For testing we normally

use this document (with the name mk.tex) and at the time of writing this, it has some 48

pages.

This document is of moderately complexity, but not as complex as the documents that

I normally process; they have with lots of graphics, layers, structural elements, maybe a

bit of xml parsing, etc. Nevertheless, we're talking of some 24 million tokens entering the

How about performance 61

engine for 50 pages of text. Contrary to this the number of nodes is small: only 120 thou-

sand but the tables making up the nodes are more complex than token tables (with three

numbers per token). When all tokens are intercepted and returned unchanged, on my

machine the run is progressively slow and memory usage grows from 75M to 112M. There

is room for improvement there, especially in the garbage collector.

Side note: quite some of these tokens result from macro expansion. Also, when in the

input a \command is used, the callback passes it as one token. A command stores in

a format is already tokenized, but a command read from the input is tokenized when

read, so behind each token reported there can be a few more input characters, but their

number can be neglected compared to tokens originating from the macro package.

The token callback is rather slow when used for a whole document. However, this is

typically a callback that will only be used in very special situations and for a controlled

number of tokens. The node callback on the other hand can be set permanently. Fortu-

nately the number of nodes is relatively small. The overhead of a simple token handler

that just counts nodes is around 5% but most common manipulations with token lists

don't take much more time. For instance, experiments with adding kerns around punc-

tuation (a French speciality) hardly takes time, resolving ligatures is not really noticeable

and applying inter--character spacing to a whole document is not that slow either. Ac-

tually, the last example is kind of special because it more than doubles the size of the

node lists. Inserting or removing table elements in relatively slow when tables are large

but there are some ways around this.

One of the reasons of whole--document token handling being slow is that each token is a

three--element table and so the garbage collector has to work rather hard. The efficiency

of this process is also platform dependent (or maybe compiler specific). Manipulating

the garbage collector parameters does not improve performance, unless this forces the

collector to be inefficient at the cost of a lot of memory.

However, when we started dealing with nodes, I gave tuning the collector another try

and on the mentioned test document the following observations were made when ma-

nipulating the step multiplier:

step runtime memory

200 24.0 80.5M

175 21.0 78.2M

150 22.0 74.6M

160 22.0 74.6M

165 21.0 77.6M

125 21.5 89.2M

100 21.5 88.4M

As a result, I decided to set the stepmul variable to 165.

62 How about performance

\ctxlua{collectgarbage("setstepmul", 165)}

However, when we were testing thenew lpeg based MetaPost converter, we ran into

problems. For table intensive operations, temporary disabling the garbage collector gave

a significant boost in speed. While testing performance we used the following loop:

\dorecurse {2000} {
\setbox \scratchbox \hbox \bgroup

\convertMPtoPDF{test-mps-procset.mps}{1}{1}
\egroup

}

In such a loop, turning the garbage collector on and off is disasterous. Because no other

Lua calls happen between these calls, the garbage collector is never invoked at all. As

a result, memory growed from the baseline of 45M to 120MB and processing became

incrementally slow. I found out that restarting the collector before each conversion kept

memory usage low and the speed also remained okay.

\ctxlua{collectgarbage("restart")}

Further experiments learned that it makes sense to restart the collector at each shipout

and before table intense operations. On mk.tex this results in a memory usage of 74M

(at the end of the run) and a runtime of 21 seconds.

Concerning nodes and speed/allocation issues, we need to be aware of the fact that this

was still somewhat experimental and in the final version of LuaTEX callbacks may occur

at different places and lists may be subjected to parsing multiple times at different mo-

ments and locations (for instance when we start dealing with attributes, an upcoming new

feature).

Back to tokens. The reason why applying the callback to every token takes a while has

to do with the fact that each token goes through the associated function. If you want to

have an idea of what this means for 24 million tokens, just run the following Lua code:

for i=1,24 do
print(i)
for j=1,1000*1000 do

local t = { 1, 2, 3 }
end

end
print(os.clock())

This takes some 60 seconds on my machine. The following code runs about three times

faster because the table has not to be allocated each time.

How about performance 63

t = { 1, 2, 3 }
for i=1,24 do

print(i)
for j=1,1000*1000 do

t[1]=4 t[2]=5 t[3]=6
end

end
print(os.clock())

Imagine this code to be interwoven with other code and TEX doing things with the tokens

it gets back. The memory pool will be scattered and garbage collecting will become more

difficult.

However, in practice one will only apply token handling to a marked piece of the input

data. It is for this reason that the callback is not:

callback.register('token_filter', function(t)
return t

end)

but instead

callback.register('token_filter', function()
return token.get_next()

end)

This gives the opportunity to fetch more than one token and keep fetching till a criterium

is met (for instance a sentinel).

Because token.get_next is not bound to the callback you can fetch tokens anytime

you want and only use the callback to feed back tokens into TEX. In ConTEXt MkIV there

is some collect and flush tokens present. Here is a trivial example:

\def\SwapChars{\directlua 0 {
do

local t = { token.get_next(), token.get_next() }
callback.register('token_filter', function()

callback.register('token_filter', nil)
return { t[2], t[1] }

end)
end

}}

\SwapChars HH \SwapChars TH

64 How about performance

Collecting tokens can take place inside the callback but also outside. This also gives you

the opportunity to collect them in efficient ways and keep an eye on the memory de-

mands.

Of course using TEX directly takes less code:

\def\SwapChars#1#2{#2#1}

The example shown here involves so little tokens that running it takes no noticeable time.

Here we show this definition in tokenized form:

cmd chr id name

set_box 0 131778 def
expand_after 0 1335790 SwapChars
mac_param 35
other_char 49 1
mac_param 35
other_char 50 2
left_brace 123
mac_param 35
other_char 50 2
mac_param 35
other_char 49 1
right_brace 125

Nodes and attributes 65

IX Nodes and attributes

introduction

Here we will tell a bit about the development of node access in LuaTEX. We will also in-

troduce attributes, a feature closely related to nodes. We assume that you are somewhat

familiar with TEX's nodes: glyphs, kerns, glue, penalties, whatsits and friends.

tables

Access to node lists has been implemented rather early in the development because we

needed it to fulfil the objectives of the Oriental TEX project. The first implementation

used nested tables, indexed by number. In that approach, the first entry in each node

indicated the type in string format. At that time a horizontal list looked as follows:

list = {
[1] = "hlist",
[2] = 0,
...
[8] = {

[1] = {
[1] = "glyph",
...

},
[2] = {

...
}

}

Processing such lists is rather convenient since we can use the normal table iterators.

Because in practice only a few entries of a node are accessed, working with numbers

is no real problem: in slot 1 we have the type, en in the case of a horizontal or vertical list,

we know that slot 8 is either empty or a table. Looping over the list is done with:

for i, node in ipairs(list) do
if node[1] == "glyph" then

list[i][5] = string.byte(string.upper(string.char(node[5])))
end

end

Node processing code hooks into the box packagers and paragraph builder and a few

more places. This means that when using the table approach a lot of callbacks take place

66 Nodes and attributes

where TEX has to convert to and from Lua. Apart from processing time, we also have to

deal with garbage collection then and on an older machine with insufficient memory

interesting bottlenecks show up. Therefore some following optimizations were imple-

mented at the TEX end of the game.

Side note concerning speed: when memory of processing speed is low, runtime can in-

crease five to tenfold compared to pdfTEX when one does intensive node manipulations.

This is due to garbage collection at the Lua end and memory (de)allocation at the TEX

end. There is not much we can do about that. Interfacing has a price and hardware is

more powerful than when TEX was written. Processing the TEX book using no callbacks is

not that much slower than using a traditional TEX engine. However, nowadays fonts are

more extensive, demands for special features more pressing and that comes at a price.

When the list is not changed, the callback function can return the valuetrue. This signals

TEX that it can keep the original list. When the list is empty, the callback function can return

the value false. This signals TEX that the list can be discarded.

In order to minimize conversions and redundant processing, nested lists were not passed

as table but as a reference. One could expand such a list when needed. For instance,

when one hooks the same function in thehpack_filterandpre_linebreak_filter
callbacks, this way one can be pretty sure that each node is only processed once. Boxed

material that is part of the paragraph stream first enters the box packers and then already

is processed before it enters the paragraph callback. Of course one can decide the ex-

pand the referred sublist and process it again. Keep in mind that we're still talking of a

table approach, but we're slowly moving away from big conversions.

In principle one can insert and delete nodes in such a list but given that the average length

of a list representing a page is around 4000, you can imagine that moving around a large

amount of data is not that efficient. In order to cope with this, we experimented a lot and

came to solutions which will be discussed later on.

At the Lua end some tricks were used to avoid the mentioned insertion and deletion

penalty. When a node was deleted, we simply set its value to false. Deleting all glyphs

then became:

for i, node in ipairs(list) do
if node[1] == "glyph" then

list[i] = false
end

end

When TEX converted a Lua table back into its internal representation, it ignored such false

nodes.

Nodes and attributes 67

For insertion a dummy node was introduced at the Lua end. The next code duplicates

the glyphs.

for i, node in ipairs(list) do
if node[1] == "glyph" then

list[i] = { 'inline', 0, nil, { node, node } }
end

end

Just before we passed the resulting list back to TEX we collapsed these inline pseudo

nodes. This was a rather fast operation.

So far so good. But then we introduced attributes and keeping track of them as well as

processing them takes quite some processing power. Nodes with attributes then looked

like:

someglyph = {
[1] = "glyph", -- type
[2] = 0, -- subtype
[3] = { [1] = 5, [4] = 10 }, -- attributes
[4] = 88, -- slot
[5] = 32 -- font

}

Constructing attribute tables for each node is costly in terms of memory usage and pro-

cessing time and we found out that the garbage collector was becoming a bottleneck,

especially when resources are thin. We will go into more detail about attributes else-

where.

lists

At the same time that we discussed these issues, new Dutch word lists (adapted spelling)

were published and we started wondering if we could use such lists directly for hyphen-

ation purposes instead of relying on traditional patterns. Here the first observation was

that handling these really huge lists is no problem at all. Okay, it costs some memory but

we only need to load one of maybe a few of these lists. Hyphenating a paragraph us-

ing tables with hyphenated words and processing the paragraph related node list is not

only fast, it also gives us the opportunity to cross font boundaries. Of course there are

kerns and ligatures to deal with but this is no big deal. At least it can be an alternative or

addendum to the current hyphenator. Some languages have very small pattern files or a

very systematic approach to hyphenation so there is no reason to abandon the traditional

ways in all cases. Take your choice.

68 Nodes and attributes

When experimenting with the new implementation we tested the performance by letting

Lua take care of hyphenation, spell checking (marking words) and adding inter--character

kerns. When playing with big lists of words we found out that the caching mechanism

could not be used due to some limitations in the Lua byte code interpreter, so eventually

we ended up with a dedicated loader.

However, again we ran into performance problems when lists became more complex.

And so, instead of converting TEX datastructures into Lua tables userdata types came into

view. Taco already had reimplemented the node memory management, so a logical

next step was to reimplement the callbacks and box related code to deal with nodes

as linked lists. Since this is now the fashion in LuaTEX, you may forget the previous exam-

ples, although it is not that hard to introduce table representations again once we need

them.

Of course this resulted in an adaption to the regular TEX code but a nice side effect was

that we could now use fields instead of indexes into the node data structure. There is

a small price to pay in terms of performance, but this can be compensated by clever

programming.

someglyph = {
type = 41,
subtype = 0,
attributes = <attributes>,
char = 88,
font = 32

}

Attributes themselves are userdata. The same is true for components that are present

when we're for instance dealing with ligatures.

As you can see, in the field variant, a type is a number. In practice, because Lua hashes

strings, working with strings is as fast when comparing, but since we now have the more

abstract type indicator, we stick with the numbers, which saves a few conversions. When

dealing with tables we get code like:

function loop_over_nodes(list)
for i, n in ipairs(list)

local kind = n[1]
if kind == "hlist" or kind == "vlist" then

...
end

end
end

Nodes and attributes 69

But now that we have linked lists, we get the following. Node related methods are avail-

able in the node namespace.

function loop_over_nodes(head)
local hlist, vlist = node.id('hlist'), node.id('vlist')
while head do

local kind = head.type
if kind == hlist or kind == vlist then

...
end
head = head.next

end
end

Using an abstraction (i.e. a constant representing hlist looks nice here, which is why

numbers instead of strings are used. The indexed variant is still supported and there we

have strings.

Going from a node list (head node) to a table is not that complex. Sometimes this can be

handy because manipulating tables is more convenient that messing around with user-

data when it comes down to debugging or tracing.

function nodes.totable(n)
function totable(n)

local f, tt = node.fields(n.id,n.subtype), { }
for _,v in ipairs(f) do

local nv = n[v]
if nv then

local tnv = type(nv)
if tnv == "string" or tnv == "number" then

tt[v] = nv
else -- userdata

tt[v] = nodes.totable(nv)
end

end
end
return tt

end
local t = { }
while n do

t[#t+1] = totable(n)
n = n.next

end

70 Nodes and attributes

return t
end

It will be clear that here we collect data in Lua while treating nodes as userdata keeps

most of it at the TEX side and this is where the gain in speed comes from.

side effects

While experimenting with node lists Taco and I ran into a peculiar side effect. One of the

tests involved adding kerns between glyphs (inter character spacing as sometimes uses

in titles in a large print). When applied to a whole document we noticed that at some

places (words) the added kerning was gone. We used the subtype zero kern (which is

most efficient) and in the process of hyphenating TEX removes these kerns and inserts

them later (but then based on the information stored in the font.

The reason why TEX removes the font related kerns, is the following. Consider the code:

\setbox0=\hbox{some text} the text \unhcopy0 has width \the\wd0

While constructing the \hbox, TEX will apply kerning as dictated by the font. Otherwise

the width of the box would not be correct. This means that the node list entering the

linebreak machinery contains such kerns. Because hyphenating works on words TEX will

remove these kerns in the process of identifying the words. It creates a string, removes

the original sequence of nodes, determines hyphenation points, and add the result to

the node list. For efficiency reasons TEX will only look at places where hyphenation makes

sense.

Now, imagine that we add those kerns in the callback. This time, all characters are sur-

rounded by kerns (which we gave subtype zero). When TEX is determining feasable break-

points (hyphenation), it will remove those kerns, but only at certain places. Because our

kerns are way larger than the normal interglyph kerns, we suddenly end up with an in-

tercharacter spaced paragraph that has some words without such spacing but the font

dictated kerns.

m o s t w o r d s a r e s p a c e d b u t some words a r e n o t

Of course a solution is to use a different kern, but at least this shows that the moment of

processing nodes as well as the kind of manipulations need to be chosen with care.

Kerning is a nasty business anyway. Imagine the following word:

effe

When typeset this turns into three characters, one of them being a ligature.

Nodes and attributes 71

[char e] [liga ff (components f f)] [char e]

However, in Dutch, such a word hyphenates as:

ef-fe

This means that in the node list we eventually find something:

[char e] [disc (f-) (f) (skip 1)] [liga ff (components f f)] [char
e]

So, eventually we need to kern between the character sequences [e,f-], [e,ff], [ff,e] and

[f,e].

attributes

We now arrive at attributes, a new property of nodes. Before we explain a bit more what

can be done with them, we show how to define a new attribute and toggle it. In the

following example the \visualizenextnodes macro is part of ConTEXt MkIV.

\attributedef\aa=\numexpr\attdefcounter+2\relax % no clash
\attributedef\ab=\numexpr\attdefcounter+3\relax
\visualizenextnodes \hbox {\aa1 T{\ab3\aa2 E}X}

For the sake of this example, we start the allocation at 200 because we don't want to

interfere with attributes already defined in ConTEXt. The node list resulting from the box

is shown at the next page. As you can see here, internally attributes become a linked list

assigned to the attr field. This means that one has to do some work in order to inspect

attributes.

function has_attribute(n,a)
if n and n.attr then

n = n.attr.next
while n do

if n.number == a then
return n.value

end
n = n.next

end
else

return false
end

end

72 Nodes and attributes

t={
type="hlist",
attr={
type="attribute_list",
id=44,
next={
type="attribute",
id=42,
next={
type="attribute",
id=42,
number=6,
value=1,
next={
type="attribute",
id=42,
number=7,
value=3,
},

},
},
},
width=1135419,
height=440470,
list={
type="glyph",
id=33,
attr={
type="attribute_list",
id=44,
next={
type="attribute",
id=42,
next={
type="attribute",
id=42,
number=6,
value=1,
next={
type="attribute",
id=42,
number=7,
value=3,
next={
type="attribute",
id=42,
number=25,

value=1,
},

},
},

},
},
char=84,
font=81,
lang=2,
left=2,
right=3,
uchyph=1,
next={
type="glyph",
id=33,
attr={
type="attribute_list",
id=44,
next={
type="attribute",
id=42,
next={
type="attribute",
id=42,
number=6,
value=1,
next={
type="attribute",
id=42,
number=7,
value=3,
next={
type="attribute",
id=42,
number=25,
value=2,
next={
type="attribute",
id=42,
number=26,
value=3,

},
},

},
},
},

},

char=69,
font=81,
lang=2,
left=2,
right=3,
uchyph=1,
next={
type="glyph",
id=33,
attr={
type="attribute_list",
id=44,
next={
type="attribute",
id=42,
next={
type="attribute",
id=42,
number=6,
value=1,
next={
type="attribute",
id=42,
number=7,
value=3,
next={
type="attribute",
id=42,
number=25,
value=1,

},
},

},
},

},
char=88,
font=81,
lang=2,
left=2,
right=3,
uchyph=1,

},
},

},
}

Figure IX.I \hbox {\aa 1 T{\ab 3\aa 2 E}X}

Nodes and attributes 73

The previous function can be used in tests like:

local total = 0
while n do

if has_attribute(n,200) then
total = total + 1

end
n = n.next

end
texio.write_nl(string.format("attribute 200 has been seen % times",
total))

When implementing nodes and attributes we did rather extensive tests and one of the

test documents implemented some preliminary color mechanism based on attributes.

When handling the colors the previous function was called some 300.000 times and the

total node processing time (which also involved font handling) was some 2.9 seconds.

Implementing this function as a helper brought down node processing time to 2.4 sec-

onds. Of course the gain depends on the complexity of the list (nesting) and the number

of attributes that are set (upto 5 per node in this test). A few more helper functions are

available, some are for convenience, some gain us some speed.

The nice thing about attributes is that they obey grouping. This means that in the following

sequence:

x {\aa1 x \ab2 x} x

the attributes are assigned like:

x x(201=1) x(201=1,202=2) x

Internally LuaTEX does some optimizations with respect to assigning a sequence of similar

attributes, but you should keep in mind that in practice the memory usage will be larger

when using many attributes.

We played with color and other properties, hyphenation based on word lists (and track-

ing languages with attributes) and or special algorithms (url hyphenation), spell checking

(marking words as being spelled wrongly), and a few more things. This involved handling

attributes in several callbacks resulting in the insertion or deletion of nodes.

When using attributes for color support, we have to insert pdfliteral whatsit nodes

at some point depending on the current color. This also means that the time spent with

color support at the TEX end will be compensated by time spent at the Lua side. It also

means that because housekeeping to do with colors spanning pages and columns is gone

because from now on color information travels with the nodes. This saves quite some

ugly code.

74 Nodes and attributes

Because most of the things that we want to do with attributes (and we have quite an

agenda) are already nicely isolated in ConTEXt, attributes will find their way rather soon

in ConTEXt MkIV.

Let's end with an observation. Attributes themselves are not something revolutionary.

However, if you had to deal with them in TEX, i.e. associate them with for instance actions

in during shipout, quite some time would have been spent on getting things right. Even

worse: it would have lead to never ending discussions in the TEX community and as such

it's no surprise that something like this never showed up. The fact that we can use Lua

and manipulate node lists in many ways frees us from much discussion.

We are even considering in future versions of LuaTEX to turn font, language and direction

related information into attributes (in some private range) so this story is far from finished.

As a teaser, consider the following line of thinking.

Currently when a character enters the machinery, it becomes a glyph node. Among other

characteristics, this node contains information about the font and the slot in that font

which is used to represent that character. In a similar fashion, a space becomes glue with

a measure probably related to the current font.

However, with access to nodes and attributes, you can imagine the following scenario.

Instead of a font (internally represented by a font id), you use an attribute referring to a

font. At that time, the font field us just pointing to TEX's null font. In a pass over the node

list, you resolve the character and their attributes to a fonts and (maybe) other characters.

Spacing can be postponed as well and instead of real glue values we can use multipliers

and again attributes point the way to resolve them.

Of course the question is if this is worth the trouble. After all typesetting is about fonts

and there is no real reason not to give them a special place.

Dirty tricks 75

X Dirty tricks

If you ever laid your hands on the TEXbook, the words ‘dirty tricks’ will forever be associ-

ated with an appendix of that book. There is no doubt that you need to know a bit of the

internals of TEX in order to master this kind of trickyness.

In this chaper I will show a few dirty LuaTEX tricks. It also gives an impression of what kind

of discussions Taco and I had when discussing what kind of support should be build in

the interface.

afterlua

When we look at Lua from the TEX end, we can do things like:

\def\test#1{%
\setbox0=\hbox{\directlua0{tex.sprint(math.pi*#1)}}%
pi: \the\wd0\space\the\ht0\space\the\dp0\par

}

But what if we are at the Lua end and want to let TEX handle things? Imagine the following

call:

\setbox0\hbox{} \dimen0=0pt \ctxlua {
tex.sprint("\string\\setbox0=\string\\hbox{123}")
tex.sprint("\string\\the\string\\wd0")

}

This gives: 16.31999pt. This may give you the impression that TEX kicks in immediately,

but the following example demonstrates otherwise:

\setbox0\hbox{} \dimen0=0pt \ctxlua {
tex.sprint("\string\\setbox0=\string\\hbox{123}")
tex.dimen[0] = tex.wd[0]
tex.sprint("\string\\the\string\\dimen0")

}

This gives: 0.0pt. When still in Lua, we never get to see the width of the box.

A way out of this is the following rather straightforward approach:

function test(n)
function follow_up()

tex.sprint(tex.wd[0])

76 Dirty tricks

end
tex.sprint("\\setbox0=\\hbox{123}\\directlua 0 {follow_up()}")

end

We can provide a more convenient solution for this:

after_lua = { } -- could also be done with closures

function the_afterlua(...)
for _, fun in ipairs(after_lua) do

fun(...)
end
after_lua = { }

end

function afterlua(f)
after_lua[#after_lua+1] = f

end

function theafterlua(...)
tex.sprint("\\directlua 0 {the_afterlua("

.. table.concat({...},',') .. ")}")
end

If you look closely, you will see that we can (optionally) pass arguments to the function

theafterlua. Usage now becomes:

function test(n)
afterlua(function(...)

tex.sprint(string.format("pi: %s %s %s\\par",...))
end)
afterlua(function(wd,ht,dp)

tex.sprint(string.format("ip: %s %s %s\\par",dp,ht,wd))
end)
tex.sprint(string.format("\\setbox0=\\hbox{%s}",math.pi*n))
theafterlua(tex.wd[0],tex.ht[0],tex.dp[0])

end

The last call may confuse you but since it does a print to TEX, it is in fact a delayed action.

A cleaner implementation is the following:

do

delayed = { } -- could also be done with closures

Dirty tricks 77

function lua.delay(f)
delayed[#delayed+1] = f

end

function lua.flush_delayed(...)
local t = delayed
delayed = { }
for _, fun in ipairs(t) do

fun(...)
end

end

function lua.flush(...)
tex.sprint("\\directlua 0 {lua.flush_delayed(" ..

table.concat({...},',') .. ")}")
end

end

Usage is similar:

function test(n)
lua.delay(function(...)

tex.sprint(string.format("pi: %s %s %s\\par",...))
end)
tex.sprint(string.format("\\setbox0=\\hbox{%s}",math.pi*n))
lua.flush(tex.wd[0],tex.ht[0],tex.dp[0])

end

78

Going beta 79

XI Going beta

introduction

We're closing in on the day that we will go beta with LuaTEX (end of July 2007). By now we

have a rather good picture of its potential and to what extend LuaTEX will solve some of

our persistent problems. Let's first summarize our reasons for and objectives with LuaTEX.

• The world has moved from 8 bits to 32 bits and more, and this is quite noticeable in

the arena of fonts. Although Type1 fonts could host more than 256 glyphs, the associ-

ated technology was limited to 256. The advent of OpenType fonts will make it easier

to support multiple languages at the same time without the need to switch fonts at

awkward times.

• At the same time Unicode is replacing 8 bit based encoding vectors and code pages

(input regimes). The most popular and rather efficient utf8 encoding has become a

de factor standard in document encoding and interchange.

• Although we can do real neat tricks with TEX, given some nasty programming, we are

touching the limits of its possibilities. In order for it to survive we need to extend the

engine but not at the cost of base compatibility.

• Coding solutions in a macro language is fine, but sometimes you long to a more pro-

cedural approach. Manipulating text, handling io, interfacing . . . the technology

moves on and we need to move along too.

Hence LuaTEX: a merge of the mainstream traditional TEX engines, stripped from broken

or incomplete features and opened up to an embedded Lua scripting engine.

We will describe the impact of this new engine by starting from its core components re-

flected in the specific Lua interface libraries. Missing here is embedded support for Me-

taPost, because it's not yet there (apart from the fact that we use Lua to convert MetaPost

graphics into TEX). Also missing is the interfacing to the pdf backend, which is also on the

agenda for later. Special extensions, for instance those dealing with runtime statistics are

also not discussed. Since we use ConTEXt as testbed, we will refer to the LuaTEX aware

version of this macro package, MkIV, but most conclusions are rather generic.

tex internals

In order to manipulate TEX's data structures, we need access to all those registers. Already

early in the development, dimension and counters were accessible and when token and

node interfaces were implemented, those registers also were interfaced.

80 Going beta

Those who read the previous chapters will have noticed that we hardly discussed this

option. The reason is that we didn't yet needed that access much in order to implement

font support and list processing. After all, most of the data that we need to access and

manipulate is not in the registers at all. Information meant for Lua can be stored in Lua

data structures. In fact, the basic call

\directlua 0 {some lua code}

has shown to be a pretty good starting point and the fact that one can print back to the

TEX engine overcomes the need to store results in shared variables.

\def\valueofpi{\directlua0{tex.sprint(math.pi()}}

The number of such direct calls is not that large anyway. More often a call to Lua will be

initiated by a callback, i.e. a hook into the TEX machinery.

What will be the impact of access on ConTEXt MkIV? This is yet hard to tell. In a later stage

of the development, when parts of the TEX machinery will be rewritten in order to get rid

of the current global nature of many variables, we will gain more control and access to

TEX's internals. Core functionality will be isolated, can be extended and/or overloaded

and at that moment access to internals is much more needed. But certainly that will be

beyond the current registers and variables.

callbacks

These are the spine of LuaTEX: here both worlds communicate with each other. A callback

is a place in the TEX kernel where some information is passed to Lua and some result is

returned that is then used along the road. The reference manual mentions them all and

we will not repeat them here. Interesting is that in MkIV most of them are used and for

tasks that are rather natural to their place and function.

callback.register("tex_wants_to_do_this",
function but_use_lua_to_do_it_instead(a,b,c)

-- do whatever you like with a, b and c
return a, b, c

end
)

The impact of callbacks on MkIV is big. It provides us a way to solve persistent problems

or reimplement existing solutions in more convenient ways. Because we tested realistic

functionality on real (moderately complex) documents using a pretty large macro pack-

age, we can safely conclude that callbacks are quite efficient. Stepwise Lua kicks in in

order to:

Going beta 81

• influence the input medium so that it provides a sequence of utf characters

• manipulate the stream of characters that will be turned into a list of tokens

• convert the list of tokens into another list of tokens

• enhance the list of nodes that will be turned into a typeset paragraph

• tweak the mechanisms that come into play when lines are constructed

• finalize the result that will end up in the output medium

Interesting is that manipulating tokens is less useful than it may look at first sight. This has

to do with the fact that it's (mostly) an expanded stream and at that time we've lost some

information or need to do quite some coding in order to analyze the information and act

upon it.

Will ConTEXt users see any of this? Chances are small that they will, although we will

provide hooks so that they can add special code themselves. Users activating a callback

has some danger, since it may overload already existing functionality. Chaining function-

ality in a callback also has drawbacks, if only that one may be confronted with already

processed results and/or may destroy this result in unpredictable ways. So, as with most

low level TEX features, ConTEXt users will work with more abstract interfaces.

in- and output

In MkIV we will no longer use the kpse library directly. Instead we use a reimplementation

in Lua that not only is more efficient, but also more powerful: it can read from zip files,

use protocols, be more clever in searching, reencodes the input streams when needed,

etc. The impact on MkIV is large. Most TEX code that deals with input reencoding has

gone away and is replaced by Lua code.

Although it is not directly related with reading from the input medium, in that stage we

also replaced verbatim handling code. Such (often messy) catcode related situations are

now handled more flexible, thanks to fast catcode table switching (a new LuaTEX feature)

and features like syntax highlighting can be made more neat.

Buffers, a quite old but frequently used feature of ConTEXt, are now kept in memory in-

stead of files. This speeds up runs. Auxiliary data, aka multi--pass information, will no

longer be stored in TEX files but in Lua files. In ConTEXt we have one such auxiliary file

and in MkII this file is selectively filtered, but in MkIV we will be less careful with memory

and load all that data once. Such speed improvements compensate the fact that LuaTEX

is somewhat slower than it's ancestor pdfTEX. (Actually, the fact that LuaTEX is a bit slower

that pdfTEX is mostly due to the fact that it has Aleph code on board.)

Users often wonder why there are so many temporary files, but these mostly relate to

MetaPost support. These will go away once we have MetaPost as a library.

82 Going beta

In a similar way support for xml will be enriched. We already have experimental loaders,

filters and other code, and integration is on the agenda. Since ConTEXt uses xml for some

sub systems, this may have some impact.

Other io related improvements involve debugging, error handling and logging. We can

pop up helpers and debug screens (MkIV can produce xhtml output and then launch a

browser). Users can choose more verbose logging of io and ask for log data to be for-

matted in xml. These parts need some additional work, because in the end we will also

reimplement and extend TEX's error handling.

Another consequence of this will be that we will be able to package TEX more conve-

niently. We can put all the files that are needed into a zip file so that we only need to ship

that zip file and a binary.

font readers

Handling OpenType involves more that just loading yet another font format. Of course

loading an OpenType file is a necessity but we need to do more. Such fonts come with

features. Features can involve replacing one representation of a character by another

one of combining sequences into other sequences and finaly resolving them to one or

more glyphs.

Given the numerous options we will have to spend quite some time on extending ConTEXt

with new features. Instead of defining more and more font instances (the traditional TEX

way of doing things) we will will provides feature switching. In the end this will make the

often confusing font mechanisms less complex for the user to understand. Instead of for

instance loading an extra font (set) that provides old style numerals, we will decouple this

completely from fonts and provide it as yet another property of a piece of text. The good

news is that much of the most important machinery is alresady in place (ligature building

and such). Here we also have to decide what we let TEX do and what we do by process-

ing node lists. For instance kerning and ligature building can either be done by TEX or by

Lua. Given the fact that TEX does some juggling with character kerning while determining

hyphenation points, we can as well disable TEX's kerning and let Lua handle it. Thereby

TEX only has to deal with paragraph building. (After all, we need to leave TEX some core

functionality to deal with.)

Another everlasting burden on macro writers and users is dealing with character repre-

sentations missing from a font. Of course, since we use named glyphs in ConTEXt MkII

already much of this can be hidden, but in MkIV we can create virtual fonts on the fly and

keep thinking in terms of characters and glyphs instead of dealing with boxes and other

structures that don't go well with for instance hyphenating words.

This brings us to hyphenation, historically bound to fonts in traditional TEX. This depen-

dency will go away. In MkII we already ship utf8 based patterns fore some time and

Going beta 83

these can be conveniently used in MkIV too. We experimented with using hyphenated

word lists and this looks promising. You may expect more advanced ways of dealing with

words, hyphenation and paragraph building in the near future. When we presented the

first version of LuaTEX a few years ago, we only had the basic \directlua call available

and could do a bit of string manipulation on the input. A fancy demo was to color wrongly

spelled words. Now we can do that more robustly on the node lists.

Loading and preparing fonts for usage in LuaTEX or actually MkIV because this depends on

the macro package takes some runtime. For this reason we introduces caching into MkIV:

data that is used frequently is written to a cache and converted to Lua bytecode. Loading

the converted files is incredibly fast. Of course there is aprice to pay: disk space, but that

comes cheap these days. Also, it may as well be compensated by the fact that we can

kick out many redundant files from the core TEX distributions (metric files for instance).

tokens handlers

Do we need to handle tokens? So far in experimental MkIV code we only used these

hooks to demonstrate what TEX does with your characters. For a while we also con-

structed token lists when we wanted to inject \pdfliteral code in node lists, but that

became obsolete when automatic string to token conversion was introduced in the node

conversion code. Now we inject literal whatsit nodes. It may be worth noticing that play-

ing with token lists gave us some good insight in bottlenecks because quite some small

table allocation and garbage collections goes on.

nodes and attributes

These are the most promissing new features. In itself, nodes are not new, nor are attrib-

utes. In some sense when we use primitives like \hbox, \vskip, \lastpenalty the

result is a node, but we can only control and inspect their properties within hard coded

bounds. We cannot really look into boxes, and the last penalty may be obscured by a

whatsit (a mark, a special, a write, etc.). Attributes could be fakes with marks and macro

bases stacks of states. Native attributes are more powerful and each node can cary a

truckload of them.

With LuaTEX, out of a sudden we can look into TEX's internals and manipulate them. Although

I don't claim to be a real expert on these internals, even after over a decade of TEX pro-

gramming, I'm sometimes surprised what I found there. When we are playing with these

interfaces, we often run into situations where we need to add much print statements to

the Lua code in order to find out what TEX is returning. It all has to do with the way TEX

collects information and when it decides to act. In regular TEX much goes unnoticed, but

when one has for instance a callback that deals with page building there are many places

where this gets called and some of these places need special treatment.

84 Going beta

Undoubtely this will have a huge impact on ConTEXt MkIV. Instead of parsing an input

stream, we can now manipulate node lists in order to achieve (slight) inter--character

spacing which is often needed in sectioning titles. The nice thing about this new approach

is that we no longer have interference from characters that need multiple tokens (input

characters) in order to be constructed, which complicates parsing (needed to split glyphs

in MkII).

Signaling where to letterspace is done with the mentioned attributes. There can be many

of them and they behave like fonts: they obey grouping, travel with the nodes and are

therefore insensitive for box and page splitting. They can be set at the TEX end but needs

to be handled at the Lua side. One may wonder what kind of macro packages would be

around when TEX has attributes right from its start.

In MkII letterspacing is handled by parsing the input and injecting skips. Another ap-

proach would be to use a font where each character has more kerns or space around it (a

virtual font can do that). But that would not only demand knowledge of what fonts need

that that treatment, but also many more fonts and generating them is no fun for users. In

pdfTEX there is a letterspace feature, where virtual fonts are generated on the fly, and with

such an approach one has to compensate for the first and last character in a line, in order

to get rid of the left- and rightmost added space (being part of the glyph). The solution

where nodes are manipulated does put that burden upon the user.

Another example of node processing is adding specific kerns around some punctuation

symbols, as is custom in French. You don't want to know what it takes to do that in tradi-

tional TEX, but if I mention the fact that colons become active characters you can imagine

the nightmare. Hours of hacking and maybe even days of dealing with mechanisms that

make these active colons workable in places where colons are used for non text are now

even more wasted time if you consider that it takes a few lines of code in MkIV. Currently

we let ConTEXt support both good old TEX (represented by pdfTEX), X ETEX (a Unicode and

OpenType aware variant) and LuaTEX by shared and dedicated MkII and MkIV code.

Vertical spacing can be a pain. Okay, currently MkII has a rather sophisticated way to

deal with vertical spacing in ways that give documents a consistent look and feel, but

every now and then we run into border cases that cannot be dealt with simply because

we cannot look back in time. This is needed because TEX adds content to the main vertical

list and then it's gone from our view. Take for instance section titles. We don't want them

dangling at the bottom of a page. But at the same time we want itemized lists to look

well, i.e. keep items together in some situations. Graphics that follow a section title pose

similar problems. Adding penalties helps but these may come too late, or even worse,

they may obscure previous skips which then cannot be dealt with by successive skips. To

simplify the problem: take a skip of 12pt, followed by a penalty, followed by another skip

of 24pt. In ConTEXt this has to become a penalty followed by one skip of 24pt.

Going beta 85

Dealing with this in the page builder is rather easy. Ok, due to the way TEX adds content

to the page stream, we need to collect, treat and flush, but currently this works all right.

In ConTEXt MkIV we will have skips with three additional properties: priority over other

skips, penalties, and a category (think of: ignore, force, replace, add).

When we experimented with this kind of things we quickly decided that additional ex-

periments with grid snapping also made sense. These mechanisms are among the more

complex ones on ConTEXt. A simple snap feature took a few lines of Lua code and hook-

ing it into MkIV was not that complex either. Eventually we will reimplement all vertical

spacing and grid snapping code of MkII in Lua. Because one of ConTEXt column mech-

anism is grid aware, we may as well adath that and/or implement an additional mecha-

nism.

A side effect of being able to do this in LuaTEX is that the code taken from pdfTEX is cleaned

up: all (recently added) static kerning code is removed (inter--character spacing, pre- and

post character kerning, experimental code that can fix the heights and depths of lines,

etc.). The core engine will only deal with dynamic features, like hz and protruding.

So, the impact on MkIV of nodes and attributes is pretty big! Horizontal spacing isues,

vertical spacing, grid snapping are just a few of the things we will reimplement. Other

things are line numbering, multiple content streams with synchronization, both are al-

ready present in MkII but we can do a better job in MkIV.

generic code

In the previous text MkIV was mentioned often, but some of the features are rather generic

in nature. So, how generic can interfaces be implemented? When the MkIV code has

matured, much of the Lua and glue--to--TEX code will be generic in nature. Eventually

ConTEXt will become a top layer on what we internally call MetaTEX, a collection of kernel

modules that one can use to build specialized macro packages. To some extent MetaTEX

can be for LuaTEX what plain is for TEX. But if and how fast this will be reality depends on

the amount of time that we (and other members of the ConTEXt development team) can

allocate to this.

86

Zapfing fonts 87

XII Zapfing fonts

features

In previous chapters we've seen support for OpenType features creep into LuaTEX and

ConTEXt MkIV. However, it may not have been clear that so far we were just feeding the

traditional TEX machinery with the right data: ligatures and kerns. Here we will show what

so called features can do for you. Not much Lua code will be shown, if only because

relatively complex code is needed to handle this kind of trickery with acceptable perfor-

mance.

In order to support features in their full glory more is needed than TEX's ligature and kern

mechanisms: we need to manipulate the node list. As a result, we have now a second

mechanism built into MkIV and users can choose what method they like most. The first

method, calledbase, is less powerful and less complete than the one namednode. Even-

tually ConTEXt will use the node method by default.

There are two variants of features: substitutions and positioning. Here we concentrate on

substitutions of which there are several. Positioning is for instance used for specialized

kerning as needed in for instance typesetting Arab.

One character representation can be replaced by one or more fixed alternatives or alter-

natives chosen from a list of alternatives (substitutions or alternates). Multiple characters

can be replaces by one character (substitutions, alternates or a ligature). The replace-

ments can depend on preceding and/or following glyphs in which case we say that the

replacement is driven by rules. Rules can deal with single glyphs, combinations of glyphs,

classes (defined in the font) of glyphs and/or ranges of glyphs.

Because the available documentation of OpenType is rather minimalistic and because

most fonts are relatively simple, you can imagine that figuring out how to implement

support for fonts with advanced features is not entirely trivial and involves some trial and

error. What also complicate things is that features can interfere. Yet another complicating

factor is that in the order of applying a rule may obscure a later rule. Such fonts don't ship

with manuals and examples of correct output are not part of the buy.

We like testing LuaTEX's open type support with Palatino Regular and Palatino Sans and

good old Type1 support with Optima Nova. So it makes sense to test advanced features

with Zapfino Pro. This font has many features, which happen to be implemented by

Adam Twardoch, a well known font expert and familiar with the TEX community. We had

the feeling that when LuaTEX can support Zapfino Pro, designed by Hermann Zapf and

enhanced by Adam, we have reached a crucial point in the development.

88 Zapfing fonts

The first thing that you will observe when using this font is that the files are larger than

normal, especially the cached versions in MkIV. This made me extend some of the seri-

alization code that we use for caching font data so that it could handle huge tables better

but at the cost of some speed. Once we could handle the data conveniently and as a

side effect look into the font data with an editor, it became clear that implementing for

the calt and clig features would take a bit of coding.

example

Before some details will be discussed, we will show two of the test texts that ConTEXt

users normally use when testing layouts or new features, a quote from E.R. Tufte and one

from Hermann Zapf. The TEX code shows how features are set in ConTEXt.

\definefontfeature
[zapfino]
[language=nld,script=latn,mode=node,
calt=yes,clig=yes,liga=yes,rlig=yes,tlig=yes]

\definefont
[Zapfino]
[ZapfinoExtraLTPro*zapfino at 24pt]
[line=40pt]

\Zapfino
\input tufte \par

   --       

  , ,  , , , , , , -

, , , , , ,  , , ,

, , , , ,  , , , , -

, , ,  , , , , , fi, ,

, , , , , , , , ,

Zapfing fonts 89

, ,  , fl , ,  ,  , ,

fi, , , ,      ff  

    .

You don't even have to look too closely in order to notice that characters are represented

by different glyphs, depending on the context in which they appear.

\definefontsynonym
[Zapfino]
[ZapfinoExtraLTPro]
[features=zapfino]
\definedfont
[Zapfino at 24pt]
\setupinterlinespace
[line=40pt]
\input zapf \par

         :    

          

 ,           

    C         , 

 ,       ,   ff    

 .        C' , 

   -- ,     ,   

   .

90 Zapfing fonts

obeying rules

When we were testing node based feature support, the only way to check this was to

identify the rules that lead to certain glyphs. The more unique glyphs are good candidates

for this. For instance

• there is s special glyph representing 
• in the input stream this is the character sequence c/o
• so there most be a rule that tells us that this sequence becomes that ligature

As said, in this case, the replacement glyph is supposed to be a ligature and indeed there

is such a ligature: c_slash_o. Of course, this replacement will only take place when the

sequence is surrounded by spaces.

However, when testing this, we were not looking at this rule but at the (randomly chosen)

rule that was meant to intercept the alternative h.2 followed by z.4. Interesting was that

this resolved to a ligature indeed, but the shape associated with this ligature was an h,

which is not right. Actually, a few more of such rules turned out to be wrong. It took a bit

of an effort to reach this conclusion because of the mentioned interferences of features

and rules. At that time, the rule entry (in raw LuaTEX table format) looks as follows:

[44] = {
["format"] = "coverage",
["rules"] = {

[1] = {
["coverage"] = {

["ncovers"] = {
[1] = "h.2",
[2] = "z.4",

}
},
["lookups"] = {

[1] = {
["lookup_tag"] = "L084",
["seq"] = 0,

}
}

}
}
["script_lang_index"] = 1,
["tag"] = "calt",
["type"] = "chainsub"

}

Zapfing fonts 91

Instead of reinventing the wheel, we used the FontForge libraries for reading the OpenType

font files. Therefore the LuaTEX table is resembling the internal FontForge data structures.

Currently we show the version 1 format.

Here ncovers means that when the current character has shape  (h.2) and the next

one is  (z.4) (a sequence) then we need to apply the lookup internally tagged L084.

Such a rule can be more extensive, for instance instead of h.2 one can have a list of char-

acters, and there can be bcovers and fcovers as well, which means that preceding or

following character need to be taken into account.

When this rule matches, it resolves to a specification like:

[6] = {
["flags"] = 0,
["lig"] = {

["char"] = "h",
["components"] = "h.2 z.4",

},
["script_lang_index"] = 65535,
["tag"] = "L084",
["type"] = "ligature",

}

Here tag and script_lang_index are kind of special and are part of an private feature

system, i.e. they make up the cross reference between rules and glyphs. Watch how the

components don't match the character, which is even more peculiar when we realize

that these are the initials of the author of the font. It took a couple of Skype sessions and

mails before we came to the conclusion that this was probably a glitch in the font. So,

what to do when a font has bugs like this? Should one disable the feature? That would be

a pitty because a font like Zapfino depends on it. On the other hand, given the number

of rules and given the fact that there are different rule sets for some languages, you can

imagine that making up the rules and checking them is not trivial.

We should realize that Zapfino is an extraordinary case, because it used the OpenType

features extensively. We can also be sure that the problems will be fixed once they are

known, if only because Adam Twardoch (who did the job) has exceptionally high stan-

dards but it may take a while before the fix reached the user (who then has to update

his or her font). As said, it also takes some effort to run into the situation described here

so the likelihood of running into this rule is small. This also brings to our attention the

fact that fonts can now contain bugs and updating them makes sense but can break exist-

ing documents. Since such fonts are copyrighted and not available on line, font vendors

need to find ways to communicate these fixes to their customers.

92 Zapfing fonts

Can we add some additional checks for problems like this? For a while I thought that it

was possible by assuming that ligatures have names like h.2_z.4 but alas, sequences of

glyphs are mapped onto ligatures using mappings like the following:

three fraction four.2 threequarters ¾
three fraction four threequarters ¾
d r d_r 
e period e_period 
f i fi fi
f l fl fl
f f i f_f_i ffi
f t f_t 
Some ligature have no_ in their names and there are also some inconsistencies, compare

thefl andf_f_i. Here font history is painfully reflected in inconsistency and no solution

can be found here.

So, in order to get rid of this problem, MkIV implements a method to ignore certain rules

but then, this only makes sense if one knows how the rules are tagged internally. So, in

practice this is no solution. However, you can imagine that at some point ConTEXt ships

with a database of fixes that are applied to known fonts with certain version numbers.

We also found out that the font table that we used was not good enough for our purpose

because the exact order in what rules have to be applies was not available. Then we

noticed that in the meantime FontForge had moved on to version 2 and after consulting

the author we quickly came to the conclusion that it made sense to use the updated

representation.

In version 2 the snippet with the previously mentioned rule looks as follows:

["ks_latn_l_66_c_19"]={
["format"]="coverage",
["rules"]={
[1]={
["coverage"]={
["current"]={
[1]="h.2",
[2]="z.4",
}

},
["lookups"]={
[1]={
["lookup"]="ls_l_84",
["seq"]=0,

Zapfing fonts 93

}
}
}

},
["type"]="chainsub",
},

The main rule table is now indexed by name which is possible because the order of rules

is specified somewhere else. The key ncovers has been replaced by current. As long

as LuaTEX is in beta stage, we have the freedom to change such labels as some of them

are rather FontForge specific.

This rule is mentioned in a feature specification table. Here specific features are associ-

ated with languages and scripts. This is just one of the entries concerning calt. You can

imagine that it took a while to figure out how best to deal with this, but eventually the

MkIV code could do the trick. The cryptic names are replacements for pointers in the

FontForge datastructure. In order to be able to use FontForge for font development and

analysis, the decision was made to stick closely to its idiom.

["gsub"]={
...
[67]={
["features"]={
[1]={
["scripts"]={
[1]={
["langs"]={
[1]="AFK ",
[2]="DEU ",
[3]="NLD ",
[4]="ROM ",
[5]="TRK ",
[6]="dflt",

},
["script"]="latn",
}

},
["tag"]="calt",
}

},
["name"]="ks_latn_l_66",
["subtables"]={
[1]={

94 Zapfing fonts

["name"]="ks_latn_l_66_c_0",
},
...
[20]={
["name"]="ks_latn_l_66_c_19",
},
...

},
["type"]="gsub_context_chain",
},

practice

The few snapshots of the font table probably don't make much sense if you haven't seen

the whole table. Well, it certainly helps to see the whole picture, but we're talking of a

14 MB file (1.5 MB bytecode). When resolving ligatures, we can follow a straightforward

approach:

• walk over the nodelist and at each character (glyph node) call a function

• this function inspects the character and takes a look at the following ones

• when a ligature is identified, the sequence of nodes is replaced

Substitutions are not much different but there we look at just one character. However,

contextual substitutions (and ligatures) are more complex. Here we need to loop over a

list of rules (dependent on script and language) and this involves a sequence as well as

preceding and following characters. When we have a hit, the sequence will be replaced

by another one, determined by a lookup in the character table. Since this is a rather

time consuming operation, especially because many surrounding characters need to be

taken into account, you can imagine that we need a bit of trickery to get an acceptable

performance. Fortunately Lua is pretty fast when it comes down to manipulating strings

and tables, so we can prepare some handy datastructures in advance.

When testing the implementation of features one need to be aware of the fact that some

appearance are also implemented using the regular ligature mechanisms. Take the fol-

lowing definitions:

\definefontfeature
[none]
[language=dflt,script=latn,mode=node,liga=no]

\definefontfeature
[calt]
[language=dflt,script=latn,mode=node,liga=no,calt=yes]

\definefontfeature

Zapfing fonts 95

[clig]
[language=dflt,script=latn,mode=node,liga=no,clig=yes]

\definefontfeature
[dlig]
[language=dflt,script=latn,mode=node,liga=no,dlig=yes]

\definefontfeature
[liga]
[language=dflt,script=latn,mode=node]

This gives:

none on the synthesis winnow the wheat
calt      

clig on the synthis winnow the wheat
dlig on  syns winnow  eat
liga on the synthesis winnow the wheat

Here are Adam's recommendations with regards to the dlig feature: “The dlig feature

is supposed to by use only upon user's discretion, usually on single runs, words or even

pairs. It makes little sense to enable dlig for an entire sentence or paragraph. That's how

the OpenType specification envisions it.”

When testing features it helps to use words that look similar so next we will show some

examples that used. When we look at these examples, we need to understand that when

a specific character representation is analyzed, the rules can take preceding and follow-

ing characters into account. The rules take characters as well as their shapes, or more

precisely: one of their shapes since Zapfino has many variants, into account. Since dif-

ferent rules are used for languages (okay, this is limited to only a subset of languages that

use the latin script) not only shapes but also the way words are constructed are taken into

account. Designing te rules is definitely non trivial.

When testing the implementation we ran into cases where the initialt showed up wrong,

for instance in the the Dutch word troef. Because space can be part of the rules, we

need to handle the cases where words end and start and boxes are then kind of special.

troef troef troef troeftroef troef \par
\ruledhbox{troef troef troef troeftroef troef} \par
\ruledhbox{troef 123} \par
\ruledhbox{troef} \ruledhbox{troef } \ruledhbox{ troef} \ruledhbox
{ troef } \par

96 Zapfing fonts

    
    
 123





Unfortunately, this does not work well with punctuation, which is less prominent in the

rules than space. In our favourite test quote of Tufte, we have lots of commas and there

it shows up:

review review review, review \par
itemize, review \par
itemize, review, \par

  , 
, 
, ,
Of course we can decide to extend the rule base at runtime and this may well happen

when we experiment more with this font.

The next one was one of our first test lines, Watch the initial and the Zapfino ligature.

Welcome to Zapfino

  

For a while there was a bug in the rule handler that resulted in the variant of the y that

has a very large descender. Incidentally the word synthesize is also a good test case

for the the pattern which gets special treatment because there is a ligature available.

synopsize versus synthesize versus
synthase versus sympathy versus synonym

Zapfing fonts 97

        

Here are some examples that use the g, d and f in several places.

eggen groet ogen hagen \par
dieren druiven onder aard donder modder \par
fiets effe flater triest troef \par

   

     

fi    

Let's see how well Hermann has taken care of the h's representations. There are quite

some variants of the lowercase one:

h h
h.2 
h.3 
h.4 
h.5 
h.init 
h.sups 
h.sc 
orn.73 
How about the uppercase variant, as used in his name:

M Mr Mr. H He Her Herm Herma Herman Hermann Z Za Zap Zapf \par
Mr. Hermann Zapf

            


  

Of course we have to test another famous name:

98 Zapfing fonts

D Do Don Dona Donal Donald K Kn Knu Knut Knuth \par
Don Knuth Donald Knuth Donald E. Knuth DEK \par
Prof. Dr. Donald E. Knuth \par

          

     .  EK

.   . 

Unfortunately the Lua and TEX logos don't come out that well:

L Lu Lua l lu lua t te tex TeX luatex luaTeX LuaTeX

         X  TX TX
This font has quite some ornaments and there is an ornm feature that can be applied.

We're still not sure about its usage, but when one keys in text in lowercase, hermann
comes out as follows:


As said in the beginning, dirty implementation details will be kept away from the reader.

Also, you should not be surprised if the current code had some bugs or does some things

wrong. Also, if spacing looks a bit weird to you, keep in mind that we're still in the middle

of sorting things out.

  &  

Arabic 99

XIII Arabic

Let's start with admitting that I don't speak or read Arabic, and the sample texts used here

are part of what we use in the Oriental TEX project for exploring advanced Arabic typeset-

ting. This chapter will not discuss arab typesetting in much detail, but should be seen as

complementing the ‘Onthology on Arabic Typesetting’ written by Idris. Here I will only

show what the consequences are of applying features. Because we see glyphs but often

still deal with characters when analyzing what to do, we will use these terms mixed.

The font that we use here is the ‘arabtype’ font by MicroSoft. This font covers Latin scripts

and Arabic and has a rich set of features. It's also a rather big font, so it is a nice torture

test for LuaTEX.

First we show what MkIV does with a sequence of characters when no features are en-

abled by the user. We have turn on color tracing. This gives us some feedback about

the how the analyze worked out. Analyzing for Arabic boils down to marking the initial,

mid, final and isolated forms. We don't need to explicitly enable analyzing, it's on by de-

fault. The mode flag is set to nodebecause we cannot use TEX's default mechanism. When

LuaTEX and MkIV are beyond beta stage, we will use that mode by default.

analyze=yes, language=dflt, mode=node,
script=arab ِهّٰلِل

ِءۤاَنَّثلاِناَسِلِبٖ،هِدْجَمِراَحِبْنِمٌفِرَتْغُمٖ،هِدْمَحِبٍفِرَتْعُمَدْمَحِهّٰلِلُدْمَحْلَا

َ،ّرَّشلاَوَرْيَخْلاَوَ،ةوٰيَحْلاَوَتْوَمْلاَقَلَخْيِذَّلَا؛اًرِشاَنٖهِئۤالٰاِنْسُحِلَو،اًرِكاَش

َ.ناَيْسِّنلاَوَرْكِّذلاَوَ،ماَسْجَأْلاَوَحاَوْرَأْلاَوَ،ةَكَرَحْلاَوَنْوُكُّسلاَوَ،ّرَّضلاَوَعْفَّنلاَو

ِءاَۤنَّثلاِناسَلِِبٖ،هدِْجمَِراَحِبْنِمٌفِرَتغُْمٖ،هِدمْحَِبفٍِرتَعْمَُدْمحَهِلِّٰلدُمَْحْلاَ

،رََّّشلاَوَرْيَخْلاَو،ةَويٰحَْلاَوَتْوَمْلاَقَلَخيْذِلََّا؛اًرشِاَنهٖئِاۤلٰاِنسْحُِلَو،اًرِكاشَ

.َناَيْسِّنلاَوَرْكذِّلاوََ،ماَسْجأَْلاَوَحاوَْرأَْلاَو،ةََكَرحَلْاَونَْوُكُّسلاَو،َّرَّضلاَوعَفَّْنلاوَ

Once these forms are identified, theinit, medi, fina andisol features can be applied

since they need this information. As you can see, different shapes show up. The vowels

(marks in OpenType speak) are not affected. It may not be entirely clear here, but these

vowels don't have width.

100 Arabic

analyze=yes, fina=yes, init=yes, isol=yes,
language=dflt, medi=yes, mode=node, script=arab ِهّٰلِل

ٖهِئۤالٰاِنْسُحِلَو،اًرِكاَشِءۤاَنَّثلاِناَسِلِبٖ،هِدْجَمِراَحِبْنِمٌفِرَتْغُمٖ،هِدْمَحِبٍفِرَتْعُمَدْمَحِهّٰلِلُدْمَحْلَا

َ،ةَكَرَحْلاَوَنْوُكُّسلاَوَ،ّرَّضلاَوَعْفَّنلاَوَ،ّرَّشلاَوَرْیَخْلاَوَ،ةوٰیَحْلاَوَتْوَمْلاَقَلَخْيِذَّلَا؛اًرِشاَن

َ.ناَیْسِّنلاَوَرْكِّذلاَوَ،ماَسْجَأْلاَوَحاَوْرَأْلاَو

ٖهِئاۤلٰاِنسُْحِلَو،ارًكِاَشِءاۤنَثَّلاِناسَلِِبٖ،هدِْجَمِراحَِبْنِمفٌرَِتْغُم،هٖدِْمحَِبٍفِرتَعُْمدَْمَحِهّٰلِلُدْمَحْلاَ

،َةَكرََحْلاَوَنْوُكُّسلاَو،رََّّضلاَوَعفَّْنلاَو،رَّشَّلاوَرَْیَخْلاَو،ةَوٰیَحْلاَوَتْوَمْلاقََلخَْيذَِّلاَ؛ارًشِانَ

.َنایَسِّْنلاَورَكْذِّلاَوَ،ماسَجْأَْلاَوحَاَوْرأَْلاوَ

The order in which features are applied is dictated by the font and users don't need to

bother about it. In the next example we enable the mark and mkmk features. As with

other positioning related features, these are normally applied late in the feature chain.

analyze=yes, fina=yes, init=yes, isol=yes,
language=dflt, mark=yes, medi=yes, mode=node,
script=arab ّللِ هِٰ

ّللِدُمْحَْلَا هِٖئاۤلاٰنِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِاحَبِنْمِفٌرَِتغْمُ،هٖدِمْحَبِفٍرَِتعْمُدَمْحَهِٰ

،ةَكَرَحَْلاوَنَوْكُسُّلاوَ،رَّضَّلاوَعَفَّْنلاوَ،رَّشَّلاوَرَیْخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيْذَِّلَا؛ارًشِاَن

ّنلاوَرَكْذِّلاوَ،مَاسَجْأَْلاوَحَاوَرْأَْلاوَ .نَایَسِْ

ّللِدُمْحَْلَا هِٖئاۤلاٰنِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِاحَبِنْمِفٌرَِتغْمُ،هٖدِمْحَبِفٍرَِتعْمُدَمْحَهِٰ

،ةَكَرَحَْلاوَنَوْكُسُّلاوَ،رَّضَّلاوَعَفَّْنلاوَ،رَّشَّلاوَرَیْخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيْذَِّلَا؛ارًشِاَن

ّنلاوَرَكْذِّلاوَ،مَاسَجْأَْلاوَحَاوَرْأَْلاوَ .نَایَسِْ

The mark feature positions marks (vowels) relative to characters, also known as mark to

base. The mkmk feature positions marks to basemarks.

analyze=yes, fina=yes, init=yes, isol=yes,
language=dflt, mark=yes, medi=yes, mkmk=yes,
mode=node, script=arab ّللِ هِٰ

Arabic 101

ّللِدُمْحَْلَا هِٖئاۤلاٰنِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِاحَبِنْمِفٌرَِتغْمُ،هٖدِمْحَبِفٍرَِتعْمُدَمْحَهِٰ

،ةَكَرَحَْلاوَنَوْكُسُّلاوَ،رَّضَّلاوَعَفَّْنلاوَ،رَّشَّلاوَرَیْخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيْذَِّلَا؛ارًشِاَن

ّنلاوَرَكْذِّلاوَ،مَاسَجْأَْلاوَحَاوَرْأَْلاوَ .نَایَسِْ

ّللِدُمْحَْلَا هِٖئاۤلاٰنِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِاحَبِنْمِفٌرَِتغْمُ،هٖدِمْحَبِفٍرَِتعْمُدَمْحَهِٰ

،ةَكَرَحَْلاوَنَوْكُسُّلاوَ،رَّضَّلاوَعَفَّْنلاوَ،رَّشَّلاوَرَیْخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيْذَِّلَا؛ارًشِاَن

ّنلاوَرَكْذِّلاوَ،مَاسَجْأَْلاوَحَاوَرْأَْلاوَ .نَایَسِْ

Kerning depends on the font. Some fonts don't need kerning, others may need extensive

relative positioning of characters (by now glyphs).

analyze=yes, fina=yes, init=yes, isol=yes,
kern=yes, language=dflt, mark=yes, medi=yes,
mkmk=yes, mode=node, script=arab ّللِ هِٰ

ّللِدُمْحَْلَا نِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِاحَبِنْمِفٌرَِتغْمُ،هٖدِمْحَبِفٍرَِتعْمُدَمْحَهِٰ

،ةَكَرَحَْلاوَنَوْكُسُّلاوَ،رَّضَّلاوَعَفَّْنلاوَ،رَّشَّلاوَرَیْخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيْذَِّلَا؛ارًشِاَنهِٖئاۤلاٰ

ّنلاوَرَكْذِّلاوَ،مَاسَجْأَْلاوَحَاوَرْأَْلاوَ .نَایَسِْ

ّللِدُمْحَْلَا نِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِاحَبِنْمِفٌرَِتغْمُ،هٖدِمْحَبِفٍرَِتعْمُدَمْحَهِٰ

،ةَكَرَحَْلاوَنَوْكُسُّلاوَ،رَّضَّلاوَعَفَّْنلاوَ،رَّشَّلاوَرَیْخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيْذَِّلَا؛ارًشِاَنهِٖئاۤلاٰ

ّنلاوَرَكْذِّلاوَ،مَاسَجْأَْلاوَحَاوَرْأَْلاوَ .نَایَسِْ

So far we only had rather straightforward replacements. More sophisticated replace-

ments are those driven by the context. In principle all replacements can be context

driven, but the calt and clig features are normally dedicated to the real complex ones

that take preceding and following characters into account.

analyze=yes, calt=yes, fina=yes, init=yes,
isol=yes, kern=yes, language=dflt, mark=yes,
medi=yes, mkmk=yes, mode=node, script=arab ّللِ هِٰ

102 Arabic

ّللِدُمْحَْلَا نِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِاحَبِنْمِفٌرَِتغْمُ،هٖدِمْحَبِفٍرَِتعْمُدَمْحَهِٰ

،ةَكَرَحَْلاوَنَوْكُسُّلاوَ،رَّضَّلاوَعَفَّْنلاوَ،رَّشَّلاوَرَیْخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيْذَِّلَا؛ارًشِهِٖئاۤلاٰ

ّنلاوَرَكْذِّلاوَ،مَاسَجْأَْلاوَحَاوَرْأَْلاوَ .نَایَسِْ

ّللِدُمْحَْلَا نِسْحُلِوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِجْمَرِاحَبِنْمِفٌرَِتغْمُ،هٖدِمْحَبِفٍرَِتعْمُدَمْحَهِٰ

،ةَكَرَحَْلاوَنَوْكُسُّلاوَ،رَّضَّلاوَعَفَّْنلاوَ،رَّشَّلاوَرَیْخَْلاوَ،ةَویٰحَْلاوَتَوْمَْلاقََلخَيْذَِّلَا؛ارًشِهِٖئاۤلاٰ

ّنلاوَرَكْذِّلاوَ،مَاسَجْأَْلاوَحَاوَرْأَْلاوَ .نَایَسِْ

Ligatures are often used to beautify Arabic typeset documents. Here we enable the whole

lot.

analyze=yes, clig=yes, dlig=yes, fina=yes,
init=yes, isol=yes, kern=yes, language=dflt,
liga=yes, mark=yes, medi=yes, mkmk=yes,
mode=node, rlig=yes, script=arab

ِ

نِسُْلحوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِمجْرِابحَنْمِفٌرَِتغْمُ،هٖدِمْبحَفٍرَِتعْمُدَحمِْدُلحمَْا
ۤ
هِٖئ

حَاوَرْلأَاوَ،ةَكَرََلحاوَنَوْكُسُّلاوَ،ضرَّلاوَعَفَّْنلاوَ،شرَّلاوَرَیَْلخاوَ،ةَویَٰلحاوَتَوَْلماقََلخَيَِْا؛اشرًاَن

ّنلاوَرَكِّْاوَ،مَاسَجْلأَاوَ .نَایَسِْ

نِسُْلحوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِمجْرِابحَنْمِفٌرَِتغْمُ،هٖدِمْبحَفٍرَِتعْمُدَحمِْدُلحمَْا
ۤ
هِٖئ

حَاوَرْلأَاوَ،ةَكَرََلحاوَنَوْكُسُّلاوَ،ضرَّلاوَعَفَّْنلاوَ،شرَّلاوَرَیَْلخاوَ،ةَویَٰلحاوَتَوَْلماقََلخَيَِْا؛اشرًاَن

ّنلاوَرَكِّْاوَ،مَاسَجْلأَاوَ .نَایَسِْ

Kerning deals with horizontal displacements, but curs (cursive) goes one step further.

As with marks, positioning is based on anchor points and resolving them involves a bit

of trickery because one needs to take into account that characters may have vowels at-

tached to them.

analyze=yes, clig=yes, curs=yes, dlig=yes,
fina=yes, init=yes, isol=yes, kern=yes,
language=dflt, liga=yes, mark=yes, medi=yes,
mkmk=yes, mode=node, rlig=yes, script=arab

ِ

Arabic 103

نِسُْلحوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِمجْرِابحَنْمِفٌرَِتغْمُ،هٖدِمْبحَفٍرَِتعْمُدَحمِْدُلحمَْا
ۤ
هِٖئ

حَاوَرْلأَاوَ،ةَكَرََلحاوَنَوْكُسُّلاوَ،ضرَّلاوَعَفَّْنلاوَ،شرَّلاوَرَیَْلخاوَ،ةَویَٰلحاوَتَوَْلماقََلخَيَِْا؛اشرًاَن

ّنلاوَرَكِّْاوَ،مَاسَجْلأَاوَ .نَایَسِْ

نِسُْلحوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِمجْرِابحَنْمِفٌرَِتغْمُ،هٖدِمْبحَفٍرَِتعْمُدَحمِْدُلحمَْا
ۤ
هِٖئ

حَاوَرْلأَاوَ،ةَكَرََلحاوَنَوْكُسُّلاوَ،ضرَّلاوَعَفَّْنلاوَ،شرَّلاوَرَیَْلخاوَ،ةَویَٰلحاوَتَوَْلماقََلخَيَِْا؛اشرًاَن

ّنلاوَرَكِّْاوَ،مَاسَجْلأَاوَ .نَایَسِْ

One script can serve multiple languages so let's see what happens when we switch to

Urdu.

analyze=yes, clig=yes, curs=yes, dlig=yes,
fina=yes, init=yes, isol=yes, kern=yes,
language=urd, liga=yes, mark=yes, medi=yes,
mkmk=yes, mode=node, rlig=yes, script=arab

ِ

نِسُْلحوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِمجْرِابحَنْمِفٌرَِتغْمُ،هٖدِمْبحَفٍرَِتعْمُدَحمِْدُلحمَْا
ۤ
هِٖئ

حَاوَرْلأَاوَ،ةَكَرََلحاوَنَوْكُسُّلاوَ،ضرَّلاوَعَفَّْنلاوَ،شرَّلاوَرَیَْلخاوَ،ةَویَٰلحاوَتَوَْلماقََلخَيَِْا؛اشرًاَن

ّنلاوَرَكِّْاوَ،مَاسَجْلأَاوَ .نَایَسِْ

نِسُْلحوَ،ارًكِاشَءِاَۤنَّثلانِاسَلِبِ،هٖدِمجْرِابحَنْمِفٌرَِتغْمُ،هٖدِمْبحَفٍرَِتعْمُدَحمِْدُلحمَْا
ۤ
هِٖئ

حَاوَرْلأَاوَ،ةَكَرََلحاوَنَوْكُسُّلاوَ،ضرَّلاوَعَفَّْنلاوَ،شرَّلاوَرَیَْلخاوَ،ةَویَٰلحاوَتَوَْلماقََلخَيَِْا؛اشرًاَن

ّنلاوَرَكِّْاوَ،مَاسَجْلأَاوَ .نَایَسِْ

In practice one will enable most of the features. In MkIV one can define feature sets as

follows:

\definefontfeature
[arab-default]
[mode=node,language=dflt,script=arab,
init=yes,medi=yes,fina=yes,isol=yes,
liga=yes,dlig=yes,rlig=yes,clig=yes,
mark=yes,mkmk=yes,kern=yes,curs=yes]

Applying these features to fonts can be done in several ways, with as most basic one:

\font\ArabFont=arabtype*arab-default at 18pt

104 Arabic

Normally one will do something like

\definefont[ArabFont][arabtype*arab-default at 18pt]

or use typescripts to set up ap proper font collection, in which case we end up with def-

initions that look like:

\definefontsynonym[ArabType][name:arabtype][features=arab-default]
\definefontsynonym[Serif][ArabType]

More information about typescripts can be found in manuals and on the ConTEXt wiki.

Colors redone 105

XIV Colors redone

introduction

Color support has been present in ConTEXt right from the start and support has been

gradualy extended, for instance with transparency and spot colors. About 10 years later

we have the first major rewrite of this mechanism using attributes as implemented in

LuaTEX.

Because I needed a test file to check if all things still work as expected, I decided to recap

the most important commands in this chapter.

color support

The core command is \definecolor, so let's define a few colors:

\definecolor [red] [r=1]
\definecolor [green] [g=1]
\definecolor [blue] [b=1]
\definecolor [yellow] [y=1]
\definecolor [magenta] [m=1]
\definecolor [cyan] [c=1]

This gives us the following colors:

color name transparency specification

white black red r=1.000 g=0.000 b=0.000
white black green r=0.000 g=1.000 b=0.000
white black blue r=0.000 g=0.000 b=1.000

white black yellow c=0.000 m=0.000 y=1.000 k=0.000
white black magenta c=0.000 m=1.000 y=0.000 k=0.000
white black cyan c=1.000 m=0.000 y=0.000 k=0.000

As you can see in this table, transparency is part of a color specification, so let's define a

few transparent colors:

\definecolor [t-red] [r=1,a=1,t=.5]
\definecolor [t-green] [g=1,a=1,t=.5]
\definecolor [t-blue] [b=1,a=1,t=.5]

106 Colors redone

color name transparency specification

white black t-red a=1.000 t=0.500 r=1.000 g=0.000 b=0.000
white black t-green a=1.000 t=0.500 r=0.000 g=1.000 b=0.000
white black t-blue a=1.000 t=0.500 r=0.000 g=0.000 b=1.000

Because transparency is now separated from color, we can define transparent behaviour

as follows:

\definecolor[half-transparent] [a=1,t=.5]

Implementing process color spaces was not that complex, but spot and multitone colors

took a bit more code.

\definecolor [parentspot] [r=.5,g=.2,b=.8]
\definespotcolor [childspot-1] [parentspot] [p=.7]
\definespotcolor [childspot-2] [parentspot] [p=.4]

The three colors, two of them are spot colors, show up as follows:

color name transparency specification

white black parentspot r=0.500 g=0.200 b=0.800
white black childspot-1 p=0.700
white black childspot-2 p=0.400

Multitone colors can also be defined:

\definespotcolor [spotone] [red] [p=1]
\definespotcolor [spottwo] [green] [p=1]

\definespotcolor [spotone-t] [red] [a=1,t=.5]
\definespotcolor [spottwo-t] [green] [a=1,t=.5]

\definemultitonecolor
[whatever]
[spotone=.5,spottwo=.5]
[b=.5]

\definemultitonecolor
[whatever-t]
[spotone=.5,spottwo=.5]
[b=.5]
[a=1,t=.5]

Transparencies don't carry over:

Colors redone 107

color name transparency specification

white black spotone p=1.000
white black spottwo p=1.000
white black spotone-t a=1.000 t=0.500 p=1.000
white black spottwo-t a=1.000 t=0.500 p=1.000
white black whatever p=.5,.5
white black whatever-t a=1.000 t=0.500 p=.5,.5

Transparencies combine as follows:

\blackrule[width=3cm,height=1cm,color=spotone-t]\hskip-1.5cm
\blackrule[width=3cm,height=1cm,color=spotone-t]

We can still clone colors and overload color dynamically. I used the following test code

for the MkIV code:

{\green green->red}
\definecolor[green] [g=1]
{\green green->green}
\definecolor[green] [blue]
{\green green->blue}
\definecolor[blue] [red]
{\green green->red}
\freezecolorstrue
\definecolor[blue] [red]
\definecolor[green] [blue]
\definecolor[blue] [r=1]
{\green green->blue}

green->red green->green green->blue green->red green->blue

Of course palets and color groups are supported too. We seldom use colorgroups, but

here is an example:

\definecolorgroup
[redish]
[1.00:0.90:0.90,1.00:0.80:0.80,1.00:0.70:0.70,1.00:0.55:0.55,
1.00:0.40:0.40,1.00:0.25:0.25,1.00:0.15:0.15,0.90:0.00:0.00]

The redish color is called by number:

108 Colors redone

\blackrule[width=3cm,height=1cm,depth=0pt,color=redish:1]\quad
\blackrule[width=3cm,height=1cm,depth=0pt,color=redish:2]\quad
\blackrule[width=3cm,height=1cm,depth=0pt,color=redish:3]

Palets work with names:

\definepalet
[complement]
[red=cyan,green=magenta,blue=yellow]

This is used as:

\blackrule[width=1cm,height=1cm,depth=0pt,color=red]\quad
\blackrule[width=1cm,height=1cm,depth=0pt,color=green]\quad
\blackrule[width=1cm,height=1cm,depth=0pt,color=blue]\quad
\setuppalet[complement]%
\blackrule[width=1cm,height=1cm,depth=0pt,color=red]\quad
\blackrule[width=1cm,height=1cm,depth=0pt,color=green]\quad
\blackrule[width=1cm,height=1cm,depth=0pt,color=blue]

Rasters are still supported but normally one will use colors:

\raster[.5]{\blackrule[width=3cm,height=1cm]}\quad
\raster[.8]{\blackrule[width=3cm,height=1cm]}

Of course the real turture test is MetaPost inclusion:

\startMPcode
path p ; p := fullcircle scaled 4cm ;
fill p withcolor \MPcolor{spotone-t} ;
fill p shifted(2cm,0cm) withcolor \MPcolor{spottwo-t} ;

\stopMPcode

These transparent color circles up as:

Colors redone 109

Multitone colors also work:

\startMPcode
path p ; p := fullcircle scaled 2cm ;
fill p withcolor \MPcolor{spotone} ;
fill p shifted(2cm,0cm) withcolor \MPcolor{spottwo} ;
fill p shifted(4cm,0cm) withcolor \MPcolor{whatever} ;

\stopMPcode

This gives:

implementation

The implementation of colors using attributes if quite different from the traditional method.

In MkII color support works okay but the associated code is not that clean, if only be-

cause:

• we need to keep track of grouped color usage

• and we do that using dedicated marks (using TEX's mark mechanism)

• since this has limitations, we have quite some optimizations

• like local (no marks) and global colors (marks)

• and real dirty code to push and pop color states around pages

• and some messy code to deal with document colors

• and quite some conversion macros (think of TEX not having floats)

Although recent versions of pdfTEX have a color stack mechanism, this is not adequate

for our usage, if only because we support more colorspaces than this mechanism is sup-

posed to deal with. (The color stack mechanism is written with a particular macro packag

ein mind.)

110 Colors redone

In MkIV attributes behave like colors and therefore we no longer need to care about

what happens at pageboundaries. Also, we no longer have to deal with the limitations of

marks. Here:

• we have distributed color spaces, color itself and transparency

• all injection of backend code is postponed to shipout time

• definition and conversion is delegated to Lua

Of course the current implementation is not as nice as we would like it to be. This be-

cause:

• support mechanism are under construction

• we need to support both MkII and MkIV in one interface

• backend support is yet limited

Although in principle a mechanism based on attributes is much faster than using marks

cum suis, the new implementation is slower. The main reason is that we need to finalize

the to be shipped out box. However, since this task involved more than just color, we

will gain back some runtime when other mechanisms also use attributes.

complications

This paragraph is somewhat complex, so skip it when you don't feel comfortabel with the

subject of when you've never seen low level ConTEXt code.

Attributes behave like fonts. This means that they are kind of frozen once material is

boxed. Consider that we define a box as follows:

\setbox0{default {\red red \green green} default}

What do you expect to come out the next code? In MkII the ‘default’ inside the box will

be colored yellow but the internal red and and green words will kepe their color.

default {\yellow yellow \box0\ yellow} default

When we use fonts switches we don't expect the content of the box to change. So, in the

following the ‘default’ texts will not become bold.

\setbox0{default {\sl slanted \bi bold italic} default}
default {\bf bold \box0\ bold} default

Future versions of LuaTEX will provide more control over how attributes are applied to

boxes, but for the moment we need to fallback on a solution built in MkIV:

default {\yellow yellow \attributedbox0\ yellow} default

Colors redone 111

There is also a\attributedcopymacro. These macros signal the attribute resolver (that

kicks in just before shipout) that this box is to be treated special.

In MkII we had a similar situation which is why we had the option (only used deep down

in ConTEXt) to encapsulate a bunch of code with

\startregistercolor[foregroundcolor]
some macro code ... here foregroundcolor is applied ... more code
\stopregisteringcode

This is for instance used in the\framedmacro. First we package the content, foreground-

color is not yet applied because the injected specials of literals can interfere badly, but by

registering the colors the nested color calls are tricked into thinking that preceding and

following content is colored. When packaged, we apply backgrounds, frames, and fore-

groundcolor to the whole result. Because nested colors were aware of the foreground-

color they have properly reverted to this color when needed.

In MkIV the situation is reversed. Here we definitely need to set the foregroundcolor be-

cause otherwise attributes are not set and here they don't interfere at all (no extra nodes).

For this we use the same registration macros. When the lot is packaged, applying fore-

groundcolor is ineffective because the attributes are already applied. Instead of register-

ing we could have flushed the framed content using \attributedbox, but this way we

can keep the MkII and MkIV code base the same.

To summarize, first the naïve approach. Here the nested colors know how to revert, but

the color switch can interfere with the content (since color commands inject nodes).

\setbox\framed\vbox
{\color[foregroundcolor]{packaged framed content, can have color

switches}}

The MkII approach registers the foreground color so the nested colors know what to do.

There is no interfering code:

\startregistercolor[foregroundcolor]
\setbox\framed
\stopregisteringcode
\setbox\framed{\color[foregroundcolor]{\box\framed}}

The same method is used in MkII, but there the registration actually sets the color, so in

fact the final coloring is not needed (does nothing).

An alternative MkIV approach is the following:

112 Colors redone

\color
[foregroundcolor]
{\setbox\framed{packaged framed content, can have color switches}}

This works ok because attributes are applied to the whole content, i.e. the box. In MkII

this would be quote ineffective and actually result in weird side effects.

< color stack is pushed and marks are set (unless local) >
< color special or literal sets color to foregroundcolor >
\setbox\framed{packaged framed content, can have color switches}
< color special or literal sets color to foregroundcolor >
< color stack is popped and marks are set (unless local) >

So, effectively we set a box, and end up with:

< whatsits (special, literal and.or mark) >
< whatsits (special, literal and.or mark) >

in the main vertical lost and that will interfere badly with spacing and friends.

In MkIV however, a color switch, like a font switch does not leave any traces, it just sets

a state. Anyway, keep in mind that there are some rather fundamental conceptual differ-

ences between the two appoaches.

Let's end with an example that demonstrates the problem. We fill two boxes:

\setbox0\hbox{RED {\blue blue} RED}
\setbox2\hbox{RED {\blue blue} {\attributedcopy0} RED}

We will flush these in the following lines:

{unset \color[red]{red \CopyMe} unset
\color[red]{red \hbox{red \CopyMe}} unset}

{unset \color[red]{red \CopyMe} unset
{\red red \hbox{red \CopyMe}} unset}

{unset \color[red]{red \CopyMe} unset
{\red red \setbox0\hbox{red \CopyMe}\box0} unset}

{unset \color[red]{red \CopyMe} unset
{\hbox{\red red \CopyMe}} unset}

{\blue blue \color[red]{red \CopyMe} blue
\color[red]{red \hbox{red \CopyMe}} blue}

First we define \CopyMe as follows:

\def\CopyMe{\attributedcopy2\ \copy4}

Colors redone 113

This gives:

unset red RED blue RED blue RED RED unset red red RED blue RED blue RED RED unset

unset red RED blue RED blue RED RED unset red red RED blue RED blue RED RED unset

unset red RED blue RED blue RED RED unset red red RED blue RED blue RED RED un-

set unset red RED blue RED blue RED RED unset red RED blue RED blue RED RED unset

blue red RED blue RED blue RED RED blue red red RED blue RED blue RED RED blue

Compare this with:

\def\CopyMe{\copy2\ \copy4}

This gives:

unset red RED blue RED blue RED RED unset red red RED blue RED blue RED RED unset

unset red RED blue RED blue RED RED unset red red RED blue RED blue RED RED unset

unset red RED blue RED blue RED RED unset red red RED blue RED blue RED RED un-

set unset red RED blue RED blue RED RED unset red RED blue RED blue RED RED unset

blue red RED blue RED blue RED RED blue red red RED blue RED blue RED RED blue

You get the picture? At least in early version of MkIV you need to enable support for

inheritance with:

\enableattributeinheritance

114

Chinese, Japanese and Korean, aka CJK 115

XV Chinese, Japanese and Korean, aka CJK

This aspect of MkIV is under construction. We use non-realistic examples. We need to reim-

plement chinese numbering in Lua, etc. etc.

In ConTEXt MkII we support cjk languages. Intercharacter spacing as well as linebreaks

are taken care of. Chinese numbering is dealt with and labels and other language specific

aspects are supported too.

In MkIV spacing and linebreaks are dealt with by the analyser. Analysers are enabled by

language switches but at some point I may decide to provide analysing independent of

fonts.

\definefontfeature
[chinese-traditional]
[mode=node,script=hang,lang=zht]

\definefontfeature
[chinese-simple]
[mode=node,script=hang,lang=zhs]

\definefontfeature
[chinese-traditional-hw]
[mode=node,script=hang,lang=zht] % hani kana

\definefontfeature
[chinese-simple-hw]
[mode=node,script=hang,lang=zhs] % hani kana

\definefontfeature
[chinese-traditional-hw]
[mode=node,script=hang,lang=zht,hwid=true,script=hani,lang=dflt]

\definefontfeature
[chinese-simple-hw]
[mode=node,script=hang,lang=zhs,hwid=true,script=hani,lang=dflt]

\definefontfeature
[chinese-traditional-hw]
[mode=node,hwid=true]

\definefontfeature
[chinese-simple-hw]
[mode=node,hwid=true]

\font\ChinFont=name:adobesongstd-light*chinese-traditional-hw

116 Chinese, Japanese and Korean, aka CJK

traditional:

我〈能吞下玻璃而不傷身〉體。
我〈能吞下玻璃而不傷身〉體。
我〈能吞下玻璃而不傷身〉體。

simple:

我〈能吞下玻璃而不伤身〉体。
我〈能吞下玻璃而不伤身〉体。
我〈能吞下玻璃而不伤身〉体。

， 〉 〈

hsize 4.25em, fullwidth

吞吞吞，
吞 吞 吞
吞。

吞吞吞，，
吞 吞 吞
吞。

吞吞吞〉
吞 吞 吞
吞。

吞吞吞〉，
吞 吞 吞
吞。

吞吞吞〉〉
吞 吞 吞
吞。

吞吞吞〉〉
吞 吞 吞
吞。

〈吞吞吞
吞 吞 吞
吞。

〈〈 吞 吞
吞吞吞吞
吞。

吞吞吞…
吞 吞 吞
吞。

吞 吞
吞……吞
吞吞吞。

hsize 4.00em, fullwidth

吞吞吞，
吞 吞 吞
吞。

吞吞吞，，
吞 吞 吞
吞。

吞吞吞〉
吞 吞 吞
吞。

吞吞吞〉，
吞 吞 吞
吞。

吞吞吞〉〉
吞 吞 吞
吞。

吞吞吞〉〉
吞 吞 吞
吞。

〈吞吞吞
吞 吞 吞
吞。

〈〈 吞 吞
吞吞吞吞
吞。

吞吞吞…
吞 吞 吞
吞。

吞 吞
吞……吞
吞吞吞。

Chinese, Japanese and Korean, aka CJK 117

hsize 3.75em, fullwidth

吞吞吞，
吞 吞 吞
吞。

吞吞吞，，
吞 吞 吞
吞。

吞吞吞〉
吞 吞 吞
吞。

吞吞吞〉，
吞 吞 吞
吞。

吞吞吞〉〉
吞 吞 吞
吞。

吞吞吞〉〉
吞 吞 吞
吞。

〈吞吞吞
吞 吞 吞
吞。

〈〈吞吞
吞 吞 吞
吞吞。

吞 吞
吞 … 吞
吞吞吞。

吞 吞
吞 … …
吞 吞 吞
吞。

hsize 3.50em, fullwidth

吞吞吞，
吞吞吞
吞。

吞 吞
吞，，吞
吞吞吞。

吞吞吞〉
吞吞吞
吞。

吞 吞
吞〉，吞
吞吞吞。

吞 吞
吞〉〉吞
吞吞吞。

吞 吞
吞〉〉吞
吞吞吞。

〈吞吞吞
吞吞吞
吞。

〈〈吞吞
吞吞吞
吞吞。

吞 吞
吞…吞
吞吞吞。

吞 吞
吞……
吞吞吞
吞。

hsize 3.25em, fullwidth

吞 吞
吞 ，吞
吞 吞
吞。

吞 吞
吞 ，，
吞吞吞
吞。

吞 吞
吞 〉吞
吞 吞
吞。

吞 吞
吞 〉，
吞吞吞
吞。

吞 吞
吞 〉〉
吞吞吞
吞。

吞 吞
吞 〉〉
吞吞吞
吞。

〈 吞 吞
吞吞吞
吞吞。

〈〈吞吞
吞吞吞
吞吞。

118 Chinese, Japanese and Korean, aka CJK

吞 吞
吞 …
吞吞吞
吞。

吞 吞
吞……
吞吞吞
吞。

hsize 3.00em, fullwidth

吞 吞
吞，吞
吞 吞
吞。

吞 吞
吞 ，，
吞吞吞
吞。

吞 吞
吞〉吞
吞 吞
吞。

吞 吞
吞 〉，
吞吞吞
吞。

吞 吞
吞 〉〉
吞吞吞
吞。

吞 吞
吞 〉〉
吞吞吞
吞。

〈吞吞
吞吞吞
吞吞。

〈〈吞吞
吞吞吞
吞吞。

吞 吞
吞…吞
吞 吞
吞。

吞 吞
吞……
吞吞吞
吞。

hsize 4.25em, halfwidth

吞吞吞 ,
吞 吞 吞
吞。

吞吞吞‘
吞 吞 吞
吞。

吞吞吞’
吞 吞 吞
吞。

hsize 4.00em, halfwidth

吞吞吞,
吞 吞 吞
吞。

吞吞吞‘
吞 吞 吞
吞。

吞吞吞’
吞 吞 吞
吞。

hsize 3.75em, halfwidth

吞吞吞,
吞 吞 吞
吞。

吞 吞 吞
‘ 吞 吞
吞吞。

吞 吞
吞 ’ 吞
吞吞吞。

Chinese, Japanese and Korean, aka CJK 119

hsize 3.50em, halfwidth

吞吞吞,
吞吞吞
吞。

吞吞吞
‘吞吞
吞吞。

吞 吞
吞’吞
吞吞吞。

hsize 3.25em, halfwidth

吞 吞
吞 , 吞
吞 吞
吞。

吞吞吞
‘吞吞
吞吞。

吞 吞
吞 ’
吞吞吞
吞。

hsize 3.00em, halfwidth

吞 吞
吞 ,吞
吞 吞
吞。

吞吞吞
‘吞吞
吞吞。

吞 吞
吞’吞
吞 吞
吞。

120

Optimization 121

XVI Optimization

quality of code

How good is the MkIV code? Well, as good as I can make it. When you browse the code

you will probably notice differences in coding style and this is a related to the learning

curve. For instance the luat-inpmodule needs some cleanup, for instance hiding local

function from users.

Since benchmarking has been done right from the start there is probably not that much

to gain, but who knows. When coding in Lua you should be careful with defining global

variables, since they may override something. In MkIV we don't guarantee that the name

you use for variable will not be used at some point. Therefore, best operate in a dedicated

Lua instance, or operate in userspace.

do
-- your code

end

If you want to use your data later on, think of working this way (the example is somewhat

silly):

userdata['your.name'] = userdata['your.name'] or { }

do
local mydata = userdata['your.name']

mydata.data = {}

local function foo() return 'bar' end

function mydata.dothis()
mydata[foo] = foo()

end

end

In this case you can always access your user data while temporary variables are hidden.

The userdata table is predefined. As is thirddata for modules that you may write. Of

course this assumes that you create a namespace within these global tables.

A nice test for checking global cluttering is the following:

122 Optimization

for k, v in pairs(_G) do
print(k, v)

end

When you incidentally define global variables like n or str they will show up here.

clean or dirty

Processing the first 120 pages of this document (16 chapters) takes some 23.5 seconds on

a dell M90 (2.3GHZ, 4GB mem, Windows Vista Ultimate). A rough estimate of where Lua

spends its time is:

acticvity sec

input load time 0.114

fonts load time 6.692

mps conversion time 0.004

node processing time 0.832

attribute processing time 3.376

Font loading takes some time, which is nu surprise because we load huge Zapfino, Arabic

and cjk fonts and define many instances of them. Some tracing learns that there are some

14.254.041 function calls, of which 13.339.226 concern functions that are called more than

5.000 times. A total of 62.434 function is counted, which is a result of locally defined

ones.

A rough indication of this overhead is given by the following test code:

local a,b,c,d,e,f = 1,2,3,4,5,6

function one (a) local n = 1 end
function three(a,b,c) local n = 1 end
function six (a,b,c,d,e,f) local n = 1 end

for i=1,14254041 do one (a) end
for i=1,14254041 do three(a,b,c) end
for i=1,14254041 do six (a,b,c,d,e,f) end

The runtime for these tests (excluding startup) is:

one argument 1.8 seconds

three arguments 2.0 seconds

six arguments 2.3 seconds

Optimization 123

So, the of the total runtime for this document we easily spend a couple of seconds on

function calls, especially in node processing and attribute resolving. Does this mean that

we need to change the code and follow a more inline approach? Eventually we may op-

timize some code, but for the moment we keep things as readable as possible, and even

then much code is still quite complex. Font loading is often constant for a document any-

way, and independent of the number of pages. Time spent on node processing depends

on the script, and often processing intense scripts are typeset in a larger font and since

they are less verbose than latin, this does not really influence the average time spent on

typesetting a page. Attribute handling is probably the most time consuming activity, and

for large documents the time spent on this is large compared to font loading and node

processing. But then, after a few MkIV development cycles the picture may be different.

When we turned on tracing of function calls, if becomes clear where currently the time

is spent in a document like this which demands complex Zapfino contextual analysis as

well as Arabic analysis and feature application (both fonts demand node insertion and

deletion). Of course using color also has a price. Handling weighted and conditional

spacing (new in MkIV) involves just over 10.000 calls to the main handler for 120 pages of

this document. Glyph related processing of node lists needs 42.000 calls, and contextual

analysis of OpenType fonts is good for 11.000 calls. Timing Lua related tasks involves 2

times 37.000 calls to the stopwatch. Collapsing utf in the input lines equals the number

of lines: 7700.

However, at the the top of the charts we find calls to attribute related functions. 97.000

calls for handling special effects, overprint, transparency and alike, and another 24.000

calls for combined color and colorspace handling. These calls result in over 6.000 in-

sertions of pdf literals (this number is large because we show Arabic samples with color

based tracing enabled). In case you wonder if the attribute handler can be made more

efficient (we're talking seconds here), the answer is “possibly not”. This action is needed

for each shipped out object and each shipped out page. If we divide the 24.000 (calls)

by 120 (pages) we get 200 calls per page for color processing which is okay if you keep

in mind that we need to recurse in nested horizontal and vertical lists of the completely

made op page.

serialization

When serializing tables, we can end up with very large tables, especially when dealing

with big fonts like ‘arabtype’ or ‘zapfino’. When serializing tables one has to find a com-

promise between speed of writing, effeciency of loading and readability. First we had

(sub)tables like:

boundingbox = {
[1] = 0,
[2] = 0,

124 Optimization

[3] = 100,
[4] = 200

}

I mistakingly assumed that this would generate an indexed table, but at tug 2007 Roberto

Ierusalimschy explained to me that this was not that efficient, since this variant boils down

to the following byte code:

1 [1] NEWTABLE 0 0 4
2 [2] SETTABLE 0 -2 -3 ; 1 0
3 [3] SETTABLE 0 -4 -3 ; 2 0
4 [4] SETTABLE 0 -5 -6 ; 3 100
5 [5] SETTABLE 0 -7 -8 ; 4 200
6 [6] SETGLOBAL 0 -1 ; boundingbox
7 [6] RETURN 0 1

This creates a hashed table. The following variant is better:

boundingbox = { 0, 0, 100, 200 }

This results in:

1 [1] NEWTABLE 0 4 0
2 [2] LOADK 1 -2 ; 0
3 [3] LOADK 2 -2 ; 0
4 [4] LOADK 3 -3 ; 100
5 [6] LOADK 4 -4 ; 200
6 [6] SETLIST 0 4 1 ; 1
7 [6] SETGLOBAL 0 -1 ; boundingbox
8 [6] RETURN 0 1

The resulting tables are not only smaller in terms of bytes, but also are less memory hungry

when loaded. For readability we write tables with only numbers, strings or boolean values

in an inline--format:

boundingbox = { 0, 0, 100, 200 }

The serialized tables are somewhat smaller, depending on how many subtables are in-

dexed (boundary boxes, lookup sequences, etc.)

normal compact filename

34.055.092 32.403.326 arabtype.tma

1.620.614 1.513.863 lmroman10-italic.tma

1.325.585 1.233.044 lmroman10-regular.tma

1.248.157 1.158.903 lmsans10-regular.tma

Optimization 125

194.646 153.120 lmtypewriter10-regular.tma

1.771.678 1.658.461 palatinosanscom-bold.tma

1.695.251 1.584.491 palatinosanscom-regular.tma

13.736.534 13.409.446 zapfinoextraltpro.tma

Since we compile the tables to bytecode, the effects are more spectacular there.

normal compact filename

13.679.038 11.774.106 arabtype.tmc

886.248 754.944 lmroman10-italic.tmc

729.828 466.864 lmroman10-regular.tmc

688.482 441.962 lmsans10-regular.tmc

128.685 95.853 lmtypewriter10-regular.tmc

715.929 582.985 palatinosanscom-bold.tmc

669.942 540.126 palatinosanscom-regular.tmc

1.560.588 1.317.000 zapfinoextraltpro.tmc

Especially when a table is partially indexed and hashed, readability is a bit less than nor-

mal but in practice one will seldom consult such tables in its verbose form.

After going beta, users reported problems with scaling of the the Latin Modern and TEX-Gyre

fonts. The troubles originate in the fact that the OpenType versions of these fonts lack a

design size specification and it happens that the Latin Modern fonts do have design sizes

other than 10 points. Here the power of a flexible TEX engine shows . . . we can repair this

when we load the font. In MkIV we can now define patches:

do
local function patch(data,filename)

if data.design_size == 0 then
local ds = (file.basename(filename)):match("(%d+)")
if ds then

logs.report("load otf",string.format("patching design
size (%s)",ds))

data.design_size = tonumber(ds) * 10
end

end
end

fonts.otf.enhance.patches["^lmroman"] = patch
fonts.otf.enhance.patches["^lmsans"] = patch
fonts.otf.enhance.patches["^lmmono"] = patch

end

Eventually such code will move to typescripts instead of in the kernel code.

126

XML revisioned 127

XVII XML revisioned

under construction

the parser

For quite a while ConTEXt has built-in support for xml processing and at Pragma ADE we

use this extensively. One of the first things I tried to deal with in Lua was xml, and now

that we have LuaTEX up and running it's time to investigate this a bit more. First we'll have

a look at the basic functions, the Lua side of the game.

We load an xml file as follows (the document namespace is predefined in ConTEXt):

\startluacode
document.xml = document.xml or { } -- define namespace
document.xml = xml.load("mk-xml.xml") -- load the file

\stopluacode

The loader constructs a table representing the document structure, including whitespace,

so let's serialize the code and see what shows up:

\startluacode
tex.sprint("\\starttyping")
xml.serialize(document.xml, tex.sprint)
tex.sprint("\\stoptyping")

\stopluacode

We can control the wat the serializer deals with the snippets, here we just print back to

TEX.

<?xml version='1.0 standalone='yes' ?>

<one>
<two>

<a>alpha

<c>gamma</c>
<d/>
<e>epsilon</e>

</two>
<three>

<some>pdftex</some>
<some>luatex</some>

128 XML revisioned

<some>xetex</some>
</three>
<four>

<more:some name="hans"/>
<more:some name="taco"/>
<more:some name="hartmut"/>

</four>
<five>

<some>metapost</some>
</five>

</one>

We can also pass a third argument:

\startluacode
tex.sprint("\\starttyping")
xml.serialize(document.xml, tex.sprint, string.upper, string.upper)
tex.sprint("\\stoptyping")

\stopluacode

This returns:

<?xml version='1.0 standalone='yes' ?>

<one>
<two>

<a>ALPHA

<c>GAMMA</c>
<d/>
<e>EPSILON</e>

</two>
<three>

<some>PDFTEX</some>
<some>LUATEX</some>
<some>XETEX</some>

</three>
<four>

<more:some name="HANS"/>
<more:some name="TACO"/>
<more:some name="HARTMUT"/>

</four>
<five>

XML revisioned 129

<some>METAPOST</some>
</five>

</one>

This already gives us a rather basic way to manipulate documents and this method is even

not that slow because we bypass TEX reading from file.

\startluacode
document.str = "<l> <w>hello</w> <w>world</w> </l>"
tex.sprint("\\starttyping")
xml.serialize(xml.convert(document.str),tex.sprint)
tex.sprint("\\stoptyping")

\stopluacode

Watch the extra print argument, we need this because otherwise the verbatim mode will

not work out well.

<l> <w>hello</w> <w>world</w> </l>

An optional second argument of the converter determines if we deal with a root element.

\startluacode
tex.sprint("\\starttyping")
xml.serialize(xml.convert(document.str,false),tex.sprint)
tex.sprint("\\stoptyping")

\stopluacode

Now we get this:

<l> <w>hello</w> <w>world</w> </l>

You can save a (manipulated) xml table with the command:

\startluacode
xml.save(document.xml,"newfile.xml")

\stopluacode

These examples show that you can manipulate files from within your document. If you

want to convert the table to just a string, you can use xml.tostring. Actually, this

method is automatically used for occasions where Lua wants to print an xml table or

wants to join string snippets.

The reason why I wrote the xml parser is that we need it in the utilities (so it has to provide

access to the content of elements) as well as in the text processing (so it needs to provide

130 XML revisioned

some manipulation features). To serve both we have implemented a subset of what stan-

dard xml tools qualify as path based searching.

\startluacode
xml.sprint(xml.first(document.xml, "/one/three/some"))

\stopluacode

The result of this snippet is the content of the first element that matches the specification:

‘<some>pdftex</some>’. As you can see, this comes out rather verbose. The reason for

this is that we need to enter xml mode in order to get such a snippet interpreted.

Below we give a few more variants, this time we use a generic filter:

\startluacode
xml.sprint(xml.filter(document.xml, "/one/three/some"))

\stopluacode

result: <some>pdftex</some>

\startluacode
xml.sprint(xml.filter(document.xml, "/one/three/some/first()"))

\stopluacode

result: <some>pdftex</some>

\startluacode
xml.sprint(xml.filter(document.xml, "/one/three/some[1]"))

\stopluacode

result: <some>pdftex</some>

\startluacode
xml.sprint(xml.filter(document.xml, "/one/three/some[-1]"))

\stopluacode

result: <some>xetex</some>

\startluacode
xml.sprint(xml.filter(document.xml, "/one/three/some/texts()"))

\stopluacode

result: pdftexluatexxetex

\startluacode
xml.sprint(xml.filter(document.xml, "/one/three/some[2]/text()"))

\stopluacode

XML revisioned 131

result: luatex

The next lines shows some more variants. There are more than these and we will extend

the repertoire over time. If needed you can define additional handlers.

performance

Before we continue with more examples, a few remarks about the performance. The

first version of the parser was an enhanced version of the one presented in the Lua book:

support for namespaces, processing instructions, comments, cdata and doctype, remap-

ping and a few more things. When playing with the parser I was quite satisfied about the

performance. However, when I started experimenting with 40 megabyte files, the pre-

processing (needed for the special elements) started to become more noticeable. For

smaller files its 40% overhead is not that disturbing, but for large files . . .

The current version uses lpeg. We follow the same approach as before, stack and top

and such but this time parsing is about twice as fast which is mostly due to the fact that

we don't have to prepare the stream for cdata, doctype etc. Loading the mentioned large

file took 12.5 seconds (1.5 for file io and the rest for tree building) on my laptop (a 2.3 Ghz

Core Duo running Windows Vista). With the lpeg implementation we got that down to

less 7.3 seconds. Loading the 14 interface definition files (2.6 meg) went down from 1.05

seconds to 0.55 seconds. Namespace related issues take some 10% of this.

patterns

We will not implement complete xpath functionality, but only the features that make

sense for documents that are well structured and needs to be typeset. In addition we

(will) implement text manipulation functions. Of course speed is also a consideration

when implementing such mechanisms.

pattern supported comment

a ? not anchored

!a ? not anchored,negated

a/b ? anchored on preceding

/a/b ? anchored (current root)

^a/c ? anchored (current root)

^^/a/c todo anchored (document root)

a/*/b ? one wildcard

a//b ? many wildcards

a/**/b ? many wildcards

. ? ignored self

.. ? parent

132 XML revisioned

a[5] ? index upwards

a[-5] ? index downwards

a[position()=5] maybe

a[first()] maybe

a[last()] maybe

(b|c|d) ? alternates (one of)

b|c|d ? alternates (one of)

!(b|c|d) ? not one of

a/(b|c|d)/e/f ? anchored alternates

(c/d|e) not likely nested subpaths

a/b[@bla] ? any value of

a/b/@bla ? any value of

a/b[@bla='oeps'] ? equals value

a/b[@bla=='oeps'] ? equals value

a/b[@bla<>'oeps'] ? different value

a/b[@bla!='oeps'] ? different value

...../attribute(id) ?

...../attributes() ?

...../text() ?

...../texts() ?

...../first() ?

...../last() ?

...../index(n) ?

...../position(n) ?

root:: ?

parent:: ?

child:: ?

ancestor:: ?

preceding-sibling:: not soon

following-sibling:: not soon

preceding-sibling-of-self:: not soon

following-sibling-or-self:: not soon

descendent:: not soon

preceding:: not soon

following:: not soon

self::node() not soon

id("tag") not soon

node() not soon

This list shows that it is also possible to ask for more matches at once. Namespaces are

supported (including a wildcard) and there are mechanisms for namespace remapping.

XML revisioned 133

\startluacode
tex.sprint(xml.join(xml.collect_texts(

document.xml, "/one/(three|five)/some"
), ', ', ' and '))

\stopluacode

We get: ‘pdftex, luatex, xetex and metapost’.

There a several helper functions, like xml.count which in this case returns 4.

\startluacode
tex.sprint(xml.count(document.xml,"/one/(three|five)/some"))

\stopluacode

Functions like this gives the opportunity to loop over lists of elements by index.

manipulations

We can manipulate elements too. The next code will add some elements at specific lo-

cations.

\startluacode
xml.before(document.xml,"/one/three/some","<be>okay</be>")
xml.after (document.xml,"/one/three/some","<af>okay</af>")
tex.sprint("\\starttyping")
xml.serialize_path(document.xml,"/one/three",tex.sprint)
tex.sprint("\\stoptyping")

\stopluacode

And indeed, we suddenly have a couple of ‘okay’'s there:

<three>
<be>okay</be><some>pdftex</some><af>okay</af>
<be>okay</be><some>luatex</some><af>okay</af>
<be>okay</be><some>xetex</some><af>okay</af>

</three>

Of course wel can also delete elements:

\startluacode
xml.delete(document.xml,"/one/three/some")
xml.delete(document.xml,"/one/three/af")
tex.sprint("\\starttyping")
xml.serialize_path(document.xml,"/one/three",tex.sprint)

134 XML revisioned

tex.sprint("\\stoptyping")
\stopluacode

Now we have:

<three>
<be>okay</be>
<be>okay</be>
<be>okay</be>

</three>

Replacing an element is also possible. The replacement can be a table (representing ele-

ments) or a string which is then converted into a table first.

\startluacode
xml.replace(document.xml,"/one/three/be","<mid>done</mid>")
tex.sprint("\\starttyping")
xml.serialize_path(document.xml,"/one/three",tex.sprint)
tex.sprint("\\stoptyping")

\stopluacode

And indeed we get:

<three>
<mid>done</mid>
<mid>done</mid>
<mid>done</mid>

</three>

These are just a few features of the library. I will add some more (rather) generic manip-

ulaters and extend the functionality of the existing ones. Also, there will be a few manip-

ulation functions that come in handy when preparing texts for processing with TEX (most

of the xml that I deal with is rather dirty and needs some cleanup).

streaming trees

Eventually we will provies series of convenient macros that will provide an alternative for

most of the MkII code. In MkII we have a streaming parser, which boils down to attaching

macros to elements. This includes a mechanism for saving an restoring data, but this is not

always convenient because one also has to intercept elements that needs to be hidden.

In MkIV we do things different. First we load the complete document in memory (a Lua

table). Then we flush the elements that we want to process. We can associate setups

with elements using the filters mentioned before. We can either use TEX or use Lua to

XML revisioned 135

manipulate content. Instead if a streaming parser we now have a mixture of streaming

and tree manipulation available. Interesting is that the xml loader is pretty fast and piping

data to TEX is also efficient. Since we no longer need to manipulate the elements in TEX

we gain processing time too, so in practice we have now much faster xml processing

available.

To give you an idea we show a few commands:

\xmlload {main}{mk-xml.xml}

So that we can do things like (there are and will be a few more):

command arguments result

\xmlfirst {main} {/one/three/some} <some>pdftex</some>

\xmllast {main} {/one/three/some} <some>xetex</some>

\xmlindex {main} {/one/three/some} {2} <some>luatex</some>

There is a set of about 30 commands that operates on the tree: loading, flushing, filter-

ing, associating setups and code in modules to elements. For instance when one uses so

called cals--tables, the processing is automatically activates when the namespace can be

resolved. Processing is collected in setups and those registered are these are processed

after loading the tree. In the following example we register a handler for content that

needs to end up bold.

\startxmlsetups xml:mysetups
\xmlsetsetup{\xmldocument}{bold|bf}{xml:handlebold}

\stopxmlsetups

\xmlregistersetup{xml:mysetups}

\startxmlsetups xml:handlebold
\dontleavehmode
\bgroup
\bf
\xmlflush{#1}
\egroup

\stopxmlsetups

In this example #1 represents the root of the subtree. Say that we want to process an

index entry which is coded as follows:

<index>
<entry>whatever</entry>
<key>whatever</key>

</index>

136 XML revisioned

We register an additional handler (here the * is a shortcut for using the element's tag as

setup name):

\startxmlsetups xml:mysetups
\xmlsetsetup{\xmldocument}{bold|bf}{xml:handlebold}
\xmlsetsetup{\xmldocument}{index}{*}

\stopxmlsetups

\xmlregistersetup{xml:mysetups}

\startxmlsetups index
\index[\xmlfirst{#1}{key}]{\xmlfirst{#1}{entry}}

\stopxmlsetups

In practice MkIV definitions are more compact than the comparable MkII ones, espe-

cially for more complex constructs (tables and such).

\defineXMLenvironment
[index]
{\bgroup
\defineXMLsave[key]%
\defineXMLsave[entry]}
{\index[\XMLflush{key}]{\XMLflush{entry}}%
\egroup}

This looks compact, but keep in mind that we also need to get rid of spurry spaces and

when the code grows, we usually use setups to separate the definition from the code.

In any case, the MkII solution involves a few definitions as well as saving the content of

elements. This is often much more costly than the MkIV method where we only locate

and flush content. Of course the document is stored in memory, but that happens pretty

fast: storing the 14 files (2 per interface) that define the ConTEXt user interface takes .85

seconds on a 2.3 Ghz Core Duo (Windows Vista) which is not that bad if you take into

account that we're talking of 2.7 megabytes of highly structured data (many elements and

attributes, not that much text). Loading one of these files using MkII code (for storing

elements) takes many more seconds.

I didn't do extensive speed tests yet but for normal streamed processing of simple doc-

uments the penalty of loading the tree can be neglected. When comparing traditional

MkII code like:

\defineXMLargument [title][id=] {\subject[\XMLop{at}]}
\defineXMLenvironment[p] {} {\par}

\starttext

XML revisioned 137

\processXMLfilegrouped{testspeed.xml}
\stoptext

with its MkIV counterpart:

\startxmlsetups document
\xmlsetsetup\xmldocument{title|p}{*}

\stopxmlsetups

\xmlregistersetup{document}

\startxmlsetups title
\section[\xmlatt{#1}{id}]{\xmlcontent{#1}{/}}

\stopxmlsetups

\startxmlsetups p
\xmlflush{#1}\endgraf

\stopxmlsetups

\starttext
\processXMLfilegrouped{testspeed.xml}

\stoptext

I found that processing a one megabyte file with some 400 sections
is
takes the same runtime for both approached. However, as soon as more
complex manipulations enter the game the \MKIV\ method starts taking
less time. Think of the manipulations needed for \MATHML\ or converting
tables into something that \CONTEXT\ can handle. Also, when we deal
with documents where we need to ignore large portions of shuffle content
around, the traditional method also has to store data in memory and
in
that case \MKII\ code always loses from \MKIV\ code. Of course any
speed
we gain in handling \XML\ is lost on processing complex fonts and
attributes but there we gain in quality.

Another advantage of the MkIV mechanisms is that we suddenly have so called fully ex-

pandable xml handling. All manipulations take place in Lua and there is no interfering

code at the TEX end.

138 XML revisioned

examples

For the path freaks we now show what patterns lead to. For this we will use the following

xml data:

<?xml version='1.0' ?>
<a>

<?what is this?>

<c n='x'>c1</c><d>d1</d>

<c n='y'>c2</c><d>d2</d>

<?what is that?>
<c><d>d3</d></c>
<c n='y'><d>d4</d></c>
<c><d>d5</d></c>

Here come the examples:

a/b/c
<c n="x">c1</c>
<c n="y">c2</c>

/a/b/c
<c n="x">c1</c>
<c n="y">c2</c>

b/c
<c n="x">c1</c>
<c n="y">c2</c>

c
<c n="x">c1</c>
<c n="y">c2</c>
<c><d>d3</d></c>
<c n="y"><d>d4</d></c>
<c><d>d5</d></c>

a/*/c
<c n="x">c1</c>
<c n="y">c2</c>

XML revisioned 139

a/**/c
<c n="x">c1</c>
<c n="y">c2</c>

a//c
<c><d>d3</d></c>
<c n="y"><d>d4</d></c>
<c><d>d5</d></c>

a/*/*/c
no match

*/c
<c><d>d3</d></c>
<c n="y"><d>d4</d></c>
<c><d>d5</d></c>

**/c
<c n="x">c1</c>
<c n="y">c2</c>
<c><d>d3</d></c>
<c n="y"><d>d4</d></c>
<c><d>d5</d></c>

a/../*/c
<c><d>d3</d></c>
<c n="y"><d>d4</d></c>
<c><d>d5</d></c>

a/../c
no match

c[@n='x']
<c n="x">c1</c>

c[@n]
<c n="x">c1</c>
<c n="y">c2</c>
<c><d>d3</d></c>
<c n="y"><d>d4</d></c>
<c><d>d5</d></c>

c[@n='y']
<c n="y">c2</c>
<c n="y"><d>d4</d></c>

140 XML revisioned

c[1]
<c n="x">c1</c>
<c n="y">c2</c>
<c><d>d3</d></c>

b/c[1]
<c n="x">c1</c>
<c n="y">c2</c>

a/c[1]
<c><d>d3</d></c>

a/c[-1]
<c><d>d5</d></c>

c[1]
<c n="x">c1</c>
<c n="y">c2</c>
<c><d>d3</d></c>

c[-1]
<c><d>d5</d></c>

pi::
<?xml version='1.0' ?>
<?what is this?>
<?what is that?>

pi::what
<?what is this?>
<?what is that?>

Breaking apart 141

XVIII Breaking apart

[todo: mention changes to hyphenchar etc]

Because the long term objective is to have control over all aspects of the typesetting,

quite some effort went into opening up one of the cornerstones of TEX: breaking para-

graphs into lines. And because this is closely related to hyphenating words, this effort

also meant that we had to deal with ligature building and kerning.

This is best explained with an example. Imagine that we have the following sentence1

We imagined it was being ground down smaller and smaller, into a kind of powder.

And we realized that smaller and smaller could lead to bigger and bigger problems.

With the current language settings for US English this can be hyphenated as follows:

We imag-ined it was be-ing ground down smaller and smaller, into a kind of pow-

der. And we re-al-ized that smaller and smaller could lead to big-ger and big-ger

prob-lems.

So, when breaking a paragraph into lines, TEX has a few options, but here actually not that

many. If we permits two character snippets, we can get:

We imag-ined it was be-ing ground down small-er and small-er, in-to a kind of

pow-der. And we re-al-ized that small-er and small-er could lead to big-ger and

big-ger prob-lems.

If we revert to UK English, we get:

We ima-gined it was being ground down smal-ler and smal-ler, into a kind of powder.

And we real-ized that smal-ler and smal-ler could lead to big-ger and big-ger prob-

lems.

or, more tolerant,

We ima-gined it was being ground down smal-ler and smal-ler, into a kind of powder.

And we real-ized that smal-ler and smal-ler could lead to big-ger and big-ger prob-

lems.

or with Dutch patterns:

We ima-gi-ned it was being ground down smal-ler and smal-ler, in-to a kind of

pow-der. And we re-a-li-zed that smal-ler and smal-ler could lead to big-ger and

big-ger pro-blems.

The World Without Us, Alan Weisman; a quote from Richard Thomson in chapter: Polymers are Forever.1

142 Breaking apart

The code in traditional TEX that deals with hyphenation and linebreaks is rather interwo-

ven. There is a relationship between the font encoding and the way patterns are encodes.

A few years after TEX was written, support for multiple languages was added, which re-

sulted in a mix of (kind of global) language settings (no nodes) and language nodes in the

node lists. Traditionally it roughly works as follows:

• The input We imagined it is tokenized and turned into glyph nodes. If non ascii

characters are used (like pre composed accented characters) there may be a transla-

tion step: macros or active characters can insert \char commands or map onto other

characters, for instance input byte 123 can become byte 198 which in turn ends up as

a reference in a glyph node to a font slot. Whatever method is used to go from input

to glyph node, eventually we have a reference to a position in a font. Unfortunately

we had only 256 such slots per font.

• When it's time to break a paragraph into lines, traditional TEX walks over the list, re-

construct words and inserts hyphenation points. In the process, inter-character kerns

that are already injected need to be removed and reinserted, and ligatures have to

be decomposed and recomposed. The magic of hyphenation is controlled by dis-

cretionary nodes. These specify what to do when a word is hyphenated. Take for

instance the Dutch word effe which hyphenated becomes ef-fe so the ff either

stays, or is split into f- and f.

• Because a glyph node is bound to a font, there is a relationship with the font encoding.

Because there is no one 8-bit encoding that suits all languages, we may end up with

several instances of a font in one document (used for different languages) and each

when we switch language and/or font, we also have to enable a suitable set of patterns

(in a matching encoding).

You can imagine that this may lead to moderately complex mechanisms in macro pack-

ages. For instance, in ConTEXt, to each language multiple font encodings can be bound

and a switch of fonts (with related encoding) also results in a switch to a suitable set of

patterns. But in MkIV things are done different.

First of all, we got rid of font encodings by exclusively using Unicode. We already were

using utf encoded patterns (so that we could load them under different font encodings)

so less patterns had to be loaded per language. That happened even before the LuaTEX

development arrived at hyphenation.

Before that effort started, Taco and I already played a bit with alternative hyphenation

methods. For instance, we took large word lists with hyphenation points inserted. Taco

wrote a loader (Lua could not handle the large tables as function return value) and I made

some hyphenation code in Lua. Surprisingly we found out that it was pretty efficient,

although we didn't have the weighted hyphenation points that patterns may provide.

Basically we simulated the \hyphenation command.

Breaking apart 143

While we went back to fonts, Taco's college Nanning wrote the first version of a new hy-

phenation storage mechanism, so when about half a year later we were ready to deal with

the linebreak mechanisms, one of the key components was more or less ready. Where

fonts forced me to write quite some Lua code (still not finished), the new hyphenation

mechanisms could be supported rather easy, if only because the framework was already

kind of present (written during the experiments). Even better, when splitting the old code

into MkII and new MkIV code, I could do most housekeeping in Lua, and only needed

a minimal amount of TEX interfacing (partly redundant because of the shared interface).

The new mechanism also was no longer bound to the format, which means that we could

postpone loading of the patterns to runtime. Instead of the still supported traditional

loading of patterns and exceptions, we load them under Lua control. This gave me yet

another nice excercise in using lpeg (Lua's string parser).

With a new pattern loader in place, Taco started separating the hyphenation, ligature

building and kerning. Each stage now has its own callback and each stage has an associ-

ated Lua function, so that one can create a different order of execution or integrate it in

other node parsing activities, most noticeably the handling of OpenType features.

When I was trying to integrate this into the already existing node processing sequences,

some nasty tricks were needed in order to feed the hyphenation function. At that mo-

ment it was still partly modelled after the traditional TEX way, which boiled down to the

following. As soon as the hyphenation function is invoked, it needs to know what the

current language is. This information is not stored in the node list, only mid paragraph

language switched are stored. Due to the fact that much information in TEX is global (well,

in LuaTEX less and less) this complicates matters. Because in MkIV hyphenation, ligature

building and kerning are done differently (dus to OpenType) we used the hyphenation

callback to collect the language parameters so that we could use them when we called

the hyphenation function later. This can definetely be qualified as an ugly hack.

Before we discuss how this was solved, we summarize the state of affairs. In LuaTEX we

now have a sequence of callbacks related to paragraph building and in between not

much happens any more.

• hyphenation

• ligaturing

• kerning

• preparing linebreaking

• linebreaking

• finishing linebreaking

Before we only had:

• preparing linebreaking

144 Breaking apart

and this is where MkIV hooks in ist code. The first three are disabled by associating

them with dummy functions. I'm still not sure how the last two will fit it, especially be-

cause there is some interplay between OpenType features and linebreaking, like alterna-

tive glyphs at the end of the line. Because the hz and protruding mechanisms also will be

supported we may as well end up with a mechanism for alternative glyphs built into the

linebreak algorithm.

Back to the current situation. What made matters even more complicated was the fact

that we need to manipulate node lists while building horizontal material (hpacking) as

well as for paragraphs (pre-linebreaking). Compare the following two situations. In the

first case the hbox is packaged and hyphenation is not needed.

text \hbox {text} text

However, when we unbox the content, hyphenation needs to be applied.

\setbox0=\hbox{text} text \unhbox0\ text

[I need to check the next]

Traditional TEX does not look at all potential hyphenation points, but only around places

that have a high probability as line-end. LuaTEX just hyphenates the whole list, although

the function can be used selectively over a range, in MkIV we see no reason for this and

hyphenate whole lists.

The new hyphenation routine not only operates on the whole list, but also can be made

transparent for uppercase characters. Because we assume Unicode lowercase codes are

no longer stored with the patterns (an ε-TEX extension). The usual left- and righthyphen-

min control is still there. The first word of a paragraph is no longer ignored in the process.

Because the stages are separated now, the opportunity was there to separate between

characters and glyphs. As with traditional TEX, only characters are taken into account

when hyphenating, so how do we distinguish between the two? The subtype (a prop-

erty of each node) already registered if we were dealing with a ligature or not. Taco and

Nanning had decided to treat the subtype as a bitset and after a bit of testing ans skyping

we came to the conclusion that we needed an easy way to tag a glyph node as being ‘al-

ready processed’. Keep in mind that as in the unhboxed example, the unhboxed content

is already treated (hpack callback). If you wonder why we have these two moments of

treatment think of this: if you put something in a box and want to know its dimensions,

all font related features need to be applied. If the box is inserted as is, it can be recog-

nized (a hlist or vlist node) and safely skipped in the prelinebreak handling. However,

when it is unhboxed, we want to avoid reprocessing. Normally reprocessing will be pre-

vented because the glyph nodes are mixed with kerns and ligatures are already built, but

we can best play safe. Once we're done with processing a list (which can involve many

passes, depending on what treatment is needed) we can tag the glyphs nodes as ‘done’

Breaking apart 145

by adding 256 to the subtype. We can then test on this property in callbacks while at the

same time built-in functions like those responsible for hyphenation ignore this high bit.

The transition from character to glyph is also done by changing bits in the subtype. At

some point we need to set the subtype so that it reflects the node being a glyph, ligature

or other special type (there are a few more types inherited from omega). I know that this

all sounds complicated, but in MkIV we now roughly do the following (of course this may

and probably will change):

• attribute driven manipulations (for instance case change)

• language driven manipulations (spell checking, hyphenation)

• font driven treatments, mostly features (ligature building, kerning)

• turn characters into glyphs (so that they will not be hyphenated again)

• normal ligaturing routine (currently still needed for not open type fonts, may become

obsolete)

• normal kerning routine (currently still needed for not open type fonts, may become

obsolete)

• attribute driven manipulations (special spacing and kerning)

When no callbacks are used, turning characters into glyphs happens automatically be-

hind the screens. When using callbacks (as in MkIV) this needs to be done explicitly (but

there is a helper function for this).

So, by now LuaTEX can determine which glyph nodes play a role in hyphenation but still

we have this ‘what language are we in’ problem. As usual in the development of LuaTEX,

these fundamental changes took place in a setting where Taco and I are in a persistent

state of Skyping, and it did not take much time to decide that in order to make the call-

backs usable, it made much sense to moving the language related information to the

glyph node as well, i.e. the number of the language object (patterns and exceptions), the

left and right min values, and the boolean that tells how to treat uppercase characters.

Each is now accessible in the usual way (by key). The penalty in additional memory is

zero because it's stored along with the subtype bitset. By going this route, the ugly hack

mentioned before could be removed as well.

In the process of finalizing the code, discretionary nodes got a slightly different imple-

mentation. Originally they were organized as follows (ff is a ligature):

con-text == [c][o](pre=n-,post=,replace=1)[n][t][e][x][t]
effe == [e](pre=f-,post=f,replace=1)[ff][e]

So, a discretionaty node contained information about what to put at the end of the bro-

ken line and what to put in front of the next line, as well as the number of following nodes

in the list to skip when such a linebreak occured. Because this leads to rather messy code

146 Breaking apart

especially when ligatures are involved, so the decision was made to change the replace-

ment counter into a node list holding those (optionally) to be replaced nodes.

con-text == [c][o](pre=n-,post=,replace=n)[t][e][x][t]
effe == [e](pre=f-,post=f,replace=ff)[e]

This is much cleaner, but a consequence of this change was that all MkIV node manipu-

lation code written so far had to be reviewed.

Of course we need to spend a few words on performance. We keep doing performance

tests but currently we only remove bottlenecks that bother us. Later in the development

optimization will tke place in the code. One reason is that the code changes, another

reason is that large portions of Pascal code is turned into c. Because integrating these

changes (apart from preparations) took place within a few weeks, we could reasonably

well compare the old and the new hyphenation mechanisms using our (evolving) manu-

als and surprisingly the performance was certainly not worse than before.

Collecting garbage 147

XIX Collecting garbage

We use themk.texdocument for testing and because it keeps track of how LuaTEX evolves.

As a result it has some uncommon characteristics. For instance, you can see increments

in memory usage at points where we load fonts: the chapters on Zapfino, Arabic and CJK

(unfinished). This memory is not freed because the font memory is used permanently. In

the following graphic, the red line is the memory consumption of LuaTEX for the current

version of mk.tex. The blue line is the runtime per page.

luastate_bytes min:44481210, max:262709889, pages:160

At the moment of writing this Taco has optimized the LuaTEX code base and I have added

dynamic feature support to the MkIV and optimized much of the critical Lua code. At the

time of writing this (December 23, 2007), mk.tex counted 142 pages. Our rather aggres-

sive optimizations brought down runtime from about 29 seconds to under 16 seconds.

By sharing as much font data as possible at the Lua end (at the cost of a more complex

implementation) the memory consumption of huge fonts was brought down to a level

where a somewhat ‘older’ computer with 512 MB memory could also cope with MkIV.

Keep in mind that some fonts are just real big. Eventually we may decide to use a more

compact table model for passing OpenType fonts to Lua, but this will not happen in 2007.

The following tests show when Lua's garbage collector becomes active. The blue spike

shows that some extra time is spent on this initially. After that garbage more garbage is

collected, which makes the time spent per page slightly higher.

\usemodule[timing] \starttext \dorecurse{2000}{
\input tufte \par \input tufte \par \input tufte \page

} \stoptext

148 Collecting garbage

luastate_bytes min:37009927, max:87755930, pages:2000

The maximum memory footprint is somewhat misleading because Lua reserves more

than needed. As discussed in an earlier chapter, it is possible to tweak to control memory

management somewhat, but eventually we decided that it does not make much sense

to divert from the default settings.

\usemodule[timing] \starttext \dorecurse{2000}{
\input tufte \par \input tufte \par \input tufte \par

} \stoptext

luastate_bytes min:36884954, max:86480013, pages:1385

The last example of this set does not load files, but stores the text in a macro. This is faster,

although not that mich because the operating system caches the file and there is not utf

collapsing needed for this file.

\usemodule[timing] \starttext \dorecurse{2000}{
\tufte \par \tufte \par \tufte \par

} \stoptext

luastate_bytes min:36876892, max:86359763, pages:1385

Collecting garbage 149

There are subtle differences in memory usage between the examples and eventually test

like these will permit us to optimize the code even further. For the record: the first test

runs in 39.5 seconds, the second on in 36.5 seconds and the last one only takes 31.5 sec-

onds (all in batch mode).

Keep in mind that these quotes in tufte.tex are just test samples, and not that realistic

in everyday documents. On the other hand, these tests involve the usual font loading,

node processing, attribute handling etc. They provide a decent baseline.

Another document that we use for testing functionality and performance is the reference

manual. The preliminary beta 2 version gives the following statistics.

luastate_bytes min:59690872, max:155651415, pages:112

The previous graphic shows the statistics of a run with runtime MetaPost graphics en-

abled. This means that, because each pagenumber comes with a graphic, for each page

MetaPost is called. The speed of this call is heavily influenced by the MetaPost startup

time, which in turn (in a windows platform) is influences by the initialization time of the

kpse library. Technically the call time can near zero but this demands sharing libraries and

databases. Anyhow, we're moving towards an embedded MetaPost library anyway, and

the next graphic shows what will happen then. Here we run ConTEXt in delayed MetaPost

mode: graphics are collected and processed between runs. Where the runtime variant

takes some 45 seconds processing time, the intermediate versions takes 15.

luastate_bytes min:59690749, max:155669371, pages:112

In the mk.tex document we use Type1 fonts for the main body of the text and load some

(huge) OpenType fonts later on. Here we use OpenType fonts exclusively and since ConTEXt

loads fonts only when needed, you see several spikes in the time per page bars and mem-

ory consumption quickly becomes stable. Interesting is that contrary to the tufte.tex

150 Collecting garbage

samples, memory usage is quite stable. Here we don't have a memory sawtooth and no

garbage collection spikes.

The previous graphics combine Lua memory consumption with time spent per page. The

following graphics show variants of this. The graphics concern this document (mk.tex).

Again, the blue lines represent the runtime per page.

cs_count min:39407, max:40153, pages:160

dyn_used min:614326, max:828405, pages:160

elapsed_time min:0.007, max:2.431, pages:160

luabytecode_bytes min:9216, max:9216, pages:160

Collecting garbage 151

luastate_bytes min:44481210, max:262709889, pages:160

max_buf_stack min:254, max:369, pages:160

obj_ptr min:0, max:683, pages:160

pdf_mem_ptr min:1, max:423, pages:160

pdf_mem_size min:10000, max:10000, pages:160

152 Collecting garbage

pdf_os_cntr min:0, max:4, pages:160

pool_ptr min:670918, max:685634, pages:160

str_ptr min:2138328, max:2139229, pages:160

In LuaTEX node memory management is rewritten. Contrary to what you may expect,

node memory consumption is not that large. Pages seldom contain more than 5000

nodes, although extensive use of attributes can easily duplicate this. Node usage in this

documents is as follows.

attribute min:16, max:7095, pages:160

Collecting garbage 153

attribute_list min:8, max:2326, pages:160

bin min:0, max:48, pages:160

choice min:0, max:12, pages:160

dir min:2, max:106, pages:160

disc min:1, max:309, pages:160

154 Collecting garbage

fraction min:0, max:6, pages:160

glue min:1, max:4800, pages:160

glue_spec min:19, max:1205, pages:160

glyph min:0, max:25141, pages:160

hlist min:3, max:2105, pages:160

Collecting garbage 155

if_stack min:0, max:15, pages:160

kern min:1, max:305, pages:160

local_par min:0, max:182, pages:160

mark min:0, max:40, pages:160

math min:0, max:136, pages:160

156 Collecting garbage

ord min:0, max:108, pages:160

pdf_literal min:29, max:688, pages:160

pdf_refxform min:0, max:6, pages:160

pdf_refximage min:0, max:2, pages:160

pdf_save_pos min:0, max:2, pages:160

Collecting garbage 157

penalty min:1, max:475, pages:160

rule min:2, max:309, pages:160

style min:0, max:48, pages:160

temp min:0, max:6, pages:160

vlist min:5, max:258, pages:160

158 Collecting garbage

write min:0, max:10, pages:160

If node memory usage stays high, i.e. is not reclaimed, this can be an indication of a mem-

ory leak. In the December 2007 beta version there is such a leak in math subformulas,

something that will be resolved when math node processing is opened up. The current

MkIV code cleans up most of its temporary data. We do so, because it permits us to keep

an eye on unwanted memory leaks. When writing this chapter, some of the peaks in the

graphics coincided with peaks in the runtime per page, which is no surprise.

If you want to run such tests yourself, you need to load a module at startup:

\usemodule[timing]

The graphics can be generated with:

\def\ShowUsage {optional filename}
\def\ShowNamedUsage {optional filename}{red graphic}{blue graphic}
\def\ShowMemoryUsage{optional filename}
\def\ShowNodeUsage {optional filename}

(This interface may change.)

