/* Author: G. Jungman * RCS: $Id: gsl_sf_coulomb.h,v 1.14 1999/07/23 19:32:26 jungman Exp $ */ #ifndef GSL_COULOMB_H_ #define GSL_COULOMB_H_ #include #include /* Normalized hydrogenic bound states, radial dependence. */ /* R_1 := 2Z sqrt(Z) exp(-Z r) */ int gsl_sf_hydrogenicR_1_impl(double Z, double r, gsl_sf_result * result); int gsl_sf_hydrogenicR_1_e(double Z, double r, gsl_sf_result * result); /* R_n := norm exp(-Z r/n) (2Z/n)^l Laguerre[n-l-1, 2l+1, 2Z/n r] * * normalization such that psi(n,l,r) = R_n Y_{lm} */ int gsl_sf_hydrogenicR_impl(int n, int l, double Z, double r, gsl_sf_result * result); int gsl_sf_hydrogenicR_e(int n, int l, double Z, double r, gsl_sf_result * result); /* Coulomb wave functions F_{lam_F}(eta,x), G_{lam_G}(eta,x) * and their derivatives; lam_G := lam_F - k_lam_G * * lam_F, lam_G > -0.5 * x > 0.0 * * Conventions of Abramowitz+Stegun. * * Because their can be a large dynamic range of values, * overflows are handled gracefully. If an overflow occurs, * GSL_EOVRFLW is signalled and exponent(s) are returned * through exp_F, exp_G. These are such that * * F_L(eta,x) = fc[k_L] * exp(exp_F) * G_L(eta,x) = gc[k_L] * exp(exp_G) * F_L'(eta,x) = fcp[k_L] * exp(exp_F) * G_L'(eta,x) = gcp[k_L] * exp(exp_G) */ int gsl_sf_coulomb_wave_FG_impl(const double eta, const double x, const double lam_F, const int k_lam_G, gsl_sf_result * F, gsl_sf_result * Fp, gsl_sf_result * G, gsl_sf_result * Gp, double * exp_F, double * exp_G); /* F_L(eta,x) */ int gsl_sf_coulomb_wave_F_array_impl( double lam_min, int kmax, double eta, double x, double * fc_array, double * F_exponent ); int gsl_sf_coulomb_wave_F_array_e( double lam_min, int kmax, double eta, double x, double * fc_array, double * F_exponent ); /* F_L(eta,x), G_L(eta,x) */ int gsl_sf_coulomb_wave_FG_array_impl(double lam_min, int kmax, double eta, double x, double * fc_array, double * gc_array, double * F_exponent, double * G_exponent ); int gsl_sf_coulomb_wave_FG_array_e(double lam_min, int kmax, double eta, double x, double * fc_array, double * gc_array, double * F_exponent, double * G_exponent ); /* F_L(eta,x), G_L(eta,x), F'_L(eta,x), G'_L(eta,x) */ int gsl_sf_coulomb_wave_FGp_impl(double lam_min, int kmax, double eta, double x, gsl_sf_result * fc, gsl_sf_result * fcp, gsl_sf_result * gc, gsl_sf_result * gcp, double * F_exponent, double * G_exponent ); int gsl_sf_coulomb_wave_FGp_e(double lam_min, int kmax, double eta, double x, gsl_sf_result * fc, gsl_sf_result * fcp, gsl_sf_result * gc, gsl_sf_result * gcp, double * F_exponent, double * G_exponent ); /* Coulomb wave function divided by the argument, * F(xi, eta)/xi. This is the function which reduces to * spherical Bessel functions in the limit eta->0. */ int gsl_sf_coulomb_wave_sphF_array_impl(double lam_min, int kmax, double eta, double x, double * fc_array, double * F_exponent ); /* Coulomb wave function normalization constant. * [Abramowitz+Stegun 14.1.8, 14.1.9] */ int gsl_sf_coulomb_CL_impl(double L, double eta, gsl_sf_result * result); int gsl_sf_coulomb_CL_list(double Lmin, int kmax, double eta, double * cl); #endif /* !GSL_COULOMB_H_ */