/* Copyright (C) 1995,1996,1997,1998, 1999 Free Software Foundation, Inc. * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 59 Temple Place, Suite 330, * Boston, MA 02111-1307 USA * * As a special exception, the Free Software Foundation gives permission * for additional uses of the text contained in its release of GUILE. * * The exception is that, if you link the GUILE library with other files * to produce an executable, this does not by itself cause the * resulting executable to be covered by the GNU General Public License. * Your use of that executable is in no way restricted on account of * linking the GUILE library code into it. * * This exception does not however invalidate any other reasons why * the executable file might be covered by the GNU General Public License. * * This exception applies only to the code released by the * Free Software Foundation under the name GUILE. If you copy * code from other Free Software Foundation releases into a copy of * GUILE, as the General Public License permits, the exception does * not apply to the code that you add in this way. To avoid misleading * anyone as to the status of such modified files, you must delete * this exception notice from them. * * If you write modifications of your own for GUILE, it is your choice * whether to permit this exception to apply to your modifications. * If you do not wish that, delete this exception notice. */ /* Software engineering face-lift by Greg J. Badros, 11-Dec-1999, gjb@cs.washington.edu, http://www.cs.washington.edu/homes/gjb */ #include #include #include "_scm.h" #include "genio.h" #include "unif.h" #include "feature.h" #include "smob.h" #include "scm_validate.h" #include "numbers.h" #define DIGITS '0':case '1':case '2':case '3':case '4':\ case '5':case '6':case '7':case '8':case '9' /* IS_INF tests its floating point number for infiniteness */ #ifndef IS_INF #define IS_INF(x) ((x) == (x) / 2) #endif /* Return true if X is not infinite and is not a NaN */ #ifndef isfinite #define isfinite(x) (!IS_INF (x) && (x) == (x)) #endif /* MAXEXP is the maximum double precision expontent * FLTMAX is less than or scm_equal the largest single precision float */ #ifdef SCM_FLOATS #ifdef STDC_HEADERS #ifndef GO32 #include #endif /* ndef GO32 */ #endif /* def STDC_HEADERS */ #ifdef DBL_MAX_10_EXP #define MAXEXP DBL_MAX_10_EXP #else #define MAXEXP 308 /* IEEE doubles */ #endif /* def DBL_MAX_10_EXP */ #ifdef FLT_MAX #define FLTMAX FLT_MAX #else #define FLTMAX 1e+23 #endif /* def FLT_MAX */ #endif /* def SCM_FLOATS */ SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0, (SCM x), "") #define FUNC_NAME s_scm_exact_p { if (SCM_INUMP (x)) return SCM_BOOL_T; #ifdef SCM_BIGDIG if (SCM_BIGP (x)) return SCM_BOOL_T; #endif return SCM_BOOL_F; } #undef FUNC_NAME SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0, (SCM n), "") #define FUNC_NAME s_scm_odd_p { #ifdef SCM_BIGDIG if (SCM_NINUMP (n)) { SCM_VALIDATE_BIGINT (1,n); return SCM_BOOL(1 & SCM_BDIGITS (n)[0]); } #else SCM_VALIDATE_INUM (1,n); #endif return SCM_BOOL(4 & (int) n); } #undef FUNC_NAME SCM_DEFINE (scm_even_p, "even?", 1, 0, 0, (SCM n), "") #define FUNC_NAME s_scm_even_p { #ifdef SCM_BIGDIG if (SCM_NINUMP (n)) { SCM_VALIDATE_BIGINT (1,n); return SCM_NEGATE_BOOL(1 & SCM_BDIGITS (n)[0]); } #else SCM_VALIDATE_INUM (1,n); #endif return SCM_NEGATE_BOOL(4 & (int) n); } #undef FUNC_NAME SCM_GPROC (s_abs, "abs", 1, 0, 0, scm_abs, g_abs); SCM scm_abs (SCM x) { #ifdef SCM_BIGDIG if (SCM_NINUMP (x)) { SCM_GASSERT1 (SCM_BIGP (x), g_abs, x, SCM_ARG1, s_abs); if (SCM_TYP16 (x) == scm_tc16_bigpos) return x; return scm_copybig (x, 0); } #else SCM_GASSERT1 (SCM_INUMP (x), g_abs, x, SCM_ARG1, s_abs); #endif if (SCM_INUM (x) >= 0) return x; x = - SCM_INUM (x); if (!SCM_POSFIXABLE (x)) #ifdef SCM_BIGDIG return scm_long2big (x); #else scm_num_overflow (s_abs); #endif return SCM_MAKINUM (x); } SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient); SCM scm_quotient (SCM x, SCM y) { register long z; #ifdef SCM_BIGDIG if (SCM_NINUMP (x)) { long w; SCM_GASSERT2 (SCM_BIGP (x), g_quotient, x, y, SCM_ARG1, s_quotient); if (SCM_NINUMP (y)) { SCM_ASRTGO (SCM_BIGP (y), bady); return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), SCM_BDIGITS (y), SCM_NUMDIGS (y), SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y), 2); } z = SCM_INUM (y); SCM_ASRTGO (z, ov); if (1 == z) return x; if (z < 0) z = -z; if (z < SCM_BIGRAD) { w = scm_copybig (x, SCM_BIGSIGN (x) ? (y > 0) : (y < 0)); scm_divbigdig (SCM_BDIGITS (w), SCM_NUMDIGS (w), (SCM_BIGDIG) z); return scm_normbig (w); } #ifndef SCM_DIGSTOOBIG w = scm_pseudolong (z); return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), (SCM_BIGDIG *) & w, SCM_DIGSPERLONG, SCM_BIGSIGN (x) ? (y > 0) : (y < 0), 2); #else { SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; scm_longdigs (z, zdigs); return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), zdigs, SCM_DIGSPERLONG, SCM_BIGSIGN (x) ? (y > 0) : (y < 0), 2); } #endif } if (SCM_NINUMP (y)) { if (!SCM_BIGP (y)) { bady: SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient); } return SCM_INUM0; } #else SCM_GASSERT2 (SCM_INUMP (x), g_quotient, x, y, SCM_ARG1, s_quotient); SCM_GASSERT2 (SCM_INUMP (y), g_quotient, x, y, SCM_ARG2, s_quotient); #endif if ((z = SCM_INUM (y)) == 0) { ov: scm_num_overflow (s_quotient); } z = SCM_INUM (x) / z; #ifdef BADIVSGNS { #if (__TURBOC__ == 1) long t = ((y < 0) ? -SCM_INUM (x) : SCM_INUM (x)) % SCM_INUM (y); #else long t = SCM_INUM (x) % SCM_INUM (y); #endif if (t == 0); else if (t < 0) if (x < 0); else z--; else if (x < 0) z++; } #endif if (!SCM_FIXABLE (z)) #ifdef SCM_BIGDIG return scm_long2big (z); #else scm_num_overflow (s_quotient); #endif return SCM_MAKINUM (z); } SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder); SCM scm_remainder (SCM x, SCM y) { register long z; #ifdef SCM_BIGDIG if (SCM_NINUMP (x)) { SCM_GASSERT2 (SCM_BIGP (x), g_remainder, x, y, SCM_ARG1, s_remainder); if (SCM_NINUMP (y)) { SCM_ASRTGO (SCM_BIGP (y), bady); return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), SCM_BDIGITS (y), SCM_NUMDIGS (y), SCM_BIGSIGN (x), 0); } if (!(z = SCM_INUM (y))) goto ov; return scm_divbigint (x, z, SCM_BIGSIGN (x), 0); } if (SCM_NINUMP (y)) { if (!SCM_BIGP (y)) { bady: SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder); } return x; } #else SCM_GASSERT2 (SCM_INUMP (x), g_remainder, x, y, SCM_ARG1, s_remainder); SCM_GASSERT2 (SCM_INUMP (y), g_remainder, x, y, SCM_ARG2, s_remainder); #endif if (!(z = SCM_INUM (y))) { ov: scm_num_overflow (s_remainder); } #if (__TURBOC__ == 1) if (z < 0) z = -z; #endif z = SCM_INUM (x) % z; #ifdef BADIVSGNS if (!z); else if (z < 0) if (x < 0); else z += SCM_INUM (y); else if (x < 0) z -= SCM_INUM (y); #endif return SCM_MAKINUM (z); } SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo); SCM scm_modulo (SCM x, SCM y) { register long yy, z; #ifdef SCM_BIGDIG if (SCM_NINUMP (x)) { SCM_GASSERT2 (SCM_BIGP (x), g_modulo, x, y, SCM_ARG1, s_modulo); if (SCM_NINUMP (y)) { SCM_ASRTGO (SCM_BIGP (y), bady); return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), SCM_BDIGITS (y), SCM_NUMDIGS (y), SCM_BIGSIGN (y), (SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y)) ? 1 : 0); } if (!(z = SCM_INUM (y))) goto ov; return scm_divbigint (x, z, y < 0, (SCM_BIGSIGN (x) ? (y > 0) : (y < 0)) ? 1 : 0); } if (SCM_NINUMP (y)) { if (!SCM_BIGP (y)) { bady: SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo); } return (SCM_BIGSIGN (y) ? (x > 0) : (x < 0)) ? scm_sum (x, y) : x; } #else SCM_GASSERT1 (SCM_INUMP (x), g_modulo, x, y, SCM_ARG1, s_modulo); SCM_GASSERT2 (SCM_INUMP (y), g_modulo, x, y, SCM_ARG2, s_modulo); #endif if (!(yy = SCM_INUM (y))) { ov: scm_num_overflow (s_modulo); } #if (__TURBOC__==1) z = SCM_INUM (x); z = ((yy < 0) ? -z : z) % yy; #else z = SCM_INUM (x) % yy; #endif return SCM_MAKINUM (((yy < 0) ? (z > 0) : (z < 0)) ? z + yy : z); } SCM_GPROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd, g_gcd); SCM scm_gcd (SCM x, SCM y) { register long u, v, k, t; if (SCM_UNBNDP (y)) return SCM_UNBNDP (x) ? SCM_INUM0 : x; tailrec: #ifdef SCM_BIGDIG if (SCM_NINUMP (x)) { big_gcd: SCM_GASSERT2 (SCM_BIGP (x), g_gcd, x, y, SCM_ARG1, s_gcd); if (SCM_BIGSIGN (x)) x = scm_copybig (x, 0); newy: if (SCM_NINUMP (y)) { SCM_GASSERT2 (SCM_BIGP (y), g_gcd, x, y, SCM_ARGn, s_gcd); if (SCM_BIGSIGN (y)) y = scm_copybig (y, 0); switch (scm_bigcomp (x, y)) { case -1: swaprec: t = scm_remainder (x, y); x = y; y = t; goto tailrec; case 0: return x; case 1: y = scm_remainder (y, x); goto newy; } /* instead of the switch, we could just return scm_gcd (y, scm_modulo (x, y)); */ } if (SCM_INUM0 == y) return x; goto swaprec; } if (SCM_NINUMP (y)) { t = x; x = y; y = t; goto big_gcd; } #else SCM_GASSERT2 (SCM_INUMP (x), g_gcd, x, y, SCM_ARG1, s_gcd); SCM_GASSERT2 (SCM_INUMP (y), g_gcd, x, y, SCM_ARGn, s_gcd); #endif u = SCM_INUM (x); if (u < 0) u = -u; v = SCM_INUM (y); if (v < 0) v = -v; else if (0 == v) goto getout; if (0 == u) { u = v; goto getout; } for (k = 1; !(1 & ((int) u | (int) v)); k <<= 1, u >>= 1, v >>= 1); if (1 & (int) u) t = -v; else { t = u; b3: t = SCM_SRS (t, 1); } if (!(1 & (int) t)) goto b3; if (t > 0) u = t; else v = -t; if ((t = u - v)) goto b3; u = u * k; getout: if (!SCM_POSFIXABLE (u)) #ifdef SCM_BIGDIG return scm_long2big (u); #else scm_num_overflow (s_gcd); #endif return SCM_MAKINUM (u); } SCM_GPROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm, g_lcm); SCM scm_lcm (SCM n1, SCM n2) { SCM d; #ifndef SCM_BIGDIG SCM_GASSERT2 (SCM_INUMP (n1) || SCM_UNBNDP (n1), g_lcm, n1, n2, SCM_ARG1, s_lcm); SCM_GASSERT2 (SCM_INUMP (n2) || SCM_UNBNDP (n2), g_lcm, n1, n2, SCM_ARGn, s_lcm); #else SCM_GASSERT2 (SCM_INUMP (n1) || SCM_UNBNDP (n1) || (SCM_BIGP (n1)), g_lcm, n1, n2, SCM_ARG1, s_lcm); SCM_GASSERT2 (SCM_INUMP (n2) || SCM_UNBNDP (n2) || (SCM_BIGP (n2)), g_lcm, n1, n2, SCM_ARGn, s_lcm); #endif if (SCM_UNBNDP (n2)) { n2 = SCM_MAKINUM (1L); if (SCM_UNBNDP (n1)) return n2; } d = scm_gcd (n1, n2); if (SCM_INUM0 == d) return d; return scm_abs (scm_product (n1, scm_quotient (n2, d))); } #ifndef SCM_BIGDIG #ifndef SCM_FLOATS #define scm_long2num SCM_MAKINUM #endif #endif #ifndef scm_long2num #define SCM_LOGOP_RETURN(x) scm_ulong2num(x) #else #define SCM_LOGOP_RETURN(x) SCM_MAKINUM(x) #endif SCM_DEFINE1 (scm_logand, "logand", scm_tc7_asubr, (SCM n1, SCM n2), "Returns the integer which is the bit-wise AND of the two integer\n" "arguments.\n\n" "Example:\n" "@lisp\n" "(number->string (logand #b1100 #b1010) 2)\n" " @result{} \"1000\"") #define FUNC_NAME s_scm_logand { int i1, i2; if (SCM_UNBNDP (n2)) { if (SCM_UNBNDP (n1)) return SCM_MAKINUM (-1); return n1; } SCM_VALIDATE_ULONG_COPY (1,n1,i1); SCM_VALIDATE_ULONG_COPY (2,n2,i2); return SCM_LOGOP_RETURN (i1 & i2); } #undef FUNC_NAME SCM_DEFINE1 (scm_logior, "logior", scm_tc7_asubr, (SCM n1, SCM n2), "Returns the integer which is the bit-wise OR of the two integer\n" "arguments.\n\n" "Example:\n" "@lisp\n" "(number->string (logior #b1100 #b1010) 2)\n" " @result{} \"1110\"\n" "@end lisp") #define FUNC_NAME s_scm_logior { int i1, i2; if (SCM_UNBNDP (n2)) { if (SCM_UNBNDP (n1)) return SCM_INUM0; return n1; } SCM_VALIDATE_ULONG_COPY (1,n1,i1); SCM_VALIDATE_ULONG_COPY (2,n2,i2); return SCM_LOGOP_RETURN (i1 | i2); } #undef FUNC_NAME SCM_DEFINE1 (scm_logxor, "logxor", scm_tc7_asubr, (SCM n1, SCM n2), "Returns the integer which is the bit-wise XOR of the two integer\n" "arguments.\n\n" "Example:\n" "@lisp\n" "(number->string (logxor #b1100 #b1010) 2)\n" " @result{} \"110\"\n" "@end lisp") #define FUNC_NAME s_scm_logxor { int i1, i2; if (SCM_UNBNDP (n2)) { if (SCM_UNBNDP (n1)) return SCM_INUM0; return n1; } SCM_VALIDATE_ULONG_COPY (1,n1,i1); SCM_VALIDATE_ULONG_COPY (2,n2,i2); return SCM_LOGOP_RETURN (i1 ^ i2); } #undef FUNC_NAME SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0, (SCM n1, SCM n2), "@example\n" "(logtest j k) @equiv{} (not (zero? (logand j k)))\n\n" "(logtest #b0100 #b1011) @result{} #f\n" "(logtest #b0100 #b0111) @result{} #t\n" "@end example") #define FUNC_NAME s_scm_logtest { int i1, i2; SCM_VALIDATE_ULONG_COPY (1,n1,i1); SCM_VALIDATE_ULONG_COPY (2,n2,i2); return SCM_BOOL(i1 & i2); } #undef FUNC_NAME SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0, (SCM index, SCM j), "@example\n" "(logbit? index j) @equiv{} (logtest (integer-expt 2 index) j)\n\n" "(logbit? 0 #b1101) @result{} #t\n" "(logbit? 1 #b1101) @result{} #f\n" "(logbit? 2 #b1101) @result{} #t\n" "(logbit? 3 #b1101) @result{} #t\n" "(logbit? 4 #b1101) @result{} #f\n" "@end example") #define FUNC_NAME s_scm_logbit_p { int i1, i2; SCM_VALIDATE_INUM_MIN_COPY (1,index,0,i1); SCM_VALIDATE_ULONG_COPY (2,j,i2); return SCM_BOOL((1 << i1) & i2); } #undef FUNC_NAME SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0, (SCM n), "Returns the integer which is the 2s-complement of the integer argument.\n\n" "Example:\n" "@lisp\n" "(number->string (lognot #b10000000) 2)\n" " @result{} \"-10000001\"\n" "(number->string (lognot #b0) 2)\n" " @result{} \"-1\"\n" "@end lisp\n" "") #define FUNC_NAME s_scm_lognot { SCM_VALIDATE_INUM (1,n); return scm_difference (SCM_MAKINUM (-1L), n); } #undef FUNC_NAME SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0, (SCM n, SCM k), "Returns @var{n} raised to the non-negative integer exponent @var{k}.\n\n" "Example:\n" "@lisp\n" "(integer-expt 2 5)\n" " @result{} 32\n" "(integer-expt -3 3)\n" " @result{} -27\n" "@end lisp") #define FUNC_NAME s_scm_integer_expt { SCM acc = SCM_MAKINUM (1L); int i2; #ifdef SCM_BIGDIG if (SCM_INUM0 == n || acc == n) return n; else if (SCM_MAKINUM (-1L) == n) return SCM_BOOL_F == scm_even_p (k) ? n : acc; #endif SCM_VALIDATE_ULONG_COPY (2,k,i2); if (i2 < 0) { i2 = -i2; n = scm_divide (n, SCM_UNDEFINED); } while (1) { if (0 == i2) return acc; if (1 == i2) return scm_product (acc, n); if (i2 & 1) acc = scm_product (acc, n); n = scm_product (n, n); i2 >>= 1; } } #undef FUNC_NAME SCM_DEFINE (scm_ash, "ash", 2, 0, 0, (SCM n, SCM cnt), "Returns an integer equivalent to\n" "@code{(inexact->exact (floor (* @var{int} (expt 2 @var{count}))))}.@refill\n\n" "Example:\n" "@lisp\n" "(number->string (ash #b1 3) 2)\n" " @result{} \"1000\"" "(number->string (ash #b1010 -1) 2)" " @result{} \"101\"" "@end lisp") #define FUNC_NAME s_scm_ash { /* GJB:FIXME:: what is going on here? */ SCM res = SCM_INUM (n); SCM_VALIDATE_INUM (2,cnt); #ifdef SCM_BIGDIG if (cnt < 0) { res = scm_integer_expt (SCM_MAKINUM (2), SCM_MAKINUM (-SCM_INUM (cnt))); if (SCM_NFALSEP (scm_negative_p (n))) return scm_sum (SCM_MAKINUM (-1L), scm_quotient (scm_sum (SCM_MAKINUM (1L), n), res)); else return scm_quotient (n, res); } else return scm_product (n, scm_integer_expt (SCM_MAKINUM (2), cnt)); #else SCM_VALIDATE_INUM (1,n) cnt = SCM_INUM (cnt); if (cnt < 0) return SCM_MAKINUM (SCM_SRS (res, -cnt)); res = SCM_MAKINUM (res << cnt); if (SCM_INUM (res) >> cnt != SCM_INUM (n)) scm_num_overflow (FUNC_NAME); return res; #endif } #undef FUNC_NAME /* GJB:FIXME: do not use SCMs as integers! */ SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0, (SCM n, SCM start, SCM end), "Returns the integer composed of the @var{start} (inclusive) through\n" "@var{end} (exclusive) bits of @var{n}. The @var{start}th bit becomes\n" "the 0-th bit in the result.@refill\n\n" "Example:\n" "@lisp\n" "(number->string (bit-extract #b1101101010 0 4) 2)\n" " @result{} \"1010\"\n" "(number->string (bit-extract #b1101101010 4 9) 2)\n" " @result{} \"10110\"\n" "@end lisp") #define FUNC_NAME s_scm_bit_extract { int istart, iend; SCM_VALIDATE_INUM (1,n); SCM_VALIDATE_INUM_MIN_COPY (2,start,0,istart); SCM_VALIDATE_INUM_MIN_COPY (3, end, 0, iend); SCM_ASSERT_RANGE (3, end, (iend >= istart)); #ifdef SCM_BIGDIG if (SCM_NINUMP (n)) return scm_logand (scm_difference (scm_integer_expt (SCM_MAKINUM (2), SCM_MAKINUM (iend - istart)), SCM_MAKINUM (1L)), scm_ash (n, SCM_MAKINUM (-istart))); #else SCM_VALIDATE_INUM (1,n); #endif return SCM_MAKINUM ((SCM_INUM (n) >> istart) & ((1L << (iend - istart)) - 1)); } #undef FUNC_NAME static const char scm_logtab[] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 }; SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0, (SCM n), "Returns the number of bits in integer @var{n}. If integer is positive,\n" "the 1-bits in its binary representation are counted. If negative, the\n" "0-bits in its two's-complement binary representation are counted. If 0,\n" "0 is returned.\n\n" "Example:\n" "@lisp\n" "(logcount #b10101010)\n" " @result{} 4\n" "(logcount 0)\n" " @result{} 0\n" "(logcount -2)\n" " @result{} 1\n" "@end lisp") #define FUNC_NAME s_scm_logcount { register unsigned long c = 0; register long nn; #ifdef SCM_BIGDIG if (SCM_NINUMP (n)) { scm_sizet i; SCM_BIGDIG *ds, d; SCM_VALIDATE_BIGINT (1,n); if (SCM_BIGSIGN (n)) return scm_logcount (scm_difference (SCM_MAKINUM (-1L), n)); ds = SCM_BDIGITS (n); for (i = SCM_NUMDIGS (n); i--;) for (d = ds[i]; d; d >>= 4) c += scm_logtab[15 & d]; return SCM_MAKINUM (c); } #else SCM_VALIDATE_INUM (1,n); #endif if ((nn = SCM_INUM (n)) < 0) nn = -1 - nn; for (; nn; nn >>= 4) c += scm_logtab[15 & nn]; return SCM_MAKINUM (c); } #undef FUNC_NAME static const char scm_ilentab[] = { 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4 }; SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0, (SCM n), "Returns the number of bits neccessary to represent @var{n}.\n\n" "Example:\n" "@lisp\n" "(integer-length #b10101010)\n" " @result{} 8\n" "(integer-length 0)\n" " @result{} 0\n" "(integer-length #b1111)\n" " @result{} 4\n" "@end lisp") #define FUNC_NAME s_scm_integer_length { register unsigned long c = 0; register long nn; unsigned int l = 4; #ifdef SCM_BIGDIG if (SCM_NINUMP (n)) { SCM_BIGDIG *ds, d; SCM_VALIDATE_BIGINT (1,n); if (SCM_BIGSIGN (n)) return scm_integer_length (scm_difference (SCM_MAKINUM (-1L), n)); ds = SCM_BDIGITS (n); d = ds[c = SCM_NUMDIGS (n) - 1]; for (c *= SCM_BITSPERDIG; d; d >>= 4) { c += 4; l = scm_ilentab[15 & d]; } return SCM_MAKINUM (c - 4 + l); } #else SCM_VALIDATE_INUM (1,n); #endif if ((nn = SCM_INUM (n)) < 0) nn = -1 - nn; for (; nn; nn >>= 4) { c += 4; l = scm_ilentab[15 & nn]; } return SCM_MAKINUM (c - 4 + l); } #undef FUNC_NAME #ifdef SCM_BIGDIG static const char s_bignum[] = "bignum"; SCM scm_mkbig (scm_sizet nlen, int sign) { SCM v = nlen; /* Cast to SCM to avoid signed/unsigned comparison warnings. */ if (((v << 16) >> 16) != (SCM) nlen) scm_wta (SCM_MAKINUM (nlen), (char *) SCM_NALLOC, s_bignum); SCM_NEWCELL (v); SCM_DEFER_INTS; SCM_SETCHARS (v, scm_must_malloc ((long) (nlen * sizeof (SCM_BIGDIG)), s_bignum)); SCM_SETNUMDIGS (v, nlen, sign ? scm_tc16_bigneg : scm_tc16_bigpos); SCM_ALLOW_INTS; return v; } SCM scm_big2inum (SCM b, scm_sizet l) { unsigned long num = 0; SCM_BIGDIG *tmp = SCM_BDIGITS (b); while (l--) num = SCM_BIGUP (num) + tmp[l]; if (SCM_TYP16 (b) == scm_tc16_bigpos) { if (SCM_POSFIXABLE (num)) return SCM_MAKINUM (num); } else if (SCM_UNEGFIXABLE (num)) return SCM_MAKINUM (-num); return b; } static const char s_adjbig[] = "scm_adjbig"; SCM scm_adjbig (SCM b, scm_sizet nlen) { scm_sizet nsiz = nlen; if (((nsiz << 16) >> 16) != nlen) scm_wta (scm_ulong2num (nsiz), (char *) SCM_NALLOC, s_adjbig); SCM_DEFER_INTS; { SCM_BIGDIG *digits = ((SCM_BIGDIG *) scm_must_realloc ((char *) SCM_CHARS (b), (long) (SCM_NUMDIGS (b) * sizeof (SCM_BIGDIG)), (long) (nsiz * sizeof (SCM_BIGDIG)), s_adjbig)); SCM_SETCHARS (b, digits); SCM_SETNUMDIGS (b, nsiz, SCM_TYP16 (b)); } SCM_ALLOW_INTS; return b; } SCM scm_normbig (SCM b) { #ifndef _UNICOS scm_sizet nlen = SCM_NUMDIGS (b); #else int nlen = SCM_NUMDIGS (b); /* unsigned nlen breaks on Cray when nlen => 0 */ #endif SCM_BIGDIG *zds = SCM_BDIGITS (b); while (nlen-- && !zds[nlen]); nlen++; if (nlen * SCM_BITSPERDIG / SCM_CHAR_BIT <= sizeof (SCM)) if (SCM_INUMP (b = scm_big2inum (b, (scm_sizet) nlen))) return b; if (SCM_NUMDIGS (b) == nlen) return b; return scm_adjbig (b, (scm_sizet) nlen); } SCM scm_copybig (SCM b, int sign) { scm_sizet i = SCM_NUMDIGS (b); SCM ans = scm_mkbig (i, sign); SCM_BIGDIG *src = SCM_BDIGITS (b), *dst = SCM_BDIGITS (ans); while (i--) dst[i] = src[i]; return ans; } SCM scm_long2big (long n) { scm_sizet i = 0; SCM_BIGDIG *digits; SCM ans = scm_mkbig (SCM_DIGSPERLONG, n < 0); digits = SCM_BDIGITS (ans); if (n < 0) n = -n; while (i < SCM_DIGSPERLONG) { digits[i++] = SCM_BIGLO (n); n = SCM_BIGDN ((unsigned long) n); } return ans; } #ifdef HAVE_LONG_LONGS SCM scm_long_long2big (long_long n) { scm_sizet i; SCM_BIGDIG *digits; SCM ans; int n_digits; { long tn; tn = (long) n; if ((long long) tn == n) return scm_long2big (tn); } { long_long tn; for (tn = n, n_digits = 0; tn; ++n_digits, tn = SCM_BIGDN ((ulong_long) tn)) ; } i = 0; ans = scm_mkbig (n_digits, n < 0); digits = SCM_BDIGITS (ans); if (n < 0) n = -n; while (i < n_digits) { digits[i++] = SCM_BIGLO (n); n = SCM_BIGDN ((ulong_long) n); } return ans; } #endif SCM scm_2ulong2big (unsigned long *np) { unsigned long n; scm_sizet i; SCM_BIGDIG *digits; SCM ans; ans = scm_mkbig (2 * SCM_DIGSPERLONG, 0); digits = SCM_BDIGITS (ans); n = np[0]; for (i = 0; i < SCM_DIGSPERLONG; ++i) { digits[i] = SCM_BIGLO (n); n = SCM_BIGDN ((unsigned long) n); } n = np[1]; for (i = 0; i < SCM_DIGSPERLONG; ++i) { digits[i + SCM_DIGSPERLONG] = SCM_BIGLO (n); n = SCM_BIGDN ((unsigned long) n); } return ans; } SCM scm_ulong2big (unsigned long n) { scm_sizet i = 0; SCM_BIGDIG *digits; SCM ans = scm_mkbig (SCM_DIGSPERLONG, 0); digits = SCM_BDIGITS (ans); while (i < SCM_DIGSPERLONG) { digits[i++] = SCM_BIGLO (n); n = SCM_BIGDN (n); } return ans; } int scm_bigcomp (SCM x, SCM y) { int xsign = SCM_BIGSIGN (x); int ysign = SCM_BIGSIGN (y); scm_sizet xlen, ylen; /* Look at the signs, first. */ if (ysign < xsign) return 1; if (ysign > xsign) return -1; /* They're the same sign, so see which one has more digits. Note that, if they are negative, the longer number is the lesser. */ ylen = SCM_NUMDIGS (y); xlen = SCM_NUMDIGS (x); if (ylen > xlen) return (xsign) ? -1 : 1; if (ylen < xlen) return (xsign) ? 1 : -1; /* They have the same number of digits, so find the most significant digit where they differ. */ while (xlen) { --xlen; if (SCM_BDIGITS (y)[xlen] != SCM_BDIGITS (x)[xlen]) /* Make the discrimination based on the digit that differs. */ return ((SCM_BDIGITS (y)[xlen] > SCM_BDIGITS (x)[xlen]) ? (xsign ? -1 : 1) : (xsign ? 1 : -1)); } /* The numbers are identical. */ return 0; } #ifndef SCM_DIGSTOOBIG long scm_pseudolong (long x) { union { long l; SCM_BIGDIG bd[SCM_DIGSPERLONG]; } p; scm_sizet i = 0; if (x < 0) x = -x; while (i < SCM_DIGSPERLONG) { p.bd[i++] = SCM_BIGLO (x); x = SCM_BIGDN (x); } /* p.bd[0] = SCM_BIGLO(x); p.bd[1] = SCM_BIGDN(x); */ return p.l; } #else void scm_longdigs (long x, SCM_BIGDIG digs[]) { scm_sizet i = 0; if (x < 0) x = -x; while (i < SCM_DIGSPERLONG) { digs[i++] = SCM_BIGLO (x); x = SCM_BIGDN (x); } } #endif SCM scm_addbig (SCM_BIGDIG *x, scm_sizet nx, int xsgn, SCM bigy, int sgny) { /* Assumes nx <= SCM_NUMDIGS(bigy) */ /* Assumes xsgn and sgny scm_equal either 0 or 0x0100 */ long num = 0; scm_sizet i = 0, ny = SCM_NUMDIGS (bigy); SCM z = scm_copybig (bigy, SCM_BIGSIGN (bigy) ^ sgny); SCM_BIGDIG *zds = SCM_BDIGITS (z); if (xsgn ^ SCM_BIGSIGN (z)) { do { num += (long) zds[i] - x[i]; if (num < 0) { zds[i] = num + SCM_BIGRAD; num = -1; } else { zds[i] = SCM_BIGLO (num); num = 0; } } while (++i < nx); if (num && nx == ny) { num = 1; i = 0; SCM_SETCAR (z, SCM_CAR (z) ^ 0x0100); do { num += (SCM_BIGRAD - 1) - zds[i]; zds[i++] = SCM_BIGLO (num); num = SCM_BIGDN (num); } while (i < ny); } else while (i < ny) { num += zds[i]; if (num < 0) { zds[i++] = num + SCM_BIGRAD; num = -1; } else { zds[i++] = SCM_BIGLO (num); num = 0; } } } else { do { num += (long) zds[i] + x[i]; zds[i++] = SCM_BIGLO (num); num = SCM_BIGDN (num); } while (i < nx); if (!num) return z; while (i < ny) { num += zds[i]; zds[i++] = SCM_BIGLO (num); num = SCM_BIGDN (num); if (!num) return z; } if (num) { z = scm_adjbig (z, ny + 1); SCM_BDIGITS (z)[ny] = num; return z; } } return scm_normbig (z); } SCM scm_mulbig (SCM_BIGDIG *x, scm_sizet nx, SCM_BIGDIG *y, scm_sizet ny, int sgn) { scm_sizet i = 0, j = nx + ny; unsigned long n = 0; SCM z = scm_mkbig (j, sgn); SCM_BIGDIG *zds = SCM_BDIGITS (z); while (j--) zds[j] = 0; do { j = 0; if (x[i]) { do { n += zds[i + j] + ((unsigned long) x[i] * y[j]); zds[i + j++] = SCM_BIGLO (n); n = SCM_BIGDN (n); } while (j < ny); if (n) { zds[i + j] = n; n = 0; } } } while (++i < nx); return scm_normbig (z); } /* Sun's compiler complains about the fact that this function has an ANSI prototype in numbers.h, but a K&R declaration here, and the two specify different promotions for the third argument. I'm going to turn this into an ANSI declaration, and see if anyone complains about it not being K&R. */ unsigned int scm_divbigdig (SCM_BIGDIG * ds, scm_sizet h, SCM_BIGDIG div) { register unsigned long t2 = 0; while (h--) { t2 = SCM_BIGUP (t2) + ds[h]; ds[h] = t2 / div; t2 %= div; } return t2; } SCM scm_divbigint (SCM x, long z, int sgn, int mode) { if (z < 0) z = -z; if (z < SCM_BIGRAD) { register unsigned long t2 = 0; register SCM_BIGDIG *ds = SCM_BDIGITS (x); scm_sizet nd = SCM_NUMDIGS (x); while (nd--) t2 = (SCM_BIGUP (t2) + ds[nd]) % z; if (mode && t2) t2 = z - t2; return SCM_MAKINUM (sgn ? -t2 : t2); } { #ifndef SCM_DIGSTOOBIG unsigned long t2 = scm_pseudolong (z); return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), (SCM_BIGDIG *) & t2, SCM_DIGSPERLONG, sgn, mode); #else SCM_BIGDIG t2[SCM_DIGSPERLONG]; scm_longdigs (z, t2); return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), t2, SCM_DIGSPERLONG, sgn, mode); #endif } } SCM scm_divbigbig (SCM_BIGDIG *x, scm_sizet nx, SCM_BIGDIG *y, scm_sizet ny, int sgn, int modes) { /* modes description 0 remainder 1 scm_modulo 2 quotient 3 quotient but returns 0 if division is not exact. */ scm_sizet i = 0, j = 0; long num = 0; unsigned long t2 = 0; SCM z, newy; SCM_BIGDIG d = 0, qhat, *zds, *yds; /* algorithm requires nx >= ny */ if (nx < ny) switch (modes) { case 0: /* remainder -- just return x */ z = scm_mkbig (nx, sgn); zds = SCM_BDIGITS (z); do { zds[i] = x[i]; } while (++i < nx); return z; case 1: /* scm_modulo -- return y-x */ z = scm_mkbig (ny, sgn); zds = SCM_BDIGITS (z); do { num += (long) y[i] - x[i]; if (num < 0) { zds[i] = num + SCM_BIGRAD; num = -1; } else { zds[i] = num; num = 0; } } while (++i < nx); while (i < ny) { num += y[i]; if (num < 0) { zds[i++] = num + SCM_BIGRAD; num = -1; } else { zds[i++] = num; num = 0; } } goto doadj; case 2: return SCM_INUM0; /* quotient is zero */ case 3: return 0; /* the division is not exact */ } z = scm_mkbig (nx == ny ? nx + 2 : nx + 1, sgn); zds = SCM_BDIGITS (z); if (nx == ny) zds[nx + 1] = 0; while (!y[ny - 1]) ny--; /* in case y came in as a psuedolong */ if (y[ny - 1] < (SCM_BIGRAD >> 1)) { /* normalize operands */ d = SCM_BIGRAD / (y[ny - 1] + 1); newy = scm_mkbig (ny, 0); yds = SCM_BDIGITS (newy); while (j < ny) { t2 += (unsigned long) y[j] * d; yds[j++] = SCM_BIGLO (t2); t2 = SCM_BIGDN (t2); } y = yds; j = 0; t2 = 0; while (j < nx) { t2 += (unsigned long) x[j] * d; zds[j++] = SCM_BIGLO (t2); t2 = SCM_BIGDN (t2); } zds[j] = t2; } else { zds[j = nx] = 0; while (j--) zds[j] = x[j]; } j = nx == ny ? nx + 1 : nx; /* dividend needs more digits than divisor */ do { /* loop over digits of quotient */ if (zds[j] == y[ny - 1]) qhat = SCM_BIGRAD - 1; else qhat = (SCM_BIGUP (zds[j]) + zds[j - 1]) / y[ny - 1]; if (!qhat) continue; i = 0; num = 0; t2 = 0; do { /* multiply and subtract */ t2 += (unsigned long) y[i] * qhat; num += zds[j - ny + i] - SCM_BIGLO (t2); if (num < 0) { zds[j - ny + i] = num + SCM_BIGRAD; num = -1; } else { zds[j - ny + i] = num; num = 0; } t2 = SCM_BIGDN (t2); } while (++i < ny); num += zds[j - ny + i] - t2; /* borrow from high digit; don't update */ while (num) { /* "add back" required */ i = 0; num = 0; qhat--; do { num += (long) zds[j - ny + i] + y[i]; zds[j - ny + i] = SCM_BIGLO (num); num = SCM_BIGDN (num); } while (++i < ny); num--; } if (modes & 2) zds[j] = qhat; } while (--j >= ny); switch (modes) { case 3: /* check that remainder==0 */ for (j = ny; j && !zds[j - 1]; --j); if (j) return 0; case 2: /* move quotient down in z */ j = (nx == ny ? nx + 2 : nx + 1) - ny; for (i = 0; i < j; i++) zds[i] = zds[i + ny]; ny = i; break; case 1: /* subtract for scm_modulo */ i = 0; num = 0; j = 0; do { num += y[i] - zds[i]; j = j | zds[i]; if (num < 0) { zds[i] = num + SCM_BIGRAD; num = -1; } else { zds[i] = num; num = 0; } } while (++i < ny); if (!j) return SCM_INUM0; case 0: /* just normalize remainder */ if (d) scm_divbigdig (zds, ny, d); } doadj: for (j = ny; j && !zds[j - 1]; --j); if (j * SCM_BITSPERDIG <= sizeof (SCM) * SCM_CHAR_BIT) if (SCM_INUMP (z = scm_big2inum (z, j))) return z; return scm_adjbig (z, j); } #endif /*** NUMBERS -> STRINGS ***/ #ifdef SCM_FLOATS int scm_dblprec; static const double fx[] = { 0.0, 5e-1, 5e-2, 5e-3, 5e-4, 5e-5, 5e-6, 5e-7, 5e-8, 5e-9, 5e-10, 5e-11, 5e-12, 5e-13, 5e-14, 5e-15, 5e-16, 5e-17, 5e-18, 5e-19, 5e-20}; static scm_sizet idbl2str (double f, char *a) { int efmt, dpt, d, i, wp = scm_dblprec; scm_sizet ch = 0; int exp = 0; if (f == 0.0) goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */ if (f < 0.0) { f = -f; a[ch++] = '-'; } else if (f > 0.0); else goto funny; if (IS_INF (f)) { if (ch == 0) a[ch++] = '+'; funny: a[ch++] = '#'; a[ch++] = '.'; a[ch++] = '#'; return ch; } #ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from make-uniform-vector, from causing infinite loops. */ while (f < 1.0) { f *= 10.0; if (exp-- < DBL_MIN_10_EXP) goto funny; } while (f > 10.0) { f *= 0.10; if (exp++ > DBL_MAX_10_EXP) goto funny; } #else while (f < 1.0) { f *= 10.0; exp--; } while (f > 10.0) { f /= 10.0; exp++; } #endif if (f + fx[wp] >= 10.0) { f = 1.0; exp++; } zero: #ifdef ENGNOT dpt = (exp + 9999) % 3; exp -= dpt++; efmt = 1; #else efmt = (exp < -3) || (exp > wp + 2); if (!efmt) { if (exp < 0) { a[ch++] = '0'; a[ch++] = '.'; dpt = exp; while (++dpt) a[ch++] = '0'; } else dpt = exp + 1; } else dpt = 1; #endif do { d = f; f -= d; a[ch++] = d + '0'; if (f < fx[wp]) break; if (f + fx[wp] >= 1.0) { a[ch - 1]++; break; } f *= 10.0; if (!(--dpt)) a[ch++] = '.'; } while (wp--); if (dpt > 0) { #ifndef ENGNOT if ((dpt > 4) && (exp > 6)) { d = (a[0] == '-' ? 2 : 1); for (i = ch++; i > d; i--) a[i] = a[i - 1]; a[d] = '.'; efmt = 1; } else #endif { while (--dpt) a[ch++] = '0'; a[ch++] = '.'; } } if (a[ch - 1] == '.') a[ch++] = '0'; /* trailing zero */ if (efmt && exp) { a[ch++] = 'e'; if (exp < 0) { exp = -exp; a[ch++] = '-'; } for (i = 10; i <= exp; i *= 10); for (i /= 10; i; i /= 10) { a[ch++] = exp / i + '0'; exp %= i; } } return ch; } static scm_sizet iflo2str (SCM flt, char *str) { scm_sizet i; #ifdef SCM_SINGLES if (SCM_SINGP (flt)) i = idbl2str (SCM_FLO (flt), str); else #endif i = idbl2str (SCM_REAL (flt), str); if (SCM_CPLXP (flt)) { if (0 <= SCM_IMAG (flt)) /* jeh */ str[i++] = '+'; /* jeh */ i += idbl2str (SCM_IMAG (flt), &str[i]); str[i++] = 'i'; } return i; } #endif /* SCM_FLOATS */ /* convert a long to a string (unterminated). returns the number of characters in the result. rad is output base p is destination: worst case (base 2) is SCM_INTBUFLEN */ scm_sizet scm_iint2str (long num, int rad, char *p) { scm_sizet j = 1; scm_sizet i; unsigned long n = (num < 0) ? -num : num; for (n /= rad; n > 0; n /= rad) j++; i = j; if (num < 0) { *p++ = '-'; j++; n = -num; } else n = num; while (i--) { int d = n % rad; n /= rad; p[i] = d + ((d < 10) ? '0' : 'a' - 10); } return j; } #ifdef SCM_BIGDIG static SCM big2str (SCM b, unsigned int radix) { SCM t = scm_copybig (b, 0); /* sign of temp doesn't matter */ register SCM_BIGDIG *ds = SCM_BDIGITS (t); scm_sizet i = SCM_NUMDIGS (t); scm_sizet j = radix == 16 ? (SCM_BITSPERDIG * i) / 4 + 2 : radix >= 10 ? (SCM_BITSPERDIG * i * 241L) / 800 + 2 : (SCM_BITSPERDIG * i) + 2; scm_sizet k = 0; scm_sizet radct = 0; scm_sizet ch; /* jeh */ SCM_BIGDIG radpow = 1, radmod = 0; SCM ss = scm_makstr ((long) j, 0); char *s = SCM_CHARS (ss), c; while ((long) radpow * radix < SCM_BIGRAD) { radpow *= radix; radct++; } s[0] = scm_tc16_bigneg == SCM_TYP16 (b) ? '-' : '+'; while ((i || radmod) && j) { if (k == 0) { radmod = (SCM_BIGDIG) scm_divbigdig (ds, i, radpow); k = radct; if (!ds[i - 1]) i--; } c = radmod % radix; radmod /= radix; k--; s[--j] = c < 10 ? c + '0' : c + 'a' - 10; } ch = s[0] == '-' ? 1 : 0; /* jeh */ if (ch < j) { /* jeh */ for (i = j; j < SCM_LENGTH (ss); j++) s[ch + j - i] = s[j]; /* jeh */ scm_vector_set_length_x (ss, /* jeh */ (SCM) SCM_MAKINUM (ch + SCM_LENGTH (ss) - i)); } return scm_return_first (ss, t); } #endif SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0, (SCM x, SCM radix), "") #define FUNC_NAME s_scm_number_to_string { int base; SCM_VALIDATE_INUM_MIN_DEF_COPY (2,radix,2,10,base); #ifdef SCM_FLOATS if (SCM_NINUMP (x)) { char num_buf[SCM_FLOBUFLEN]; #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (x), badx); if (SCM_BIGP (x)) return big2str (x, (unsigned int) base); #ifndef SCM_RECKLESS if (!SCM_INEXP (x)) { badx: SCM_WTA (1, x); } #endif #else SCM_ASSERT (SCM_INEXP (x), x, SCM_ARG1, s_number_to_string); #endif return scm_makfromstr (num_buf, iflo2str (x, num_buf), 0); } #else #ifdef SCM_BIGDIG if (SCM_NINUMP (x)) { SCM_ASSERT (SCM_BIGP (x), x, SCM_ARG1, s_number_to_string); return big2str (x, (unsigned int) base); } #else SCM_ASSERT (SCM_INUMP (x), x, SCM_ARG1, s_number_to_string); #endif #endif { char num_buf[SCM_INTBUFLEN]; return scm_makfromstr (num_buf, scm_iint2str (SCM_INUM (x), base, num_buf), 0); } } #undef FUNC_NAME /* These print routines are stubbed here so that scm_repl.c doesn't need SCM_FLOATS or SCM_BIGDIGs conditionals */ int scm_floprint (SCM sexp, SCM port, scm_print_state *pstate) { #ifdef SCM_FLOATS char num_buf[SCM_FLOBUFLEN]; scm_lfwrite (num_buf, iflo2str (sexp, num_buf), port); #else scm_ipruk ("float", sexp, port); #endif return !0; } int scm_bigprint (SCM exp, SCM port, scm_print_state *pstate) { #ifdef SCM_BIGDIG exp = big2str (exp, (unsigned int) 10); scm_lfwrite (SCM_CHARS (exp), (scm_sizet) SCM_LENGTH (exp), port); #else scm_ipruk ("bignum", exp, port); #endif return !0; } /*** END nums->strs ***/ /*** STRINGS -> NUMBERS ***/ static SCM scm_small_istr2int (char *str, long len, long radix) { register long n = 0, ln; register int c; register int i = 0; int lead_neg = 0; if (0 >= len) return SCM_BOOL_F; /* zero scm_length */ switch (*str) { /* leading sign */ case '-': lead_neg = 1; case '+': if (++i == len) return SCM_BOOL_F; /* bad if lone `+' or `-' */ } do { switch (c = str[i++]) { case DIGITS: c = c - '0'; goto accumulate; case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': c = c - 'A' + 10; goto accumulate; case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': c = c - 'a' + 10; accumulate: if (c >= radix) return SCM_BOOL_F; /* bad digit for radix */ ln = n; n = n * radix - c; /* Negation is a workaround for HP700 cc bug */ if (n > ln || (-n > -SCM_MOST_NEGATIVE_FIXNUM)) goto ovfl; break; default: return SCM_BOOL_F; /* not a digit */ } } while (i < len); if (!lead_neg) if ((n = -n) > SCM_MOST_POSITIVE_FIXNUM) goto ovfl; return SCM_MAKINUM (n); ovfl: /* overflow scheme integer */ return SCM_BOOL_F; } SCM scm_istr2int (char *str, long len, long radix) { scm_sizet j; register scm_sizet k, blen = 1; scm_sizet i = 0; int c; SCM res; register SCM_BIGDIG *ds; register unsigned long t2; if (0 >= len) return SCM_BOOL_F; /* zero scm_length */ /* Short numbers we parse directly into an int, to avoid the overhead of creating a bignum. */ if (len < 6) return scm_small_istr2int (str, len, radix); if (16 == radix) j = 1 + (4 * len * sizeof (char)) / (SCM_BITSPERDIG); else if (10 <= radix) j = 1 + (84 * len * sizeof (char)) / (SCM_BITSPERDIG * 25); else j = 1 + (len * sizeof (char)) / (SCM_BITSPERDIG); switch (str[0]) { /* leading sign */ case '-': case '+': if (++i == (unsigned) len) return SCM_BOOL_F; /* bad if lone `+' or `-' */ } res = scm_mkbig (j, '-' == str[0]); ds = SCM_BDIGITS (res); for (k = j; k--;) ds[k] = 0; do { switch (c = str[i++]) { case DIGITS: c = c - '0'; goto accumulate; case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': c = c - 'A' + 10; goto accumulate; case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': c = c - 'a' + 10; accumulate: if (c >= radix) return SCM_BOOL_F; /* bad digit for radix */ k = 0; t2 = c; moretodo: while (k < blen) { /* printf ("k = %d, blen = %d, t2 = %ld, ds[k] = %d\n", k, blen, t2, ds[k]); */ t2 += ds[k] * radix; ds[k++] = SCM_BIGLO (t2); t2 = SCM_BIGDN (t2); } if (blen > j) scm_num_overflow ("bignum"); if (t2) { blen++; goto moretodo; } break; default: return SCM_BOOL_F; /* not a digit */ } } while (i < (unsigned) len); if (blen * SCM_BITSPERDIG / SCM_CHAR_BIT <= sizeof (SCM)) if (SCM_INUMP (res = scm_big2inum (res, blen))) return res; if (j == blen) return res; return scm_adjbig (res, blen); } #ifdef SCM_FLOATS SCM scm_istr2flo (char *str, long len, long radix) { register int c, i = 0; double lead_sgn; double res = 0.0, tmp = 0.0; int flg = 0; int point = 0; SCM second; if (i >= len) return SCM_BOOL_F; /* zero scm_length */ switch (*str) { /* leading sign */ case '-': lead_sgn = -1.0; i++; break; case '+': lead_sgn = 1.0; i++; break; default: lead_sgn = 0.0; } if (i == len) return SCM_BOOL_F; /* bad if lone `+' or `-' */ if (str[i] == 'i' || str[i] == 'I') { /* handle `+i' and `-i' */ if (lead_sgn == 0.0) return SCM_BOOL_F; /* must have leading sign */ if (++i < len) return SCM_BOOL_F; /* `i' not last character */ return scm_makdbl (0.0, lead_sgn); } do { /* check initial digits */ switch (c = str[i]) { case DIGITS: c = c - '0'; goto accum1; case 'D': case 'E': case 'F': if (radix == 10) goto out1; /* must be exponent */ case 'A': case 'B': case 'C': c = c - 'A' + 10; goto accum1; case 'd': case 'e': case 'f': if (radix == 10) goto out1; case 'a': case 'b': case 'c': c = c - 'a' + 10; accum1: if (c >= radix) return SCM_BOOL_F; /* bad digit for radix */ res = res * radix + c; flg = 1; /* res is valid */ break; default: goto out1; } } while (++i < len); out1: /* if true, then we did see a digit above, and res is valid */ if (i == len) goto done; /* By here, must have seen a digit, or must have next char be a `.' with radix==10 */ if (!flg) if (!(str[i] == '.' && radix == 10)) return SCM_BOOL_F; while (str[i] == '#') { /* optional sharps */ res *= radix; if (++i == len) goto done; } if (str[i] == '/') { while (++i < len) { switch (c = str[i]) { case DIGITS: c = c - '0'; goto accum2; case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': c = c - 'A' + 10; goto accum2; case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': c = c - 'a' + 10; accum2: if (c >= radix) return SCM_BOOL_F; tmp = tmp * radix + c; break; default: goto out2; } } out2: if (tmp == 0.0) return SCM_BOOL_F; /* `slash zero' not allowed */ if (i < len) while (str[i] == '#') { /* optional sharps */ tmp *= radix; if (++i == len) break; } res /= tmp; goto done; } if (str[i] == '.') { /* decimal point notation */ if (radix != 10) return SCM_BOOL_F; /* must be radix 10 */ while (++i < len) { switch (c = str[i]) { case DIGITS: point--; res = res * 10.0 + c - '0'; flg = 1; break; default: goto out3; } } out3: if (!flg) return SCM_BOOL_F; /* no digits before or after decimal point */ if (i == len) goto adjust; while (str[i] == '#') { /* ignore remaining sharps */ if (++i == len) goto adjust; } } switch (str[i]) { /* exponent */ case 'd': case 'D': case 'e': case 'E': case 'f': case 'F': case 'l': case 'L': case 's': case 'S': { int expsgn = 1, expon = 0; if (radix != 10) return SCM_BOOL_F; /* only in radix 10 */ if (++i == len) return SCM_BOOL_F; /* bad exponent */ switch (str[i]) { case '-': expsgn = (-1); case '+': if (++i == len) return SCM_BOOL_F; /* bad exponent */ } if (str[i] < '0' || str[i] > '9') return SCM_BOOL_F; /* bad exponent */ do { switch (c = str[i]) { case DIGITS: expon = expon * 10 + c - '0'; if (expon > MAXEXP) return SCM_BOOL_F; /* exponent too large */ break; default: goto out4; } } while (++i < len); out4: point += expsgn * expon; } } adjust: if (point >= 0) while (point--) res *= 10.0; else #ifdef _UNICOS while (point++) res *= 0.1; #else while (point++) res /= 10.0; #endif done: /* at this point, we have a legitimate floating point result */ if (lead_sgn == -1.0) res = -res; if (i == len) return scm_makdbl (res, 0.0); if (str[i] == 'i' || str[i] == 'I') { /* pure imaginary number */ if (lead_sgn == 0.0) return SCM_BOOL_F; /* must have leading sign */ if (++i < len) return SCM_BOOL_F; /* `i' not last character */ return scm_makdbl (0.0, res); } switch (str[i++]) { case '-': lead_sgn = -1.0; break; case '+': lead_sgn = 1.0; break; case '@': { /* polar input for complex number */ /* get a `real' for scm_angle */ second = scm_istr2flo (&str[i], (long) (len - i), radix); if (!SCM_INEXP (second)) return SCM_BOOL_F; /* not `real' */ if (SCM_CPLXP (second)) return SCM_BOOL_F; /* not `real' */ tmp = SCM_REALPART (second); return scm_makdbl (res * cos (tmp), res * sin (tmp)); } default: return SCM_BOOL_F; } /* at this point, last char must be `i' */ if (str[len - 1] != 'i' && str[len - 1] != 'I') return SCM_BOOL_F; /* handles `x+i' and `x-i' */ if (i == (len - 1)) return scm_makdbl (res, lead_sgn); /* get a `ureal' for complex part */ second = scm_istr2flo (&str[i], (long) ((len - i) - 1), radix); if (!SCM_INEXP (second)) return SCM_BOOL_F; /* not `ureal' */ if (SCM_CPLXP (second)) return SCM_BOOL_F; /* not `ureal' */ tmp = SCM_REALPART (second); if (tmp < 0.0) return SCM_BOOL_F; /* not `ureal' */ return scm_makdbl (res, (lead_sgn * tmp)); } #endif /* SCM_FLOATS */ SCM scm_istring2number (char *str, long len, long radix) { int i = 0; char ex = 0; char ex_p = 0, rx_p = 0; /* Only allow 1 exactness and 1 radix prefix */ SCM res; if (len == 1) if (*str == '+' || *str == '-') /* Catches lone `+' and `-' for speed */ return SCM_BOOL_F; while ((len - i) >= 2 && str[i] == '#' && ++i) switch (str[i++]) { case 'b': case 'B': if (rx_p++) return SCM_BOOL_F; radix = 2; break; case 'o': case 'O': if (rx_p++) return SCM_BOOL_F; radix = 8; break; case 'd': case 'D': if (rx_p++) return SCM_BOOL_F; radix = 10; break; case 'x': case 'X': if (rx_p++) return SCM_BOOL_F; radix = 16; break; case 'i': case 'I': if (ex_p++) return SCM_BOOL_F; ex = 2; break; case 'e': case 'E': if (ex_p++) return SCM_BOOL_F; ex = 1; break; default: return SCM_BOOL_F; } switch (ex) { case 1: return scm_istr2int (&str[i], len - i, radix); case 0: res = scm_istr2int (&str[i], len - i, radix); if (SCM_NFALSEP (res)) return res; #ifdef SCM_FLOATS case 2: return scm_istr2flo (&str[i], len - i, radix); #endif } return SCM_BOOL_F; } SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0, (SCM str, SCM radix), "") #define FUNC_NAME s_scm_string_to_number { SCM answer; int base; SCM_VALIDATE_ROSTRING (1,str); SCM_VALIDATE_INUM_MIN_DEF_COPY (2,radix,2,10,base); answer = scm_istring2number (SCM_ROCHARS (str), SCM_ROLENGTH (str), base); return scm_return_first (answer, str); } #undef FUNC_NAME /*** END strs->nums ***/ #ifdef SCM_FLOATS SCM scm_makdbl (double x, double y) { SCM z; if ((y == 0.0) && (x == 0.0)) return scm_flo0; SCM_DEFER_INTS; if (y == 0.0) { #ifdef SCM_SINGLES float fx = x; #ifndef SCM_SINGLESONLY if ((-FLTMAX < x) && (x < FLTMAX) && (fx == x)) #endif { SCM_NEWSMOB(z,scm_tc_flo,NULL); SCM_FLO (z) = x; SCM_ALLOW_INTS; return z; } #endif /* def SCM_SINGLES */ SCM_NEWSMOB(z,scm_tc_dblr,scm_must_malloc (1L * sizeof (double), "real")); } else { SCM_NEWSMOB(z,scm_tc_dblc,scm_must_malloc (2L * sizeof (double), "comkplex")); SCM_IMAG (z) = y; } SCM_REAL (z) = x; SCM_ALLOW_INTS; return z; } #endif SCM scm_bigequal (SCM x, SCM y) { #ifdef SCM_BIGDIG if (0 == scm_bigcomp (x, y)) return SCM_BOOL_T; #endif return SCM_BOOL_F; } SCM scm_floequal (SCM x, SCM y) { #ifdef SCM_FLOATS if (SCM_REALPART (x) != SCM_REALPART (y)) return SCM_BOOL_F; if (!(SCM_CPLXP (x) && (SCM_IMAG (x) != SCM_IMAG (y)))) return SCM_BOOL_T; #endif return SCM_BOOL_F; } SCM_REGISTER_PROC (s_number_p, "number?", 1, 0, 0, scm_number_p); SCM_DEFINE (scm_number_p, "complex?", 1, 0, 0, (SCM x), "") #define FUNC_NAME s_scm_number_p { if (SCM_INUMP (x)) return SCM_BOOL_T; #ifdef SCM_FLOATS if (SCM_NUMP (x)) return SCM_BOOL_T; #else #ifdef SCM_BIGDIG if (SCM_NUMP (x)) return SCM_BOOL_T; #endif #endif return SCM_BOOL_F; } #undef FUNC_NAME #ifdef SCM_FLOATS SCM_REGISTER_PROC (s_real_p, "real?", 1, 0, 0, scm_real_p); SCM_DEFINE (scm_real_p, "rational?", 1, 0, 0, (SCM x), "") #define FUNC_NAME s_scm_real_p { if (SCM_INUMP (x)) return SCM_BOOL_T; if (SCM_IMP (x)) return SCM_BOOL_F; if (SCM_REALP (x)) return SCM_BOOL_T; #ifdef SCM_BIGDIG if (SCM_BIGP (x)) return SCM_BOOL_T; #endif return SCM_BOOL_F; } #undef FUNC_NAME SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0, (SCM x), "") #define FUNC_NAME s_scm_integer_p { double r; if (SCM_INUMP (x)) return SCM_BOOL_T; if (SCM_IMP (x)) return SCM_BOOL_F; #ifdef SCM_BIGDIG if (SCM_BIGP (x)) return SCM_BOOL_T; #endif if (!SCM_INEXP (x)) return SCM_BOOL_F; if (SCM_CPLXP (x)) return SCM_BOOL_F; r = SCM_REALPART (x); if (r == floor (r)) return SCM_BOOL_T; return SCM_BOOL_F; } #undef FUNC_NAME #endif /* SCM_FLOATS */ SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0, (SCM x), "") #define FUNC_NAME s_scm_inexact_p { #ifdef SCM_FLOATS if (SCM_INEXP (x)) return SCM_BOOL_T; #endif return SCM_BOOL_F; } #undef FUNC_NAME SCM_GPROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p, g_eq_p); SCM scm_num_eq_p (SCM x, SCM y) { #ifdef SCM_FLOATS SCM t; if (SCM_NINUMP (x)) { #ifdef SCM_BIGDIG if (!SCM_NIMP (x)) { badx: SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARG1, s_eq_p); } if (SCM_BIGP (x)) { if (SCM_INUMP (y)) return SCM_BOOL_F; SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (y)) return SCM_BOOL(0 == scm_bigcomp (x, y)); SCM_ASRTGO (SCM_INEXP (y), bady); bigreal: return ((SCM_REALP (y) && (scm_big2dbl (x) == SCM_REALPART (y))) ? SCM_BOOL_T : SCM_BOOL_F); } SCM_ASRTGO (SCM_INEXP (x), badx); #else SCM_GASSERT2 (SCM_INEXP (x), g_eq_p, x, y, SCM_ARG1, s_eq_p); #endif if (SCM_INUMP (y)) { t = x; x = y; y = t; goto realint; } #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (y)) { t = x; x = y; y = t; goto bigreal; } SCM_ASRTGO (SCM_INEXP (y), bady); #else SCM_ASRTGO (SCM_INEXP (y), bady); #endif if (SCM_REALPART (x) != SCM_REALPART (y)) return SCM_BOOL_F; if (SCM_CPLXP (x)) return ((SCM_CPLXP (y) && (SCM_IMAG (x) == SCM_IMAG (y))) ? SCM_BOOL_T : SCM_BOOL_F); return SCM_NEGATE_BOOL(SCM_CPLXP (y)); } if (SCM_NINUMP (y)) { #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (y)) return SCM_BOOL_F; if (!SCM_INEXP (y)) { bady: SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p); } #else if (!SCM_INEXP (y)) { bady: SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p); } #endif realint: return ((SCM_REALP (y) && (((double) SCM_INUM (x)) == SCM_REALPART (y))) ? SCM_BOOL_T : SCM_BOOL_F); } #else #ifdef SCM_BIGDIG if (SCM_NINUMP (x)) { SCM_GASSERT2 (SCM_BIGP (x), g_eq_p, x, y, SCM_ARG1, s_eq_p); if (SCM_INUMP (y)) return SCM_BOOL_F; SCM_ASRTGO (SCM_BIGP (y), bady); return SCM_BOOL(0 == scm_bigcomp (x, y)); } if (SCM_NINUMP (y)) { if (!SCM_BIGP (y)) { bady: SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p); } return SCM_BOOL_F; } #else SCM_GASSERT2 (SCM_INUMP (x), g_eq_p, x, y, SCM_ARG1, s_eq_p); SCM_GASSERT2 (SCM_INUMP (y), g_eq_p, x, y, SCM_ARGn, s_eq_p); #endif #endif return SCM_BOOL((long) x == (long) y); } SCM_GPROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p, g_less_p); SCM scm_less_p (SCM x, SCM y) { #ifdef SCM_FLOATS if (SCM_NINUMP (x)) { #ifdef SCM_BIGDIG if (!SCM_NIMP (x)) { badx: SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARG1, s_less_p); } if (SCM_BIGP (x)) { if (SCM_INUMP (y)) return SCM_BOOL(SCM_BIGSIGN (x)); SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (y)) return SCM_BOOL(1 == scm_bigcomp (x, y)); SCM_ASRTGO (SCM_REALP (y), bady); return ((scm_big2dbl (x) < SCM_REALPART (y)) ? SCM_BOOL_T : SCM_BOOL_F); } SCM_ASRTGO (SCM_REALP (x), badx); #else SCM_GASSERT2 (SCM_REALP (x), g_less_p, x, y, SCM_ARG1, s_less_p); #endif if (SCM_INUMP (y)) return ((SCM_REALPART (x) < ((double) SCM_INUM (y))) ? SCM_BOOL_T : SCM_BOOL_F); #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (y)) return SCM_BOOL(SCM_REALPART (x) < scm_big2dbl (y)); SCM_ASRTGO (SCM_REALP (y), bady); #else SCM_ASRTGO (SCM_REALP (y), bady); #endif return SCM_BOOL(SCM_REALPART (x) < SCM_REALPART (y)); } if (SCM_NINUMP (y)) { #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (y)) return SCM_NEGATE_BOOL(SCM_BIGSIGN (y)); if (!SCM_REALP (y)) { bady: SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p); } #else if (!SCM_REALP (y)) { bady: SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p); } #endif return ((((double) SCM_INUM (x)) < SCM_REALPART (y)) ? SCM_BOOL_T : SCM_BOOL_F); } #else #ifdef SCM_BIGDIG if (SCM_NINUMP (x)) { SCM_GASSERT2 (SCM_BIGP (x), g_less_p, x, y, SCM_ARG1, s_less_p); if (SCM_INUMP (y)) return SCM_BOOL(SCM_BIGSIGN (x)); SCM_ASRTGO (SCM_BIGP (y), bady); return SCM_BOOL(1 == scm_bigcomp (x, y)); } if (SCM_NINUMP (y)) { if (!SCM_BIGP (y)) { bady: SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p); } return SCM_NEGATE_BOOL(SCM_BIGSIGN (y)); } #else SCM_GASSERT2 (SCM_INUMP (x), g_less_p, x, y, SCM_ARG1, s_less_p); SCM_GASSERT2 (SCM_INUMP (y), g_less_p, x, y, SCM_ARGn, s_less_p); #endif #endif return SCM_BOOL((long) x < (long) y); } SCM_DEFINE1 (scm_gr_p, ">", scm_tc7_rpsubr, (SCM x, SCM y), "") #define FUNC_NAME s_scm_gr_p { return scm_less_p (y, x); } #undef FUNC_NAME SCM_DEFINE1 (scm_leq_p, "<=", scm_tc7_rpsubr, (SCM x, SCM y), "") #define FUNC_NAME s_scm_leq_p { return SCM_BOOL_NOT (scm_less_p (y, x)); } #undef FUNC_NAME SCM_DEFINE1 (scm_geq_p, ">=", scm_tc7_rpsubr, (SCM x, SCM y), "") #define FUNC_NAME s_scm_geq_p { return SCM_BOOL_NOT (scm_less_p (x, y)); } #undef FUNC_NAME SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p); SCM scm_zero_p (SCM z) { #ifdef SCM_FLOATS if (SCM_NINUMP (z)) { #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (z), badz); if (SCM_BIGP (z)) return SCM_BOOL_F; if (!SCM_INEXP (z)) { badz: SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p); } #else SCM_GASSERT1 (SCM_INEXP (z), g_zero_p, z, SCM_ARG1, s_zero_p); #endif return SCM_BOOL(z == scm_flo0); } #else #ifdef SCM_BIGDIG if (SCM_NINUMP (z)) { SCM_GASSERT1 (SCM_BIGP (z), g_zero_p, z, SCM_ARG1, s_zero_p); return SCM_BOOL_F; } #else SCM_GASSERT1 (SCM_INUMP (z), g_zero_p, z, SCM_ARG1, s_zero_p); #endif #endif return SCM_BOOL(z == SCM_INUM0); } SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p); SCM scm_positive_p (SCM x) { #ifdef SCM_FLOATS if (SCM_NINUMP (x)) { #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (x), badx); if (SCM_BIGP (x)) return SCM_BOOL(SCM_TYP16 (x) == scm_tc16_bigpos); if (!SCM_REALP (x)) { badx: SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p); } #else SCM_GASSERT1 (SCM_REALP (x), g_positive_p, x, SCM_ARG1, s_positive_p); #endif return SCM_BOOL(SCM_REALPART (x) > 0.0); } #else #ifdef SCM_BIGDIG if (SCM_NINUMP (x)) { SCM_GASSERT1 (SCM_BIGP (x), g_positive_p, x, SCM_ARG1, s_positive_p); return SCM_BOOL(SCM_TYP16 (x) == scm_tc16_bigpos); } #else SCM_GASSERT1 (SCM_INUMP (x), g_positive_p, x, SCM_ARG1, s_positive_p); #endif #endif return SCM_BOOL(x > SCM_INUM0); } SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p); SCM scm_negative_p (SCM x) { #ifdef SCM_FLOATS if (SCM_NINUMP (x)) { #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (x), badx); if (SCM_BIGP (x)) return SCM_NEGATE_BOOL(SCM_TYP16 (x) == scm_tc16_bigpos); if (!(SCM_REALP (x))) { badx: SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p); } #else SCM_GASSERT1 (SCM_REALP (x), g_negative_p, x, SCM_ARG1, s_negative_p); #endif return SCM_BOOL(SCM_REALPART (x) < 0.0); } #else #ifdef SCM_BIGDIG if (SCM_NINUMP (x)) { SCM_GASSERT1 (SCM_BIGP (x), g_negative_p, x, SCM_ARG1, s_negative_p); return SCM_BOOL(SCM_TYP16 (x) == scm_tc16_bigneg); } #else SCM_GASSERT1 (SCM_INUMP (x), g_negative_p, x, SCM_ARG1, s_negative_p); #endif #endif return SCM_BOOL(x < SCM_INUM0); } SCM_GPROC1 (s_max, "max", scm_tc7_asubr, scm_max, g_max); SCM scm_max (SCM x, SCM y) { #ifdef SCM_FLOATS double z; #endif if (SCM_UNBNDP (y)) { SCM_GASSERT0 (!SCM_UNBNDP (x), g_max, scm_makfrom0str (s_max), SCM_WNA, 0); SCM_GASSERT1 (SCM_NUMBERP (x), g_max, x, SCM_ARG1, s_max); return x; } #ifdef SCM_FLOATS if (SCM_NINUMP (x)) { #ifdef SCM_BIGDIG if (!SCM_NIMP (x)) { badx2: SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max); } if (SCM_BIGP (x)) { if (SCM_INUMP (y)) return SCM_BIGSIGN (x) ? y : x; SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (y)) return (1 == scm_bigcomp (x, y)) ? y : x; SCM_ASRTGO (SCM_REALP (y), bady); z = scm_big2dbl (x); return (z < SCM_REALPART (y)) ? y : scm_makdbl (z, 0.0); } SCM_ASRTGO (SCM_REALP (x), badx2); #else SCM_GASSERT2 (SCM_REALP (x), g_max, x, y, SCM_ARG1, s_max); #endif if (SCM_INUMP (y)) return ((SCM_REALPART (x) < (z = SCM_INUM (y))) ? scm_makdbl (z, 0.0) : x); #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (y)) return ((SCM_REALPART (x) < (z = scm_big2dbl (y))) ? scm_makdbl (z, 0.0) : x); SCM_ASRTGO (SCM_REALP (y), bady); #else SCM_ASRTGO (SCM_REALP (y), bady); #endif return (SCM_REALPART (x) < SCM_REALPART (y)) ? y : x; } if (SCM_NINUMP (y)) { #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (y)) return SCM_BIGSIGN (y) ? x : y; if (!(SCM_REALP (y))) { bady: SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max); } #else if (!SCM_REALP (y)) { bady: SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max); } #endif return (((z = SCM_INUM (x)) < SCM_REALPART (y)) ? y : scm_makdbl (z, 0.0)); } #else #ifdef SCM_BIGDIG if (SCM_NINUMP (x)) { SCM_GASSERT2 (SCM_BIGP (x), g_max, x, y, SCM_ARG1, s_max); if (SCM_INUMP (y)) return SCM_BIGSIGN (x) ? y : x; SCM_ASRTGO (SCM_BIGP (y), bady); return (1 == scm_bigcomp (x, y)) ? y : x; } if (SCM_NINUMP (y)) { if (!SCM_BIGP (y)) { bady: SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max); } return SCM_BIGSIGN (y) ? x : y; } #else SCM_GASSERT2 (SCM_INUMP (x), g_max, x, y, SCM_ARG1, s_max); SCM_GASSERT2 (SCM_INUMP (y), g_max, x, y, SCM_ARGn, s_max); #endif #endif return ((long) x < (long) y) ? y : x; } SCM_GPROC1 (s_min, "min", scm_tc7_asubr, scm_min, g_min); SCM scm_min (SCM x, SCM y) { #ifdef SCM_FLOATS double z; #endif if (SCM_UNBNDP (y)) { SCM_GASSERT0 (!SCM_UNBNDP (x), g_min, scm_makfrom0str (s_min), SCM_WNA, 0); SCM_GASSERT1 (SCM_NUMBERP (x), g_min, x, SCM_ARG1, s_min); return x; } #ifdef SCM_FLOATS if (SCM_NINUMP (x)) { #ifdef SCM_BIGDIG if (!SCM_NIMP (x)) { badx2: SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min); } if (SCM_BIGP (x)) { if (SCM_INUMP (y)) return SCM_BIGSIGN (x) ? x : y; SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (y)) return (-1 == scm_bigcomp (x, y)) ? y : x; SCM_ASRTGO (SCM_REALP (y), bady); z = scm_big2dbl (x); return (z > SCM_REALPART (y)) ? y : scm_makdbl (z, 0.0); } SCM_ASRTGO (SCM_REALP (x), badx2); #else SCM_GASSERT2 (SCM_REALP (x), g_min, x, y, SCM_ARG1, s_min); #endif if (SCM_INUMP (y)) return ((SCM_REALPART (x) > (z = SCM_INUM (y))) ? scm_makdbl (z, 0.0) : x); #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (y)) return ((SCM_REALPART (x) > (z = scm_big2dbl (y))) ? scm_makdbl (z, 0.0) : x); SCM_ASRTGO (SCM_REALP (y), bady); #else SCM_ASRTGO (SCM_REALP (y), bady); #endif return (SCM_REALPART (x) > SCM_REALPART (y)) ? y : x; } if (SCM_NINUMP (y)) { #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (y)) return SCM_BIGSIGN (y) ? y : x; if (!(SCM_REALP (y))) { bady: SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min); } #else if (!SCM_REALP (y)) { bady: SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min); } #endif return (((z = SCM_INUM (x)) > SCM_REALPART (y)) ? y : scm_makdbl (z, 0.0)); } #else #ifdef SCM_BIGDIG if (SCM_NINUMP (x)) { SCM_GASSERT2 (SCM_BIGP (x), g_min, x, y, SCM_ARG1, s_min); if (SCM_INUMP (y)) return SCM_BIGSIGN (x) ? x : y; SCM_ASRTGO (SCM_BIGP (y), bady); return (-1 == scm_bigcomp (x, y)) ? y : x; } if (SCM_NINUMP (y)) { if (!SCM_BIGP (y)) { bady: SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min); } return SCM_BIGSIGN (y) ? y : x; } #else SCM_GASSERT2 (SCM_INUMP (x), g_min, x, y, SCM_ARG1, s_min); SCM_GASSERT2 (SCM_INUMP (y), g_min, x, y, SCM_ARGn, s_min); #endif #endif return ((long) x > (long) y) ? y : x; } SCM_GPROC1 (s_sum, "+", scm_tc7_asubr, scm_sum, g_sum); SCM scm_sum (SCM x, SCM y) { if (SCM_UNBNDP (y)) { if (SCM_UNBNDP (x)) return SCM_INUM0; SCM_GASSERT1 (SCM_NUMBERP (x), g_sum, x, SCM_ARG1, s_sum); return x; } #ifdef SCM_FLOATS if (SCM_NINUMP (x)) { SCM t; #ifdef SCM_BIGDIG if (!SCM_NIMP (x)) { badx2: SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum); } if (SCM_BIGP (x)) { if (SCM_INUMP (y)) { t = x; x = y; y = t; goto intbig; } SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (y)) { if (SCM_NUMDIGS (x) > SCM_NUMDIGS (y)) { t = x; x = y; y = t; } return scm_addbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), SCM_BIGSIGN (x), y, 0); } SCM_ASRTGO (SCM_INEXP (y), bady); bigreal: return scm_makdbl (scm_big2dbl (x) + SCM_REALPART (y), SCM_CPLXP (y) ? SCM_IMAG (y) : 0.0); } SCM_ASRTGO (SCM_INEXP (x), badx2); #else SCM_ASRTGO (SCM_INEXP (x), badx2); #endif if (SCM_INUMP (y)) { t = x; x = y; y = t; goto intreal; } #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (y)) { t = x; x = y; y = t; goto bigreal; } else if (!SCM_INEXP (y)) { bady: SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum); } #else if (!SCM_INEXP (y)) { bady: SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum); } #endif { double i = 0.0; if (SCM_CPLXP (x)) i = SCM_IMAG (x); if (SCM_CPLXP (y)) i += SCM_IMAG (y); return scm_makdbl (SCM_REALPART (x) + SCM_REALPART (y), i); } } if (SCM_NINUMP (y)) { #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (y)) { intbig: { #ifndef SCM_DIGSTOOBIG long z = scm_pseudolong (SCM_INUM (x)); return scm_addbig ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0); #else SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; scm_longdigs (SCM_INUM (x), zdigs); return scm_addbig (zdigs, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0); #endif } } SCM_ASRTGO (SCM_INEXP (y), bady); #else SCM_ASRTGO (SCM_INEXP (y), bady); #endif intreal: return scm_makdbl (SCM_INUM (x) + SCM_REALPART (y), SCM_CPLXP (y) ? SCM_IMAG (y) : 0.0); } #else #ifdef SCM_BIGDIG if (SCM_NINUMP (x)) { SCM t; SCM_ASRTGO (SCM_BIGP (x), badx2); if (SCM_INUMP (y)) { t = x; x = y; y = t; goto intbig; } SCM_ASRTGO (SCM_BIGP (y), bady); if (SCM_NUMDIGS (x) > SCM_NUMDIGS (y)) { t = x; x = y; y = t; } return scm_addbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), SCM_BIGSIGN (x), y, 0); } if (SCM_NINUMP (y)) { if (!SCM_BIGP (y)) { bady: SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum); } intbig: { #ifndef SCM_DIGSTOOBIG long z = scm_pseudolong (SCM_INUM (x)); return scm_addbig (&z, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0); #else SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; scm_longdigs (SCM_INUM (x), zdigs); return scm_addbig (zdigs, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0); #endif } } #else SCM_ASRTGO (SCM_INUMP (x), badx2); SCM_GASSERT2 (SCM_INUMP (y), g_sum, x, y, SCM_ARGn, s_sum); #endif #endif x = SCM_INUM (x) + SCM_INUM (y); if (SCM_FIXABLE (x)) return SCM_MAKINUM (x); #ifdef SCM_BIGDIG return scm_long2big (x); #else #ifdef SCM_FLOATS return scm_makdbl ((double) x, 0.0); #else scm_num_overflow (s_sum); return SCM_UNSPECIFIED; #endif #endif } SCM_GPROC1 (s_difference, "-", scm_tc7_asubr, scm_difference, g_difference); SCM scm_difference (SCM x, SCM y) { #ifdef SCM_FLOATS if (SCM_NINUMP (x)) { if (!(SCM_NIMP (x))) { if (SCM_UNBNDP (y)) { SCM_GASSERT0 (!SCM_UNBNDP (x), g_difference, scm_makfrom0str (s_difference), SCM_WNA, 0); badx: SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference); } else { badx2: SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference); } } if (SCM_UNBNDP (y)) { #ifdef SCM_BIGDIG if (SCM_BIGP (x)) { x = scm_copybig (x, !SCM_BIGSIGN (x)); return (SCM_NUMDIGS (x) * SCM_BITSPERDIG / SCM_CHAR_BIT <= sizeof (SCM) ? scm_big2inum (x, SCM_NUMDIGS (x)) : x); } #endif SCM_ASRTGO (SCM_INEXP (x), badx); return scm_makdbl (- SCM_REALPART (x), SCM_CPLXP (x) ? -SCM_IMAG (x) : 0.0); } if (SCM_INUMP (y)) return scm_sum (x, SCM_MAKINUM (- SCM_INUM (y))); #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (x)) { if (SCM_BIGP (y)) return ((SCM_NUMDIGS (x) < SCM_NUMDIGS (y)) ? scm_addbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), SCM_BIGSIGN (x), y, 0x0100) : scm_addbig (SCM_BDIGITS (y), SCM_NUMDIGS (y), SCM_BIGSIGN (y) ^ 0x0100, x, 0)); SCM_ASRTGO (SCM_INEXP (y), bady); return scm_makdbl (scm_big2dbl (x) - SCM_REALPART (y), SCM_CPLXP (y) ? -SCM_IMAG (y) : 0.0); } SCM_ASRTGO (SCM_INEXP (x), badx2); if (SCM_BIGP (y)) return scm_makdbl (SCM_REALPART (x) - scm_big2dbl (y), SCM_CPLXP (x) ? SCM_IMAG (x) : 0.0); SCM_ASRTGO (SCM_INEXP (y), bady); #else SCM_ASRTGO (SCM_INEXP (x), badx2); SCM_ASRTGO (SCM_INEXP (y), bady); #endif if (SCM_CPLXP (x)) { if (SCM_CPLXP (y)) return scm_makdbl (SCM_REAL (x) - SCM_REAL (y), SCM_IMAG (x) - SCM_IMAG (y)); else return scm_makdbl (SCM_REAL (x) - SCM_REALPART (y), SCM_IMAG (x)); } return scm_makdbl (SCM_REALPART (x) - SCM_REALPART (y), SCM_CPLXP (y) ? - SCM_IMAG (y) : 0.0); } if (SCM_UNBNDP (y)) { x = -SCM_INUM (x); goto checkx; } if (SCM_NINUMP (y)) { #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (y)) { #ifndef SCM_DIGSTOOBIG long z = scm_pseudolong (SCM_INUM (x)); return scm_addbig ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0x0100); #else SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; scm_longdigs (SCM_INUM (x), zdigs); return scm_addbig (zdigs, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0x0100); #endif } if (!SCM_INEXP (y)) { bady: SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference); } #else if (!SCM_INEXP (y)) { bady: SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference); } #endif return scm_makdbl (SCM_INUM (x) - SCM_REALPART (y), SCM_CPLXP (y) ? -SCM_IMAG (y) : 0.0); } #else #ifdef SCM_BIGDIG if (SCM_NINUMP (x)) { SCM_GASSERT2 (SCM_BIGP (x), g_difference, x, y, SCM_ARG1, s_difference); if (SCM_UNBNDP (y)) { x = scm_copybig (x, !SCM_BIGSIGN (x)); return (SCM_NUMDIGS (x) * SCM_BITSPERDIG / SCM_CHAR_BIT <= sizeof (SCM) ? scm_big2inum (x, SCM_NUMDIGS (x)) : x); } if (SCM_INUMP (y)) { #ifndef SCM_DIGSTOOBIG long z = scm_pseudolong (SCM_INUM (y)); return scm_addbig (&z, SCM_DIGSPERLONG, (y < 0) ? 0 : 0x0100, x, 0); #else SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; scm_longdigs (SCM_INUM (x), zdigs); return scm_addbig (zdigs, SCM_DIGSPERLONG, (y < 0) ? 0 : 0x0100, x, 0); #endif } SCM_ASRTGO (SCM_BIGP (y), bady); return (SCM_NUMDIGS (x) < SCM_NUMDIGS (y)) ? scm_addbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), SCM_BIGSIGN (x), y, 0x0100) : scm_addbig (SCM_BDIGITS (y), SCM_NUMDIGS (y), SCM_BIGSIGN (y) ^ 0x0100, x, 0); } if (SCM_UNBNDP (y)) { x = -SCM_INUM (x); goto checkx; } if (SCM_NINUMP (y)) { if (!SCM_BIGP (y)) { bady: SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference); } { #ifndef SCM_DIGSTOOBIG long z = scm_pseudolong (SCM_INUM (x)); return scm_addbig (&z, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0x0100); #else SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; scm_longdigs (SCM_INUM (x), zdigs); return scm_addbig (zdigs, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0x0100); #endif } } #else SCM_GASSERT2 (SCM_INUMP (x), g_difference, x, y, SCM_ARG1, s_difference); if (SCM_UNBNDP (y)) { x = -SCM_INUM (x); goto checkx; } SCM_GASSERT2 (SCM_INUMP (y), g_difference, x, y, SCM_ARGn, s_difference); #endif #endif x = SCM_INUM (x) - SCM_INUM (y); checkx: if (SCM_FIXABLE (x)) return SCM_MAKINUM (x); #ifdef SCM_BIGDIG return scm_long2big (x); #else #ifdef SCM_FLOATS return scm_makdbl ((double) x, 0.0); #else scm_num_overflow (s_difference); return SCM_UNSPECIFIED; #endif #endif } SCM_GPROC1 (s_product, "*", scm_tc7_asubr, scm_product, g_product); SCM scm_product (SCM x, SCM y) { if (SCM_UNBNDP (y)) { if (SCM_UNBNDP (x)) return SCM_MAKINUM (1L); SCM_GASSERT1 (SCM_NUMBERP (x), g_product, x, SCM_ARG1, s_product); return x; } #ifdef SCM_FLOATS if (SCM_NINUMP (x)) { SCM t; #ifdef SCM_BIGDIG if (!SCM_NIMP (x)) { badx2: SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product); } if (SCM_BIGP (x)) { if (SCM_INUMP (y)) { t = x; x = y; y = t; goto intbig; } SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (y)) return scm_mulbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), SCM_BDIGITS (y), SCM_NUMDIGS (y), SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y)); SCM_ASRTGO (SCM_INEXP (y), bady); bigreal: { double bg = scm_big2dbl (x); return scm_makdbl (bg * SCM_REALPART (y), SCM_CPLXP (y) ? bg * SCM_IMAG (y) : 0.0); } } SCM_ASRTGO (SCM_INEXP (x), badx2); #else SCM_ASRTGO (SCM_INEXP (x), badx2); #endif if (SCM_INUMP (y)) { t = x; x = y; y = t; goto intreal; } #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (y)) { t = x; x = y; y = t; goto bigreal; } else if (!(SCM_INEXP (y))) { bady: SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product); } #else if (!SCM_INEXP (y)) { bady: SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product); } #endif if (SCM_CPLXP (x)) { if (SCM_CPLXP (y)) return scm_makdbl (SCM_REAL (x) * SCM_REAL (y) - SCM_IMAG (x) * SCM_IMAG (y), SCM_REAL (x) * SCM_IMAG (y) + SCM_IMAG (x) * SCM_REAL (y)); else return scm_makdbl (SCM_REAL (x) * SCM_REALPART (y), SCM_IMAG (x) * SCM_REALPART (y)); } return scm_makdbl (SCM_REALPART (x) * SCM_REALPART (y), SCM_CPLXP (y) ? SCM_REALPART (x) * SCM_IMAG (y) : 0.0); } if (SCM_NINUMP (y)) { #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (y)) { intbig: if (SCM_INUM0 == x) return x; if (SCM_MAKINUM (1L) == x) return y; { #ifndef SCM_DIGSTOOBIG long z = scm_pseudolong (SCM_INUM (x)); return scm_mulbig ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG, SCM_BDIGITS (y), SCM_NUMDIGS (y), SCM_BIGSIGN (y) ? (x > 0) : (x < 0)); #else SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; scm_longdigs (SCM_INUM (x), zdigs); return scm_mulbig (zdigs, SCM_DIGSPERLONG, SCM_BDIGITS (y), SCM_NUMDIGS (y), SCM_BIGSIGN (y) ? (x > 0) : (x < 0)); #endif } } SCM_ASRTGO (SCM_INEXP (y), bady); #else SCM_ASRTGO (SCM_INEXP (y), bady); #endif intreal: return scm_makdbl (SCM_INUM (x) * SCM_REALPART (y), SCM_CPLXP (y) ? SCM_INUM (x) * SCM_IMAG (y) : 0.0); } #else #ifdef SCM_BIGDIG if (SCM_NINUMP (x)) { SCM_ASRTGO (SCM_BIGP (x), badx2); if (SCM_INUMP (y)) { SCM t = x; x = y; y = t; goto intbig; } SCM_ASRTGO (SCM_BIGP (y), bady); return scm_mulbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), SCM_BDIGITS (y), SCM_NUMDIGS (y), SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y)); } if (SCM_NINUMP (y)) { if (!SCM_BIGP (y)) { bady: SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product); } intbig: if (SCM_INUM0 == x) return x; if (SCM_MAKINUM (1L) == x) return y; { #ifndef SCM_DIGSTOOBIG long z = scm_pseudolong (SCM_INUM (x)); return scm_mulbig (&z, SCM_DIGSPERLONG, SCM_BDIGITS (y), SCM_NUMDIGS (y), SCM_BIGSIGN (y) ? (x > 0) : (x < 0)); #else SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; scm_longdigs (SCM_INUM (x), zdigs); return scm_mulbig (zdigs, SCM_DIGSPERLONG, SCM_BDIGITS (y), SCM_NUMDIGS (y), SCM_BIGSIGN (y) ? (x > 0) : (x < 0)); #endif } } #else SCM_ASRTGO (SCM_INUMP (x), badx2); SCM_GASSERT (SCM_INUMP (y), g_product, x, y, SCM_ARGn, s_product); #endif #endif { long i, j, k; i = SCM_INUM (x); if (0 == i) return x; j = SCM_INUM (y); k = i * j; y = SCM_MAKINUM (k); if (k != SCM_INUM (y) || k / i != j) #ifdef SCM_BIGDIG { int sgn = (i < 0) ^ (j < 0); #ifndef SCM_DIGSTOOBIG i = scm_pseudolong (i); j = scm_pseudolong (j); return scm_mulbig ((SCM_BIGDIG *) & i, SCM_DIGSPERLONG, (SCM_BIGDIG *) & j, SCM_DIGSPERLONG, sgn); #else /* SCM_DIGSTOOBIG */ SCM_BIGDIG idigs[SCM_DIGSPERLONG]; SCM_BIGDIG jdigs[SCM_DIGSPERLONG]; scm_longdigs (i, idigs); scm_longdigs (j, jdigs); return scm_mulbig (idigs, SCM_DIGSPERLONG, jdigs, SCM_DIGSPERLONG, sgn); #endif } #else #ifdef SCM_FLOATS return scm_makdbl (((double) i) * ((double) j), 0.0); #else scm_num_overflow (s_product); #endif #endif return y; } } double scm_num2dbl (SCM a, const char *why) { if (SCM_INUMP (a)) return (double) SCM_INUM (a); #ifdef SCM_FLOATS SCM_ASSERT (SCM_NIMP (a), a, "wrong type argument", why); if (SCM_REALP (a)) return (SCM_REALPART (a)); #endif #ifdef SCM_BIGDIG return scm_big2dbl (a); #endif SCM_ASSERT (0, a, "wrong type argument", why); return SCM_UNSPECIFIED; } SCM_GPROC1 (s_divide, "/", scm_tc7_asubr, scm_divide, g_divide); SCM scm_divide (SCM x, SCM y) { #ifdef SCM_FLOATS double d, r, i, a; if (SCM_NINUMP (x)) { if (!(SCM_NIMP (x))) { if (SCM_UNBNDP (y)) { SCM_GASSERT0 (!SCM_UNBNDP (x), g_divide, scm_makfrom0str (s_divide), SCM_WNA, 0); badx: SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide); } else { badx2: SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide); } } if (SCM_UNBNDP (y)) { #ifdef SCM_BIGDIG if (SCM_BIGP (x)) return scm_makdbl (1.0 / scm_big2dbl (x), 0.0); #endif SCM_ASRTGO (SCM_INEXP (x), badx); if (SCM_REALP (x)) return scm_makdbl (1.0 / SCM_REALPART (x), 0.0); r = SCM_REAL (x); i = SCM_IMAG (x); d = r * r + i * i; return scm_makdbl (r / d, -i / d); } #ifdef SCM_BIGDIG if (SCM_BIGP (x)) { SCM z; if (SCM_INUMP (y)) { z = SCM_INUM (y); #ifndef SCM_RECKLESS if (!z) scm_num_overflow (s_divide); #endif if (1 == z) return x; if (z < 0) z = -z; if (z < SCM_BIGRAD) { SCM w = scm_copybig (x, SCM_BIGSIGN (x) ? (y > 0) : (y < 0)); return (scm_divbigdig (SCM_BDIGITS (w), SCM_NUMDIGS (w), (SCM_BIGDIG) z) ? scm_makdbl (scm_big2dbl (x) / SCM_INUM (y), 0.0) : scm_normbig (w)); } #ifndef SCM_DIGSTOOBIG z = scm_pseudolong (z); z = scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), (SCM_BIGDIG *) & z, SCM_DIGSPERLONG, SCM_BIGSIGN (x) ? (y > 0) : (y < 0), 3); #else { SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; scm_longdigs (z, zdigs); z = scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), zdigs, SCM_DIGSPERLONG, SCM_BIGSIGN (x) ? (y > 0) : (y < 0), 3); } #endif return z ? z : scm_makdbl (scm_big2dbl (x) / SCM_INUM (y), 0.0); } SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (y)) { z = scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), SCM_BDIGITS (y), SCM_NUMDIGS (y), SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y), 3); return z ? z : scm_makdbl (scm_big2dbl (x) / scm_big2dbl (y), 0.0); } SCM_ASRTGO (SCM_INEXP (y), bady); if (SCM_REALP (y)) return scm_makdbl (scm_big2dbl (x) / SCM_REALPART (y), 0.0); a = scm_big2dbl (x); goto complex_div; } #endif SCM_ASRTGO (SCM_INEXP (x), badx2); if (SCM_INUMP (y)) { d = SCM_INUM (y); goto basic_div; } #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (y)) { d = scm_big2dbl (y); goto basic_div; } SCM_ASRTGO (SCM_INEXP (y), bady); #else SCM_ASRTGO (SCM_INEXP (y), bady); #endif if (SCM_REALP (y)) { d = SCM_REALPART (y); basic_div: return scm_makdbl (SCM_REALPART (x) / d, SCM_CPLXP (x) ? SCM_IMAG (x) / d : 0.0); } a = SCM_REALPART (x); if (SCM_REALP (x)) goto complex_div; r = SCM_REAL (y); i = SCM_IMAG (y); d = r * r + i * i; return scm_makdbl ((a * r + SCM_IMAG (x) * i) / d, (SCM_IMAG (x) * r - a * i) / d); } if (SCM_UNBNDP (y)) { if ((SCM_MAKINUM (1L) == x) || (SCM_MAKINUM (-1L) == x)) return x; return scm_makdbl (1.0 / ((double) SCM_INUM (x)), 0.0); } if (SCM_NINUMP (y)) { #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (y), bady); if (SCM_BIGP (y)) return scm_makdbl (SCM_INUM (x) / scm_big2dbl (y), 0.0); if (!(SCM_INEXP (y))) { bady: SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide); } #else if (!SCM_INEXP (y)) { bady: SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide); } #endif if (SCM_REALP (y)) return scm_makdbl (SCM_INUM (x) / SCM_REALPART (y), 0.0); a = SCM_INUM (x); complex_div: r = SCM_REAL (y); i = SCM_IMAG (y); d = r * r + i * i; return scm_makdbl ((a * r) / d, (-a * i) / d); } #else #ifdef SCM_BIGDIG if (SCM_NINUMP (x)) { SCM z; SCM_GASSERT2 (SCM_BIGP (x), g_divide, x, y, SCM_ARG1, s_divide); if (SCM_UNBNDP (y)) goto ov; if (SCM_INUMP (y)) { z = SCM_INUM (y); if (!z) goto ov; if (1 == z) return x; if (z < 0) z = -z; if (z < SCM_BIGRAD) { SCM w = scm_copybig (x, SCM_BIGSIGN (x) ? (y > 0) : (y < 0)); if (scm_divbigdig (SCM_BDIGITS (w), SCM_NUMDIGS (w), (SCM_BIGDIG) z)) goto ov; return w; } #ifndef SCM_DIGSTOOBIG z = scm_pseudolong (z); z = scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), &z, SCM_DIGSPERLONG, SCM_BIGSIGN (x) ? (y > 0) : (y < 0), 3); #else { SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; scm_longdigs (z, zdigs); z = scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), zdigs, SCM_DIGSPERLONG, SCM_BIGSIGN (x) ? (y > 0) : (y < 0), 3); } #endif } else { SCM_ASRTGO (SCM_BIGP (y), bady); z = scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), SCM_BDIGITS (y), SCM_NUMDIGS (y), SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y), 3); } if (!z) goto ov; return z; } if (SCM_UNBNDP (y)) { if ((SCM_MAKINUM (1L) == x) || (SCM_MAKINUM (-1L) == x)) return x; goto ov; } if (SCM_NINUMP (y)) { if (!SCM_BIGP (y)) { bady: SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide); } goto ov; } #else SCM_GASSERT2 (SCM_INUMP (x), g_divide, x, y, SCM_ARG1, s_divide); if (SCM_UNBNDP (y)) { if ((SCM_MAKINUM (1L) == x) || (SCM_MAKINUM (-1L) == x)) return x; goto ov; } SCM_GASSERT2 (SCM_INUMP (y), g_divide, x, y, SCM_ARGn, s_divide); #endif #endif { long z = SCM_INUM (y); if ((0 == z) || SCM_INUM (x) % z) goto ov; z = SCM_INUM (x) / z; if (SCM_FIXABLE (z)) return SCM_MAKINUM (z); #ifdef SCM_BIGDIG return scm_long2big (z); #endif #ifdef SCM_FLOATS ov: return scm_makdbl (((double) SCM_INUM (x)) / ((double) SCM_INUM (y)), 0.0); #else ov: scm_num_overflow (s_divide); return SCM_UNSPECIFIED; #endif } } #ifdef SCM_FLOATS SCM_GPROC1 (s_asinh, "$asinh", scm_tc7_cxr, (SCM (*)()) scm_asinh, g_asinh); double scm_asinh (double x) { return log (x + sqrt (x * x + 1)); } SCM_GPROC1 (s_acosh, "$acosh", scm_tc7_cxr, (SCM (*)()) scm_acosh, g_acosh); double scm_acosh (double x) { return log (x + sqrt (x * x - 1)); } SCM_GPROC1 (s_atanh, "$atanh", scm_tc7_cxr, (SCM (*)()) scm_atanh, g_atanh); double scm_atanh (double x) { return 0.5 * log ((1 + x) / (1 - x)); } SCM_GPROC1 (s_truncate, "truncate", scm_tc7_cxr, (SCM (*)()) scm_truncate, g_truncate); double scm_truncate (double x) { if (x < 0.0) return -floor (-x); return floor (x); } SCM_GPROC1 (s_round, "round", scm_tc7_cxr, (SCM (*)()) scm_round, g_round); double scm_round (double x) { double plus_half = x + 0.5; double result = floor (plus_half); /* Adjust so that the scm_round is towards even. */ return (plus_half == result && plus_half / 2 != floor (plus_half / 2)) ? result - 1 : result; } SCM_GPROC1 (s_exact_to_inexact, "exact->inexact", scm_tc7_cxr, (SCM (*)()) scm_exact_to_inexact, g_exact_to_inexact); double scm_exact_to_inexact (double z) { return z; } SCM_GPROC1 (s_i_floor, "floor", scm_tc7_cxr, (SCM (*)()) floor, g_i_floor); SCM_GPROC1 (s_i_ceil, "ceiling", scm_tc7_cxr, (SCM (*)()) ceil, g_i_ceil); SCM_GPROC1 (s_i_sqrt, "$sqrt", scm_tc7_cxr, (SCM (*)()) sqrt, g_i_sqrt); SCM_GPROC1 (s_i_abs, "$abs", scm_tc7_cxr, (SCM (*)()) fabs, g_i_abs); SCM_GPROC1 (s_i_exp, "$exp", scm_tc7_cxr, (SCM (*)()) exp, g_i_exp); SCM_GPROC1 (s_i_log, "$log", scm_tc7_cxr, (SCM (*)()) log, g_i_log); SCM_GPROC1 (s_i_sin, "$sin", scm_tc7_cxr, (SCM (*)()) sin, g_i_sin); SCM_GPROC1 (s_i_cos, "$cos", scm_tc7_cxr, (SCM (*)()) cos, g_i_cos); SCM_GPROC1 (s_i_tan, "$tan", scm_tc7_cxr, (SCM (*)()) tan, g_i_tan); SCM_GPROC1 (s_i_asin, "$asin", scm_tc7_cxr, (SCM (*)()) asin, g_i_asin); SCM_GPROC1 (s_i_acos, "$acos", scm_tc7_cxr, (SCM (*)()) acos, g_i_acos); SCM_GPROC1 (s_i_atan, "$atan", scm_tc7_cxr, (SCM (*)()) atan, g_i_atan); SCM_GPROC1 (s_i_sinh, "$sinh", scm_tc7_cxr, (SCM (*)()) sinh, g_i_sinh); SCM_GPROC1 (s_i_cosh, "$cosh", scm_tc7_cxr, (SCM (*)()) cosh, g_i_cosh); SCM_GPROC1 (s_i_tanh, "$tanh", scm_tc7_cxr, (SCM (*)()) tanh, g_i_tanh); struct dpair { double x, y; }; static void scm_two_doubles (SCM z1, SCM z2, const char *sstring, struct dpair * xy); static void scm_two_doubles (SCM z1, SCM z2, const char *sstring, struct dpair *xy) { if (SCM_INUMP (z1)) xy->x = SCM_INUM (z1); else { #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (z1), badz1); if (SCM_BIGP (z1)) xy->x = scm_big2dbl (z1); else { #ifndef SCM_RECKLESS if (!SCM_REALP (z1)) badz1:scm_wta (z1, (char *) SCM_ARG1, sstring); #endif xy->x = SCM_REALPART (z1); } #else { SCM_ASSERT (SCM_REALP (z1), z1, SCM_ARG1, sstring); xy->x = SCM_REALPART (z1); } #endif } if (SCM_INUMP (z2)) xy->y = SCM_INUM (z2); else { #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (z2), badz2); if (SCM_BIGP (z2)) xy->y = scm_big2dbl (z2); else { #ifndef SCM_RECKLESS if (!(SCM_REALP (z2))) badz2:scm_wta (z2, (char *) SCM_ARG2, sstring); #endif xy->y = SCM_REALPART (z2); } #else { SCM_ASSERT (SCM_REALP (z2), z2, SCM_ARG2, sstring); xy->y = SCM_REALPART (z2); } #endif } } SCM_DEFINE (scm_sys_expt, "$expt", 2, 0, 0, (SCM z1, SCM z2), "") #define FUNC_NAME s_scm_sys_expt { struct dpair xy; scm_two_doubles (z1, z2, FUNC_NAME, &xy); return scm_makdbl (pow (xy.x, xy.y), 0.0); } #undef FUNC_NAME SCM_DEFINE (scm_sys_atan2, "$atan2", 2, 0, 0, (SCM z1, SCM z2), "") #define FUNC_NAME s_scm_sys_atan2 { struct dpair xy; scm_two_doubles (z1, z2, FUNC_NAME, &xy); return scm_makdbl (atan2 (xy.x, xy.y), 0.0); } #undef FUNC_NAME SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0, (SCM z1, SCM z2), "") #define FUNC_NAME s_scm_make_rectangular { struct dpair xy; scm_two_doubles (z1, z2, FUNC_NAME, &xy); return scm_makdbl (xy.x, xy.y); } #undef FUNC_NAME SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0, (SCM z1, SCM z2), "") #define FUNC_NAME s_scm_make_polar { struct dpair xy; scm_two_doubles (z1, z2, FUNC_NAME, &xy); return scm_makdbl (xy.x * cos (xy.y), xy.x * sin (xy.y)); } #undef FUNC_NAME SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part); SCM scm_real_part (SCM z) { if (SCM_NINUMP (z)) { #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (z), badz); if (SCM_BIGP (z)) return z; if (!(SCM_INEXP (z))) { badz: SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part); } #else SCM_GASSERT1 (SCM_INEXP (z), g_real_part, z, SCM_ARG1, s_real_part); #endif if (SCM_CPLXP (z)) return scm_makdbl (SCM_REAL (z), 0.0); } return z; } SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part); SCM scm_imag_part (SCM z) { if (SCM_INUMP (z)) return SCM_INUM0; #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (z), badz); if (SCM_BIGP (z)) return SCM_INUM0; if (!(SCM_INEXP (z))) { badz: SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part); } #else SCM_GASSERT1 (SCM_INEXP (z), g_imag_part, z, SCM_ARG1, s_imag_part); #endif if (SCM_CPLXP (z)) return scm_makdbl (SCM_IMAG (z), 0.0); return scm_flo0; } SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude); SCM scm_magnitude (SCM z) { if (SCM_INUMP (z)) return scm_abs (z); #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (z), badz); if (SCM_BIGP (z)) return scm_abs (z); if (!(SCM_INEXP (z))) { badz: SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude); } #else SCM_GASSERT1 (SCM_INEXP (z), g_magnitude, z, SCM_ARG1, s_magnitude); #endif if (SCM_CPLXP (z)) { double i = SCM_IMAG (z), r = SCM_REAL (z); return scm_makdbl (sqrt (i * i + r * r), 0.0); } return scm_makdbl (fabs (SCM_REALPART (z)), 0.0); } SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle); SCM scm_angle (SCM z) { double x, y = 0.0; if (SCM_INUMP (z)) { x = (z >= SCM_INUM0) ? 1.0 : -1.0; goto do_angle; } #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (z), badz); if (SCM_BIGP (z)) { x = (SCM_TYP16 (z) == scm_tc16_bigpos) ? 1.0 : -1.0; goto do_angle; } if (!(SCM_INEXP (z))) { badz: SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle); } #else SCM_GASSERT1 (SCM_INEXP (z), g_angle, z, SCM_ARG1, s_angle); #endif if (SCM_REALP (z)) { x = SCM_REALPART (z); goto do_angle; } x = SCM_REAL (z); y = SCM_IMAG (z); do_angle: return scm_makdbl (atan2 (y, x), 0.0); } SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0, (SCM z), "") #define FUNC_NAME s_scm_inexact_to_exact { if (SCM_INUMP (z)) return z; #ifdef SCM_BIGDIG SCM_ASRTGO (SCM_NIMP (z), badz); if (SCM_BIGP (z)) return z; #ifndef SCM_RECKLESS if (!(SCM_REALP (z))) { badz: SCM_WTA (1, z); } #endif #else SCM_VALIDATE_REAL (1,z); #endif #ifdef SCM_BIGDIG { double u = floor (SCM_REALPART (z) + 0.5); if ((u <= SCM_MOST_POSITIVE_FIXNUM) && (-u <= -SCM_MOST_NEGATIVE_FIXNUM)) { /* Negation is a workaround for HP700 cc bug */ SCM ans = SCM_MAKINUM ((long) u); if (SCM_INUM (ans) == (long) u) return ans; } SCM_ASRTGO (isfinite (u), badz); /* problem? */ return scm_dbl2big (u); } #else return SCM_MAKINUM ((long) floor (SCM_REALPART (z) + 0.5)); #endif } #undef FUNC_NAME #else /* ~SCM_FLOATS */ SCM_GPROC (s_trunc, "truncate", 1, 0, 0, scm_trunc, g_trunc); SCM scm_trunc (SCM x) { SCM_GASSERT2 (SCM_INUMP (x), g_trunc, x, y, SCM_ARG1, s_truncate); return x; } #endif /* SCM_FLOATS */ #ifdef SCM_BIGDIG #ifdef SCM_FLOATS /* d must be integer */ SCM scm_dbl2big (double d) { scm_sizet i = 0; long c; SCM_BIGDIG *digits; SCM ans; double u = (d < 0) ? -d : d; while (0 != floor (u)) { u /= SCM_BIGRAD; i++; } ans = scm_mkbig (i, d < 0); digits = SCM_BDIGITS (ans); while (i--) { u *= SCM_BIGRAD; c = floor (u); u -= c; digits[i] = c; } #ifndef SCM_RECKLESS if (u != 0) scm_num_overflow ("dbl2big"); #endif return ans; } double scm_big2dbl (SCM b) { double ans = 0.0; scm_sizet i = SCM_NUMDIGS (b); SCM_BIGDIG *digits = SCM_BDIGITS (b); while (i--) ans = digits[i] + SCM_BIGRAD * ans; if (scm_tc16_bigneg == SCM_TYP16 (b)) return -ans; return ans; } #endif #endif SCM scm_long2num (long sl) { if (!SCM_FIXABLE (sl)) { #ifdef SCM_BIGDIG return scm_long2big (sl); #else #ifdef SCM_FLOATS return scm_makdbl ((double) sl, 0.0); #else return SCM_BOOL_F; #endif #endif } return SCM_MAKINUM (sl); } #ifdef HAVE_LONG_LONGS SCM scm_long_long2num (long_long sl) { if (!SCM_FIXABLE (sl)) { #ifdef SCM_BIGDIG return scm_long_long2big (sl); #else #ifdef SCM_FLOATS return scm_makdbl ((double) sl, 0.0); #else return SCM_BOOL_F; #endif #endif } return SCM_MAKINUM (sl); } #endif SCM scm_ulong2num (unsigned long sl) { if (!SCM_POSFIXABLE (sl)) { #ifdef SCM_BIGDIG return scm_ulong2big (sl); #else #ifdef SCM_FLOATS return scm_makdbl ((double) sl, 0.0); #else return SCM_BOOL_F; #endif #endif } return SCM_MAKINUM (sl); } long scm_num2long (SCM num, char *pos, const char *s_caller) { long res; if (SCM_INUMP (num)) { res = SCM_INUM (num); return res; } SCM_ASRTGO (SCM_NIMP (num), wrong_type_arg); #ifdef SCM_FLOATS if (SCM_REALP (num)) { volatile double u = SCM_REALPART (num); res = u; if (res != u) goto out_of_range; return res; } #endif #ifdef SCM_BIGDIG if (SCM_BIGP (num)) { unsigned long oldres = 0; scm_sizet l; /* can't use res directly in case num is -2^31. */ unsigned long pos_res = 0; for (l = SCM_NUMDIGS (num); l--;) { pos_res = SCM_BIGUP (pos_res) + SCM_BDIGITS (num)[l]; /* check for overflow. */ if (pos_res < oldres) goto out_of_range; oldres = pos_res; } if (SCM_TYP16 (num) == scm_tc16_bigpos) { res = pos_res; if (res < 0) goto out_of_range; } else { res = -pos_res; if (res > 0) goto out_of_range; } return res; } #endif wrong_type_arg: scm_wrong_type_arg (s_caller, (int) pos, num); out_of_range: scm_out_of_range (s_caller, num); } #ifdef HAVE_LONG_LONGS long_long scm_num2long_long (SCM num, char *pos, const char *s_caller) { long_long res; if (SCM_INUMP (num)) { res = SCM_INUM (num); return res; } SCM_ASRTGO (SCM_NIMP (num), wrong_type_arg); #ifdef SCM_FLOATS if (SCM_REALP (num)) { double u = SCM_REALPART (num); res = u; if ((res < 0 && u > 0) || (res > 0 && u < 0)) /* check for overflow. */ goto out_of_range; return res; } #endif #ifdef SCM_BIGDIG if (SCM_BIGP (num)) { unsigned long long oldres = 0; scm_sizet l; /* can't use res directly in case num is -2^63. */ unsigned long long pos_res = 0; for (l = SCM_NUMDIGS (num); l--;) { pos_res = SCM_LONGLONGBIGUP (pos_res) + SCM_BDIGITS (num)[l]; /* check for overflow. */ if (pos_res < oldres) goto out_of_range; oldres = pos_res; } if (SCM_TYP16 (num) == scm_tc16_bigpos) { res = pos_res; if (res < 0) goto out_of_range; } else { res = -pos_res; if (res > 0) goto out_of_range; } return res; } #endif wrong_type_arg: scm_wrong_type_arg (s_caller, (int) pos, num); out_of_range: scm_out_of_range (s_caller, num); } #endif unsigned long scm_num2ulong (SCM num, char *pos, const char *s_caller) { unsigned long res; if (SCM_INUMP (num)) { if (SCM_INUM (num) < 0) goto out_of_range; res = SCM_INUM (num); return res; } SCM_ASRTGO (SCM_NIMP (num), wrong_type_arg); #ifdef SCM_FLOATS if (SCM_REALP (num)) { double u = SCM_REALPART (num); res = u; if (res != u) goto out_of_range; return res; } #endif #ifdef SCM_BIGDIG if (SCM_BIGP (num)) { unsigned long oldres = 0; scm_sizet l; res = 0; for (l = SCM_NUMDIGS (num); l--;) { res = SCM_BIGUP (res) + SCM_BDIGITS (num)[l]; if (res < oldres) goto out_of_range; oldres = res; } return res; } #endif wrong_type_arg: scm_wrong_type_arg (s_caller, (int) pos, num); out_of_range: scm_out_of_range (s_caller, num); } #ifdef SCM_FLOATS #ifndef DBL_DIG static void add1 (double f, double *fsum) { *fsum = f + 1.0; } #endif #endif void scm_init_numbers () { scm_add_feature("complex"); #ifdef SCM_FLOATS scm_add_feature("inexact"); #ifdef SCM_SINGLES SCM_NEWSMOB(scm_flo0,scm_tc_flo,NULL); #else SCM_NEWSMOB(scm_flo0,scm_tc_dblr,scm_must_malloc (1L * sizeof (double), "real")); SCM_REAL (scm_flo0) = 0.0; #endif #ifdef DBL_DIG scm_dblprec = (DBL_DIG > 20) ? 20 : DBL_DIG; #else { /* determine floating point precision */ double f = 0.1; double fsum = 1.0 + f; while (fsum != 1.0) { f /= 10.0; if (++scm_dblprec > 20) break; add1 (f, &fsum); } scm_dblprec = scm_dblprec - 1; } #endif /* DBL_DIG */ #endif #include "numbers.x" }