#include "bitreverse.h" int FUNCTION(gsl_fft_complex,radix2_forward) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n) { gsl_fft_direction sign = forward; int status = FUNCTION(gsl_fft_complex,radix2_transform) (data, stride, n, sign); return status; } int FUNCTION(gsl_fft_complex,radix2_backward) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n) { gsl_fft_direction sign = backward; int status = FUNCTION(gsl_fft_complex,radix2_transform) (data, stride, n, sign); return status; } int FUNCTION(gsl_fft_complex,radix2_inverse) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n) { gsl_fft_direction sign = backward; int status = FUNCTION(gsl_fft_complex,radix2_transform) (data, stride, n, sign); if (status) { return status; } /* normalize inverse fft with 1/n */ { const double norm = 1.0 / n; size_t i; for (i = 0; i < n; i++) { REAL(data,stride,i) *= norm; IMAG(data,stride,i) *= norm; } } return status; } int FUNCTION(gsl_fft_complex,radix2_transform) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n, const gsl_fft_direction sign) { int result ; size_t dual; size_t bit; size_t logn = 0; int status; if (n == 1) /* identity operation */ { return 0 ; } /* make sure that n is a power of 2 */ result = fft_binary_logn(n) ; if (result == -1) { GSL_ERROR ("n is not a power of 2", GSL_EINVAL); } else { logn = result ; } /* bit reverse the ordering of input data for decimation in time algorithm */ status = FUNCTION(fft_complex,bitreverse_order) (data, stride, n, logn) ; /* apply fft recursion */ dual = 1; for (bit = 0; bit < logn; bit++) { double w_real = 1.0; double w_imag = 0.0; const double theta = 2.0 * ((int) sign) * M_PI / (2.0 * (double) dual); const double s = sin (theta); const double t = sin (theta / 2.0); const double s2 = 2.0 * t * t; size_t a, b; /* a = 0 */ for (b = 0; b < n; b += 2 * dual) { const size_t i = b ; const size_t j = b + dual; const double z1_real = REAL(data,stride,j) ; const double z1_imag = IMAG(data,stride,j) ; const double wd_real = z1_real ; const double wd_imag = z1_imag ; REAL(data,stride,j) = REAL(data,stride,i) - wd_real; IMAG(data,stride,j) = IMAG(data,stride,i) - wd_imag; REAL(data,stride,i) += wd_real; IMAG(data,stride,i) += wd_imag; } /* a = 1 .. (dual-1) */ for (a = 1; a < dual; a++) { /* trignometric recurrence for w-> exp(i theta) w */ { const double tmp_real = w_real - s * w_imag - s2 * w_real; const double tmp_imag = w_imag + s * w_real - s2 * w_imag; w_real = tmp_real; w_imag = tmp_imag; } for (b = 0; b < n; b += 2 * dual) { const size_t i = b + a; const size_t j = b + a + dual; const double z1_real = REAL(data,stride,j) ; const double z1_imag = IMAG(data,stride,j) ; const double wd_real = w_real * z1_real - w_imag * z1_imag; const double wd_imag = w_real * z1_imag + w_imag * z1_real; REAL(data,stride,j) = REAL(data,stride,i) - wd_real; IMAG(data,stride,j) = IMAG(data,stride,i) - wd_imag; REAL(data,stride,i) += wd_real; IMAG(data,stride,i) += wd_imag; } } dual *= 2; } return 0; } int FUNCTION(gsl_fft_complex,radix2_dif_forward) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n) { gsl_fft_direction sign = forward; int status = FUNCTION(gsl_fft_complex,radix2_dif_transform) (data, stride, n, sign); return status; } int FUNCTION(gsl_fft_complex,radix2_dif_backward) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n) { gsl_fft_direction sign = backward; int status = FUNCTION(gsl_fft_complex,radix2_dif_transform) (data, stride, n, sign); return status; } int FUNCTION(gsl_fft_complex,radix2_dif_inverse) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n) { gsl_fft_direction sign = backward; int status = FUNCTION(gsl_fft_complex,radix2_dif_transform) (data, stride, n, sign); if (status) { return status; } /* normalize inverse fft with 1/n */ { const double norm = 1.0 / n; size_t i; for (i = 0; i < n; i++) { REAL(data,stride,i) *= norm; IMAG(data,stride,i) *= norm; } } return status; } int FUNCTION(gsl_fft_complex,radix2_dif_transform) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n, const gsl_fft_direction sign) { int result ; size_t dual; size_t bit; size_t logn = 0; int status; if (n == 1) /* identity operation */ { return 0 ; } /* make sure that n is a power of 2 */ result = fft_binary_logn(n) ; if (result == -1) { GSL_ERROR ("n is not a power of 2", GSL_EINVAL); } else { logn = result ; } /* apply fft recursion */ dual = n / 2; for (bit = 0; bit < logn; bit++) { double w_real = 1.0; double w_imag = 0.0; const double theta = 2.0 * ((int) sign) * M_PI / ((double) (2 * dual)); const double s = sin (theta); const double t = sin (theta / 2.0); const double s2 = 2.0 * t * t; size_t a, b; for (b = 0; b < dual; b++) { for (a = 0; a < n; a+= 2 * dual) { const size_t i = b + a; const size_t j = b + a + dual; const double t1_real = REAL(data,stride,i) + REAL(data,stride,j); const double t1_imag = IMAG(data,stride,i) + IMAG(data,stride,j); const double t2_real = REAL(data,stride,i) - REAL(data,stride,j); const double t2_imag = IMAG(data,stride,i) - IMAG(data,stride,j); REAL(data,stride,i) = t1_real; IMAG(data,stride,i) = t1_imag; REAL(data,stride,j) = w_real*t2_real - w_imag * t2_imag; IMAG(data,stride,j) = w_real*t2_imag + w_imag * t2_real; } /* trignometric recurrence for w-> exp(i theta) w */ { const double tmp_real = w_real - s * w_imag - s2 * w_real; const double tmp_imag = w_imag + s * w_real - s2 * w_imag; w_real = tmp_real; w_imag = tmp_imag; } } dual /= 2; } /* bit reverse the ordering of output data for decimation in frequency algorithm */ status = FUNCTION(fft_complex,bitreverse_order)(data, stride, n, logn) ; return 0; }