/* Copyright (C) 1995,1996,1997,1998, 1999 Free Software Foundation, Inc. * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 59 Temple Place, Suite 330, * Boston, MA 02111-1307 USA * * As a special exception, the Free Software Foundation gives permission * for additional uses of the text contained in its release of GUILE. * * The exception is that, if you link the GUILE library with other files * to produce an executable, this does not by itself cause the * resulting executable to be covered by the GNU General Public License. * Your use of that executable is in no way restricted on account of * linking the GUILE library code into it. * * This exception does not however invalidate any other reasons why * the executable file might be covered by the GNU General Public License. * * This exception applies only to the code released by the * Free Software Foundation under the name GUILE. If you copy * code from other Free Software Foundation releases into a copy of * GUILE, as the General Public License permits, the exception does * not apply to the code that you add in this way. To avoid misleading * anyone as to the status of such modified files, you must delete * this exception notice from them. * * If you write modifications of your own for GUILE, it is your choice * whether to permit this exception to apply to your modifications. * If you do not wish that, delete this exception notice. */ /* data initialization and C<->Scheme data conversion */ #include #include /* data conversion C->scheme */ SCM gh_int2scmb (int x) /* this is being phased out */ { return SCM_BOOL(x); } SCM gh_bool2scm (int x) { return SCM_BOOL(x); } SCM gh_int2scm (int x) { return scm_long2num ((long) x); } SCM gh_ulong2scm (unsigned long x) { return scm_ulong2num (x); } SCM gh_long2scm (long x) { return scm_long2num (x); } SCM gh_double2scm (double x) { return scm_makdbl (x, 0.0); } SCM gh_char2scm (char c) { return SCM_MAKICHR (c); } SCM gh_str2scm (const char *s, int len) { return scm_makfromstr (s, len, 0); } SCM gh_str02scm (const char *s) { return scm_makfrom0str (s); } /* Copy LEN characters at SRC into the *existing* Scheme string DST, starting at START. START is an index into DST; zero means the beginning of the string. If START + LEN is off the end of DST, signal an out-of-range error. */ void gh_set_substr (char *src, SCM dst, int start, int len) { char *dst_ptr; unsigned long dst_len; unsigned long effective_length; SCM_ASSERT (SCM_STRINGP (dst), dst, SCM_ARG3, "gh_set_substr"); dst_ptr = SCM_CHARS (dst); dst_len = SCM_LENGTH (dst); SCM_ASSERT (len >= 0 && (unsigned) len <= dst_len, dst, SCM_ARG4, "gh_set_substr"); scm_protect_object (dst); effective_length = ((unsigned) len < dst_len) ? len : dst_len; memmove (dst_ptr + start, src, effective_length); scm_unprotect_object (dst); } /* Return the symbol named SYMBOL_STR. */ SCM gh_symbol2scm (const char *symbol_str) { return SCM_CAR (scm_intern (symbol_str, strlen (symbol_str))); } SCM gh_ints2scm (int *d, int n) { int i; SCM v = scm_make_vector(SCM_MAKINUM(n), SCM_UNSPECIFIED); SCM *velts = SCM_VELTS(v); for (i = 0; i < n; ++i) velts[i] = (d[i] >= SCM_MOST_NEGATIVE_FIXNUM && d[i] <= SCM_MOST_POSITIVE_FIXNUM ? SCM_MAKINUM (d[i]) : scm_long2big (d[i])); return v; } SCM gh_doubles2scm (double *d, int n) { int i; SCM v = scm_make_vector(SCM_MAKINUM(n), SCM_UNSPECIFIED); SCM *velts = SCM_VELTS(v); for(i = 0; i < n; i++) velts[i] = scm_makdbl(d[i], 0.0); return v; } #ifdef HAVE_ARRAYS /* Do not use this function for building normal Scheme vectors, unless you arrange for the elements to be protected from GC while you initialize the vector. */ static SCM makvect (char* m, int len, int type) { SCM ans; SCM_NEWCELL (ans); SCM_DEFER_INTS; SCM_SETCHARS (ans, m); SCM_SETLENGTH (ans, len, type); SCM_ALLOW_INTS; return ans; } SCM gh_chars2byvect (char *d, int n) { char *m = scm_must_malloc (n * sizeof (char), "vector"); memcpy (m, d, n * sizeof (char)); return makvect (m, n, scm_tc7_byvect); } SCM gh_shorts2svect (short *d, int n) { char *m = scm_must_malloc (n * sizeof (short), "vector"); memcpy (m, d, n * sizeof (short)); return makvect (m, n, scm_tc7_svect); } SCM gh_longs2ivect (long *d, int n) { char *m = scm_must_malloc (n * sizeof (long), "vector"); memcpy (m, d, n * sizeof (long)); return makvect (m, n, scm_tc7_ivect); } SCM gh_ulongs2uvect (unsigned long *d, int n) { char *m = scm_must_malloc (n * sizeof (unsigned long), "vector"); memcpy (m, d, n * sizeof (unsigned long)); return makvect (m, n, scm_tc7_uvect); } #ifdef SCM_FLOATS #ifdef SCM_SINGLES SCM gh_floats2fvect (float *d, int n) { char *m = scm_must_malloc (n * sizeof (float), "vector"); memcpy (m, d, n * sizeof (float)); return makvect (m, n, scm_tc7_fvect); } #endif SCM gh_doubles2dvect (double *d, int n) { char *m = scm_must_malloc (n * sizeof (double), "vector"); memcpy (m, d, n * sizeof (double)); return makvect (m, n, scm_tc7_dvect); } #endif #endif /* data conversion scheme->C */ int gh_scm2bool (SCM obj) { return ((obj) == SCM_BOOL_F) ? 0 : 1; } unsigned long gh_scm2ulong (SCM obj) { return scm_num2ulong (obj, (char *) SCM_ARG1, "gh_scm2ulong"); } long gh_scm2long (SCM obj) { return scm_num2long (obj, (char *) SCM_ARG1, "gh_scm2long"); } int gh_scm2int (SCM obj) { /* NOTE: possible loss of precision here */ return (int) scm_num2long (obj, (char *) SCM_ARG1, "gh_scm2int"); } double gh_scm2double (SCM obj) { return scm_num2dbl (obj, "gh_scm2double"); } char gh_scm2char (SCM obj) { return SCM_ICHR (obj); } /* Convert a vector, weak vector, string, substring or uniform vector into an array of chars. If result array in arg 2 is NULL, malloc a new one. */ char * gh_scm2chars (SCM obj, char *m) { int i, n; long v; SCM val; if (!SCM_NIMP (obj)) scm_wrong_type_arg (0, 0, obj); switch (SCM_TYP7 (obj)) { case scm_tc7_vector: case scm_tc7_wvect: n = SCM_LENGTH (obj); for (i = 0; i < n; ++i) { val = SCM_VELTS (obj)[i]; if (SCM_INUMP (val)) { v = SCM_INUM (val); if (v < -128 || v > 255) scm_out_of_range (0, obj); } else scm_wrong_type_arg (0, 0, obj); } if (m == 0) m = (char *) malloc (n * sizeof (char)); for (i = 0; i < n; ++i) m[i] = SCM_INUM (SCM_VELTS (obj)[i]); break; #ifdef HAVE_ARRAYS case scm_tc7_byvect: #endif case scm_tc7_string: case scm_tc7_substring: n = SCM_LENGTH (obj); if (m == 0) m = (char *) malloc (n * sizeof (char)); memcpy (m, SCM_VELTS (obj), n * sizeof (char)); break; default: scm_wrong_type_arg (0, 0, obj); } return m; } /* Convert a vector, weak vector or uniform vector into an array of shorts. If result array in arg 2 is NULL, malloc a new one. */ short * gh_scm2shorts (SCM obj, short *m) { int i, n; long v; SCM val; if (!SCM_NIMP (obj)) scm_wrong_type_arg (0, 0, obj); switch (SCM_TYP7 (obj)) { case scm_tc7_vector: case scm_tc7_wvect: n = SCM_LENGTH (obj); for (i = 0; i < n; ++i) { val = SCM_VELTS (obj)[i]; if (SCM_INUMP (val)) { v = SCM_INUM (val); if (v < -32768 || v > 65535) scm_out_of_range (0, obj); } else scm_wrong_type_arg (0, 0, obj); } if (m == 0) m = (short *) malloc (n * sizeof (short)); for (i = 0; i < n; ++i) m[i] = SCM_INUM (SCM_VELTS (obj)[i]); break; #ifdef HAVE_ARRAYS case scm_tc7_svect: n = SCM_LENGTH (obj); if (m == 0) m = (short *) malloc (n * sizeof (short)); memcpy (m, SCM_VELTS (obj), n * sizeof (short)); break; #endif default: scm_wrong_type_arg (0, 0, obj); } return m; } /* Convert a vector, weak vector or uniform vector into an array of longs. If result array in arg 2 is NULL, malloc a new one. */ long * gh_scm2longs (SCM obj, long *m) { int i, n; SCM val; if (!SCM_NIMP (obj)) scm_wrong_type_arg (0, 0, obj); switch (SCM_TYP7 (obj)) { case scm_tc7_vector: case scm_tc7_wvect: n = SCM_LENGTH (obj); for (i = 0; i < n; ++i) { val = SCM_VELTS (obj)[i]; if (!SCM_INUMP (val) && !SCM_BIGP (val)) scm_wrong_type_arg (0, 0, obj); } if (m == 0) m = (long *) malloc (n * sizeof (long)); for (i = 0; i < n; ++i) { val = SCM_VELTS (obj)[i]; m[i] = SCM_INUMP (val) ? SCM_INUM (val) : scm_num2long (val, 0, 0); } break; #ifdef HAVE_ARRAYS case scm_tc7_ivect: case scm_tc7_uvect: n = SCM_LENGTH (obj); if (m == 0) m = (long *) malloc (n * sizeof (long)); memcpy (m, SCM_VELTS (obj), n * sizeof (long)); break; #endif default: scm_wrong_type_arg (0, 0, obj); } return m; } /* Convert a vector, weak vector or uniform vector into an array of floats. If result array in arg 2 is NULL, malloc a new one. */ float * gh_scm2floats (SCM obj, float *m) { int i, n; SCM val; if (!SCM_NIMP (obj)) scm_wrong_type_arg (0, 0, obj); switch (SCM_TYP7 (obj)) { case scm_tc7_vector: case scm_tc7_wvect: n = SCM_LENGTH (obj); for (i = 0; i < n; ++i) { val = SCM_VELTS (obj)[i]; if (!SCM_INUMP (val) && !(SCM_BIGP (val) || SCM_REALP (val))) scm_wrong_type_arg (0, 0, val); } if (m == 0) m = (float *) malloc (n * sizeof (float)); for (i = 0; i < n; ++i) { val = SCM_VELTS (obj)[i]; if (SCM_INUMP (val)) m[i] = SCM_INUM (val); else if (SCM_BIGP (val)) m[i] = scm_num2long (val, 0, 0); else m[i] = SCM_REALPART (val); } break; #ifdef HAVE_ARRAYS #ifdef SCM_FLOATS #ifdef SCM_SINGLES case scm_tc7_fvect: n = SCM_LENGTH (obj); if (m == 0) m = (float *) malloc (n * sizeof (float)); memcpy (m, (float *) SCM_VELTS (obj), n * sizeof (float)); break; #endif case scm_tc7_dvect: n = SCM_LENGTH (obj); if (m == 0) m = (float*) malloc (n * sizeof (float)); for (i = 0; i < n; ++i) m[i] = ((double *) SCM_VELTS (obj))[i]; break; #endif #endif default: scm_wrong_type_arg (0, 0, obj); } return m; } /* Convert a vector, weak vector or uniform vector into an array of doubles. If result array in arg 2 is NULL, malloc a new one. */ double * gh_scm2doubles (SCM obj, double *m) { int i, n; SCM val; if (!SCM_NIMP (obj)) scm_wrong_type_arg (0, 0, obj); switch (SCM_TYP7 (obj)) { case scm_tc7_vector: case scm_tc7_wvect: n = SCM_LENGTH (obj); for (i = 0; i < n; ++i) { val = SCM_VELTS (obj)[i]; if (!SCM_INUMP (val) && !(SCM_BIGP (val) || SCM_REALP (val))) scm_wrong_type_arg (0, 0, val); } if (m == 0) m = (double *) malloc (n * sizeof (double)); for (i = 0; i < n; ++i) { val = SCM_VELTS (obj)[i]; if (SCM_INUMP (val)) m[i] = SCM_INUM (val); else if (SCM_BIGP (val)) m[i] = scm_num2long (val, 0, 0); else m[i] = SCM_REALPART (val); } break; #ifdef HAVE_ARRAYS #ifdef SCM_FLOATS #ifdef SCM_SINGLES case scm_tc7_fvect: n = SCM_LENGTH (obj); if (m == 0) m = (double *) malloc (n * sizeof (double)); for (i = 0; i < n; ++i) m[i] = ((float *) SCM_VELTS (obj))[i]; break; #endif case scm_tc7_dvect: n = SCM_LENGTH (obj); if (m == 0) m = (double*) malloc (n * sizeof (double)); memcpy (m, SCM_VELTS (obj), n * sizeof (double)); break; #endif #endif default: scm_wrong_type_arg (0, 0, obj); } return m; } /* string conversions between C and Scheme */ /* gh_scm2newstr() -- Given a Scheme string STR, return a pointer to a new copy of its contents, followed by a null byte. If lenp is non-null, set *lenp to the string's length. This function uses malloc to obtain storage for the copy; the caller is responsible for freeing it. Note that Scheme strings may contain arbitrary data, including null characters. This means that null termination is not a reliable way to determine the length of the returned value. However, the function always copies the complete contents of STR, and sets *LEN_P to the true length of the string (when LEN_P is non-null). */ char * gh_scm2newstr (SCM str, int *lenp) { char *ret_str; int len; SCM_ASSERT (SCM_ROSTRINGP (str), str, SCM_ARG3, "gh_scm2newstr"); /* protect str from GC while we copy off its data */ scm_protect_object (str); len = SCM_LENGTH (str); ret_str = (char *) scm_must_malloc ((len + 1) * sizeof (char), "gh_scm2newstr"); /* so we copy tmp_str to ret_str, which is what we will allocate */ memcpy (ret_str, SCM_ROCHARS (str), len); /* test ROCHARS here -twp */ /* now make sure we null-terminate it */ ret_str[len] = '\0'; scm_unprotect_object (str); if (lenp != NULL) { *lenp = len; } return ret_str; } /* Copy LEN characters at START from the Scheme string SRC to memory at DST. START is an index into SRC; zero means the beginning of the string. DST has already been allocated by the caller. If START + LEN is off the end of SRC, silently truncate the source region to fit the string. If truncation occurs, the corresponding area of DST is left unchanged. */ void gh_get_substr (SCM src, char *dst, int start, int len) { int src_len, effective_length; SCM_ASSERT (SCM_ROSTRINGP (src), src, SCM_ARG3, "gh_get_substr"); scm_protect_object (src); src_len = SCM_LENGTH (src); effective_length = (len < src_len) ? len : src_len; memcpy (dst + start, SCM_ROCHARS (src), effective_length * sizeof (char)); /* FIXME: must signal an error if len > src_len */ scm_unprotect_object (src); } /* gh_scm2newsymbol() -- Given a Scheme symbol 'identifier, return a pointer to a string with the symbol characters "identifier", followed by a null byte. If lenp is non-null, set *lenp to the string's length. This function uses malloc to obtain storage for the copy; the caller is responsible for freeing it. */ char * gh_symbol2newstr (SCM sym, int *lenp) { char *ret_str; int len; SCM_ASSERT (SCM_SYMBOLP (sym), sym, SCM_ARG3, "gh_scm2newsymbol"); /* protect str from GC while we copy off its data */ scm_protect_object (sym); len = SCM_LENGTH (sym); ret_str = (char *) scm_must_malloc ((len + 1) * sizeof (char), "gh_symbol2newstr"); /* so we copy tmp_str to ret_str, which is what we will allocate */ memcpy (ret_str, SCM_CHARS (sym), len); /* now make sure we null-terminate it */ ret_str[len] = '\0'; scm_unprotect_object (sym); if (lenp != NULL) { *lenp = len; } return ret_str; } /* create a new vector of the given length, all initialized to the given value */ SCM gh_make_vector (SCM len, SCM fill) { return scm_make_vector (len, fill); } /* set the given element of the given vector to the given value */ SCM gh_vector_set_x (SCM vec, SCM pos, SCM val) { return scm_vector_set_x (vec, pos, val); } /* retrieve the given element of the given vector */ SCM gh_vector_ref (SCM vec, SCM pos) { return scm_vector_ref (vec, pos); } /* returns the length of the given vector */ unsigned long gh_vector_length (SCM v) { return gh_scm2ulong (scm_vector_length (v)); } #ifdef HAVE_ARRAYS /* uniform vector support */ /* returns the length as a C unsigned long integer */ unsigned long gh_uniform_vector_length (SCM v) { return gh_scm2ulong (scm_uniform_vector_length (v)); } /* gets the given element from a uniform vector; ilist is a list (or possibly a single integer) of indices, and its length is the dimension of the uniform vector */ SCM gh_uniform_vector_ref (SCM v, SCM ilist) { return scm_uniform_vector_ref (v, ilist); } /* sets an individual element in a uniform vector */ /* SCM */ /* gh_list_to_uniform_array ( */ #endif /* Data lookups between C and Scheme Look up a symbol with a given name, and return the object to which it is bound. gh_lookup examines the Guile top level, and gh_module_lookup checks the module namespace specified by the `vec' argument. The return value is the Scheme object to which SNAME is bound, or SCM_UNDEFINED if SNAME is not bound in the given context. [FIXME: should this be SCM_UNSPECIFIED? Can a symbol ever legitimately be bound to SCM_UNDEFINED or SCM_UNSPECIFIED? What is the difference? -twp] */ SCM gh_lookup (char *sname) { return gh_module_lookup (SCM_BOOL_F, sname); } SCM gh_module_lookup (SCM vec, char *sname) { SCM sym = gh_symbol2scm (sname); if ((scm_symbol_bound_p (vec, sym)) == SCM_BOOL_T) return scm_symbol_binding (vec, sym); else return SCM_UNDEFINED; }