int FUNCTION (gsl_matrix, swap_rows) (TYPE (gsl_matrix) * m, const size_t i, const size_t j) { const size_t size1 = m->size1; const size_t size2 = m->size2; if (i >= size1) { GSL_ERROR ("first row index is out of range", GSL_EINVAL); } if (j >= size1) { GSL_ERROR ("second row index is out of range", GSL_EINVAL); } if (i != j) { ATOMIC *row1 = m->data + MULTIPLICITY * i * m->dim2; ATOMIC *row2 = m->data + MULTIPLICITY * j * m->dim2; size_t k; for (k = 0; k < MULTIPLICITY * size2; k++) { ATOMIC tmp = row1[k] ; row1[k] = row2[k] ; row2[k] = tmp ; } } return GSL_SUCCESS; } int FUNCTION (gsl_matrix, swap_cols) (TYPE (gsl_matrix) * m, const size_t i, const size_t j) { const size_t size1 = m->size1; const size_t size2 = m->size2; if (i >= size2) { GSL_ERROR ("first column index is out of range", GSL_EINVAL); } if (j >= size2) { GSL_ERROR ("second column index is out of range", GSL_EINVAL); } if (i != j) { ATOMIC *col1 = m->data + MULTIPLICITY * i; ATOMIC *col2 = m->data + MULTIPLICITY * j; size_t p; for (p = 0; p < size1; p++) { size_t k; size_t n = p * MULTIPLICITY * m->dim2; for (k = 0; k < MULTIPLICITY; k++) { ATOMIC tmp = col1[n+k] ; col1[n+k] = col2[n+k] ; col2[n+k] = tmp ; } } } return GSL_SUCCESS; } int FUNCTION (gsl_matrix, swap_rowcol) (TYPE (gsl_matrix) * m, const size_t i, const size_t j) { const size_t size1 = m->size1; const size_t size2 = m->size2; if (size1 != size2) { GSL_ERROR ("matrix must be square to swap row and column", GSL_ENOTSQR); } if (i >= size1) { GSL_ERROR ("row index is out of range", GSL_EINVAL); } if (j >= size2) { GSL_ERROR ("column index is out of range", GSL_EINVAL); } { ATOMIC *row = m->data + MULTIPLICITY * i * m->dim2; ATOMIC *col = m->data + MULTIPLICITY * j; size_t p; for (p = 0; p < size1; p++) { size_t k; size_t r = p * MULTIPLICITY; size_t c = p * MULTIPLICITY * m->dim2; for (k = 0; k < MULTIPLICITY; k++) { ATOMIC tmp = col[c+k] ; col[c+k] = row[r+k] ; row[r+k] = tmp ; } } } return GSL_SUCCESS; }