/* Author: G. Jungman * RCS: $Id: gegenbauer.c,v 1.10 1999/01/21 17:01:12 jungman Exp $ */ #include #include #include #include "gsl_sf_gegenbauer.h" /* See: [Thompson, Atlas for Computing Mathematical Functions] */ int gsl_sf_gegenpoly_1_impl(double lambda, double x, gsl_sf_result * result) { if(result == 0) { return GSL_EFAULT; } else if(lambda == 0.0) { result->val = 2.0*x; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { result->val = 2.0*lambda*x; result->err = 4.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_gegenpoly_2_impl(double lambda, double x, gsl_sf_result * result) { if(result == 0) { return GSL_EFAULT; } else if(lambda == 0.0) { const double txx = 2.0*x*x; result->val = -1.0 + txx; result->err = 2.0 * GSL_DBL_EPSILON * fabs(txx); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { result->val = lambda*(-1.0 + 2.0*(1.0+lambda)*x*x); result->err = GSL_DBL_EPSILON * (2.0 * fabs(result->val) + fabs(lambda)); return GSL_SUCCESS; } } int gsl_sf_gegenpoly_3_impl(double lambda, double x, gsl_sf_result * result) { if(result == 0) { return GSL_EFAULT; } else if(lambda == 0.0) { result->val = x*(-2.0 + 4.0/3.0*x*x); result->err = GSL_DBL_EPSILON * (2.0 * fabs(result->val) + fabs(x)); return GSL_SUCCESS; } else { double c = 4.0 + lambda*(6.0 + 2.0*lambda); result->val = 2.0*lambda * x * ( -1.0 - lambda + c*x*x/3.0 ); result->err = GSL_DBL_EPSILON * (2.0 * fabs(result->val) + fabs(lambda * x)); return GSL_SUCCESS; } } int gsl_sf_gegenpoly_n_impl(int n, double lambda, double x, gsl_sf_result * result) { if(result == 0) { return GSL_EFAULT; } else if(lambda <= -0.5 || n < 0) { result->val = 0.0; result->err = 0.0; return GSL_EDOM; } else if(n == 0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(n == 1) { return gsl_sf_gegenpoly_1_impl(lambda, x, result); } else if(n == 2) { return gsl_sf_gegenpoly_2_impl(lambda, x, result); } else if(n == 3) { return gsl_sf_gegenpoly_3_impl(lambda, x, result); } else { if(lambda == 0.0 && (x >= -1.0 || x <= 1.0)) { /* 2 T_n(x)/n */ const double z = n * acos(x); result->val = 2.0 * cos(z) / n; result->err = 2.0 * GSL_DBL_EPSILON * fabs(z * result->val); return GSL_SUCCESS; } else { int k; gsl_sf_result g2; gsl_sf_result g3; int stat_g2 = gsl_sf_gegenpoly_2_impl(lambda, x, &g2); int stat_g3 = gsl_sf_gegenpoly_3_impl(lambda, x, &g3); int stat_g = GSL_ERROR_SELECT_2(stat_g2, stat_g3); double gkm2 = g2.val; double gkm1 = g3.val; double gk; for(k=4; k<=n; k++) { gk = (2.0*(k+lambda-1.0)*x*gkm1 - (k+2.0*lambda-2.0)*gkm2) / k; gkm2 = gkm1; gkm1 = gk; } result->val = gk; result->err = 2.0 * GSL_DBL_EPSILON * 0.5 * n * fabs(gk); return stat_g; } } } int gsl_sf_gegenpoly_array_impl(int nmax, double lambda, double x, double * result_array) { int k; if(result_array == 0) { return GSL_EFAULT; } if(lambda <= -0.5 || nmax < 0) { return GSL_EDOM; } /* n == 0 */ result_array[0] = 1.0; if(nmax == 0) return GSL_SUCCESS; /* n == 1 */ if(lambda == 0.0) result_array[1] = 2.0*x; else result_array[1] = 2.0*lambda*x; /* n <= nmax */ for(k=2; k<=nmax; k++) { double term1 = 2.0*(k+lambda-1.0) * x * result_array[k-1]; double term2 = (k+2.0*lambda-2.0) * result_array[k-2]; result_array[k] = (term1 - term2) / k; } return GSL_SUCCESS; } /*-*-*-*-*-*-*-*-*-*-*-* Error Handling Versions *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_gegenpoly_1_e(double lambda, double x, gsl_sf_result * result) { int status = gsl_sf_gegenpoly_1_impl(lambda, x, result); if(status != GSL_SUCCESS) { GSL_ERROR("gsl_sf_gegenpoly_1_e", status); } return status; } int gsl_sf_gegenpoly_2_e(double lambda, double x, gsl_sf_result * result) { int status = gsl_sf_gegenpoly_2_impl(lambda, x, result); if(status != GSL_SUCCESS) { GSL_ERROR("gsl_sf_gegenpoly_2_e", status); } return status; } int gsl_sf_gegenpoly_3_e(double lambda, double x, gsl_sf_result * result) { int status = gsl_sf_gegenpoly_3_impl(lambda, x, result); if(status != GSL_SUCCESS) { GSL_ERROR("gsl_sf_gegenpoly_3_e", status); } return status; } int gsl_sf_gegenpoly_n_e(int n, double lambda, double x, gsl_sf_result * result) { int status = gsl_sf_gegenpoly_n_impl(n, lambda, x, result); if(status != GSL_SUCCESS) { GSL_ERROR("gsl_sf_gegenpoly_n_e", status); } return status; } int gsl_sf_gegenpoly_array_e(int nmax, double lambda, double x, double * result_array) { int status = gsl_sf_gegenpoly_array_impl(nmax, lambda, x, result_array); if(status != GSL_SUCCESS) { GSL_ERROR("gsl_sf_gegenpoly_array_e", status); } return status; }