#include "factorize.h" #include "complex_internal.h" #include "bitreverse.h" int FUNCTION(gsl_fft_halfcomplex,radix2_backward) (BASE data[], const size_t stride, const size_t n) { int status = FUNCTION(gsl_fft_halfcomplex,radix2_transform) (data, stride, n) ; return status ; } int FUNCTION(gsl_fft_halfcomplex,radix2_inverse) (BASE data[], const size_t stride, const size_t n) { int status = FUNCTION(gsl_fft_halfcomplex,radix2_transform) (data, stride, n); if (status) { return status; } /* normalize inverse fft with 1/n */ { const double norm = 1.0 / n; size_t i; for (i = 0; i < n; i++) { data[stride*i] *= norm; } } return status; } int FUNCTION(gsl_fft_halfcomplex,radix2_transform) (BASE data[], const size_t stride, const size_t n) { int result ; size_t p, p_1, q; size_t i; size_t logn = 0; int status; if (n == 1) /* identity operation */ { return 0 ; } /* make sure that n is a power of 2 */ result = fft_binary_logn(n) ; if (result == -1) { GSL_ERROR ("n is not a power of 2", GSL_EINVAL); } else { logn = result ; } /* apply fft recursion */ p = n; q = 1 ; p_1 = n/2 ; for (i = 1; i <= logn; i++) { size_t a, b; /* a = 0 */ for (b = 0; b < q; b++) { const double z0 = VECTOR(data,stride,b*p); const double z1 = VECTOR(data,stride,b*p + p_1); const double t0_real = z0 + z1 ; const double t1_real = z0 - z1 ; VECTOR(data,stride,b*p) = t0_real; VECTOR(data,stride,b*p + p_1) = t1_real ; } /* a = 1 ... p_{i-1}/2 - 1 */ { double w_real = 1.0; double w_imag = 0.0; const double theta = 2.0 * M_PI / p; const double s = sin (theta); const double t = sin (theta / 2.0); const double s2 = 2.0 * t * t; for (a = 1; a < (p_1)/2; a++) { /* trignometric recurrence for w-> exp(i theta) w */ { const double tmp_real = w_real - s * w_imag - s2 * w_real; const double tmp_imag = w_imag + s * w_real - s2 * w_imag; w_real = tmp_real; w_imag = tmp_imag; } for (b = 0; b < q; b++) { double z0_real = VECTOR(data,stride,b*p + a) ; double z0_imag = VECTOR(data,stride,b*p + p - a) ; double z1_real = VECTOR(data,stride,b*p + p_1 - a) ; double z1_imag = -VECTOR(data,stride,b*p + p_1 + a) ; /* t0 = z0 + z1 */ double t0_real = z0_real + z1_real; double t0_imag = z0_imag + z1_imag; /* t1 = (z0 - z1) */ double t1_real = z0_real - z1_real; double t1_imag = z0_imag - z1_imag; VECTOR(data,stride,b*p + a) = t0_real ; VECTOR(data,stride,b*p + p_1 - a) = t0_imag ; VECTOR(data,stride,b*p + p_1 + a) = (w_real * t1_real - w_imag * t1_imag) ; VECTOR(data,stride,b*p + p - a) = (w_real * t1_imag + w_imag * t1_real) ; } } } if (p_1 > 1) { for (b = 0; b < q; b++) { VECTOR(data,stride,b*p + p_1/2) *= 2 ; VECTOR(data,stride,b*p + p_1 + p_1/2) *= -2 ; } } p_1 = p_1 / 2 ; p = p / 2 ; q = q * 2 ; } /* bit reverse the ordering of output data for decimation in frequency algorithm */ status = FUNCTION(fft_real,bitreverse_order)(data, stride, n, logn) ; return 0; }