/* Copyright (C) 1999 Free Software Foundation, Inc. * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 59 Temple Place, Suite 330, * Boston, MA 02111-1307 USA * * As a special exception, the Free Software Foundation gives permission * for additional uses of the text contained in its release of GUILE. * * The exception is that, if you link the GUILE library with other files * to produce an executable, this does not by itself cause the * resulting executable to be covered by the GNU General Public License. * Your use of that executable is in no way restricted on account of * linking the GUILE library code into it. * * This exception does not however invalidate any other reasons why * the executable file might be covered by the GNU General Public License. * * This exception applies only to the code released by the * Free Software Foundation under the name GUILE. If you copy * code from other Free Software Foundation releases into a copy of * GUILE, as the General Public License permits, the exception does * not apply to the code that you add in this way. To avoid misleading * anyone as to the status of such modified files, you must delete * this exception notice from them. * * If you write modifications of your own for GUILE, it is your choice * whether to permit this exception to apply to your modifications. * If you do not wish that, delete this exception notice. */ /* Software engineering face-lift by Greg J. Badros, 11-Dec-1999, gjb@cs.washington.edu, http://www.cs.washington.edu/homes/gjb */ /* Author: Mikael Djurfeldt */ #include "_scm.h" #include #include #include "genio.h" #include "smob.h" #include "numbers.h" #include "feature.h" #include "scm_validate.h" #include "random.h" /* * A plugin interface for RNGs * * Using this interface, it is possible for the application to tell * libguile to use a different RNG. This is desirable if it is * necessary to use the same RNG everywhere in the application in * order to prevent interference, if the application uses RNG * hardware, or if the application has special demands on the RNG. * * Look in random.h and how the default generator is "plugged in" in * scm_init_random(). */ scm_rng scm_the_rng; /* * The prepackaged RNG * * This is the MWC (Multiply With Carry) random number generator * described by George Marsaglia at the Department of Statistics and * Supercomputer Computations Research Institute, The Florida State * University (http://stat.fsu.edu/~geo). * * It uses 64 bits, has a period of 4578426017172946943 (4.6e18), and * passes all tests in the DIEHARD test suite * (http://stat.fsu.edu/~geo/diehard.html) */ #define A 2131995753UL #if SIZEOF_LONG > 4 #if SIZEOF_INT > 4 #define LONG32 unsigned short #else #define LONG32 unsigned int #endif #define LONG64 unsigned long #else #define LONG32 unsigned long #define LONG64 unsigned long long #endif #if SIZEOF_LONG > 4 || defined (HAVE_LONG_LONGS) unsigned long scm_i_uniform32 (scm_i_rstate *state) { LONG64 x = (LONG64) A * state->w + state->c; LONG32 w = x & 0xffffffffUL; state->w = w; state->c = x >> 32L; return w; } #else /* ww This is a portable version of the same RNG without 64 bit * * aa arithmetic. * ---- * xx It is only intended to provide identical behaviour on * xx platforms without 8 byte longs or long longs until * xx someone has implemented the routine in assembler code. * xxcc * ---- * ccww */ #define L(x) ((x) & 0xffff) #define H(x) ((x) >> 16) unsigned long scm_i_uniform32 (scm_i_rstate *state) { LONG32 x1 = L (A) * L (state->w); LONG32 x2 = L (A) * H (state->w); LONG32 x3 = H (A) * L (state->w); LONG32 w = L (x1) + L (state->c); LONG32 m = H (x1) + L (x2) + L (x3) + H (state->c) + H (w); LONG32 x4 = H (A) * H (state->w); state->w = w = (L (m) << 16) + L (w); state->c = H (x2) + H (x3) + x4 + H (m); return w; } #endif void scm_i_init_rstate (scm_i_rstate *state, char *seed, int n) { LONG32 w = 0L; LONG32 c = 0L; int i, m; for (i = 0; i < n; ++i) { m = i % 8; if (m < 4) w += seed[i] << (8 * m); else c += seed[i] << (8 * (m - 4)); } if ((w == 0 && c == 0) || (w == 0xffffffffUL && c == A - 1)) ++c; state->w = w; state->c = c; } scm_i_rstate * scm_i_copy_rstate (scm_i_rstate *state) { scm_rstate *new_state = malloc (scm_the_rng.rstate_size); if (new_state == 0) scm_wta (SCM_MAKINUM (scm_the_rng.rstate_size), (char *) SCM_NALLOC, "rstate"); return memcpy (new_state, state, scm_the_rng.rstate_size); } /* * Random number library functions */ scm_rstate * scm_c_make_rstate (char *seed, int n) { scm_rstate *state = malloc (scm_the_rng.rstate_size); if (state == 0) scm_wta (SCM_MAKINUM (scm_the_rng.rstate_size), (char *) SCM_NALLOC, "rstate"); state->reserved0 = 0; scm_the_rng.init_rstate (state, seed, n); return state; } scm_rstate * scm_c_default_rstate () { SCM state = SCM_CDR (scm_var_random_state); SCM_ASSERT (SCM_RSTATEP (state), state, "*random-state* contains bogus random state", 0); return SCM_RSTATE (state); } inline double scm_c_uniform01 (scm_rstate *state) { double x = (double) scm_the_rng.random_bits (state) / (double) 0xffffffffUL; return ((x + (double) scm_the_rng.random_bits (state)) / (double) 0xffffffffUL); } double scm_c_normal01 (scm_rstate *state) { if (state->reserved0) { state->reserved0 = 0; return state->reserved1; } else { double r, a, n; r = sqrt (-2.0 * log (scm_c_uniform01 (state))); a = 2.0 * M_PI * scm_c_uniform01 (state); n = r * sin (a); state->reserved1 = r * cos (a); state->reserved0 = 1; return n; } } double scm_c_exp1 (scm_rstate *state) { return - log (scm_c_uniform01 (state)); } unsigned char scm_masktab[256]; unsigned long scm_c_random (scm_rstate *state, unsigned long m) { unsigned int r, mask; mask = (m < 0x100 ? scm_masktab[m] : (m < 0x10000 ? scm_masktab[m >> 8] << 8 | 0xff : (m < 0x1000000 ? scm_masktab[m >> 16] << 16 | 0xffff : scm_masktab[m >> 24] << 24 | 0xffffff))); while ((r = scm_the_rng.random_bits (state) & mask) >= m); return r; } SCM scm_c_random_bignum (scm_rstate *state, SCM m) { SCM b; int i, nd; LONG32 *bits, mask, w; nd = SCM_NUMDIGS (m); /* calculate mask for most significant digit */ #if SIZEOF_INT == 4 /* 16 bit digits */ if (nd & 1) { /* fix most significant 16 bits */ unsigned short s = SCM_BDIGITS (m)[nd - 1]; mask = s < 0x100 ? scm_masktab[s] : scm_masktab[s >> 8] << 8 | 0xff; } else #endif { /* fix most significant 32 bits */ #if SIZEOF_INT == 4 w = SCM_BDIGITS (m)[nd - 1] << 16 | SCM_BDIGITS (m)[nd - 2]; #else w = SCM_BDIGITS (m)[nd - 1]; #endif mask = (w < 0x10000 ? (w < 0x100 ? scm_masktab[w] : scm_masktab[w >> 8] << 8 | 0xff) : (w < 0x1000000 ? scm_masktab[w >> 16] << 16 | 0xffff : scm_masktab[w >> 24] << 24 | 0xffffff)); } b = scm_mkbig (nd, 0); bits = (LONG32 *) SCM_BDIGITS (b); do { i = nd; /* treat most significant digit specially */ #if SIZEOF_INT == 4 /* 16 bit digits */ if (i & 1) { ((SCM_BIGDIG*) bits)[i - 1] = scm_the_rng.random_bits (state) & mask; i /= 2; } else #endif { /* fix most significant 32 bits */ #if SIZEOF_INT == 4 w = scm_the_rng.random_bits (state) & mask; ((SCM_BIGDIG*) bits)[i - 2] = w & 0xffff; ((SCM_BIGDIG*) bits)[i - 1] = w >> 16; i = i / 2 - 1; #else i /= 2; bits[--i] = scm_the_rng.random_bits (state) & mask; #endif } /* now fill up the rest of the bignum */ while (i) bits[--i] = scm_the_rng.random_bits (state); b = scm_normbig (b); if (SCM_INUMP (b)) return b; } while (scm_bigcomp (b, m) <= 0); return b; } /* * Scheme level representation of random states. */ long scm_tc16_rstate; static SCM make_rstate (scm_rstate *state) { SCM_RETURN_NEWSMOB (scm_tc16_rstate, state); } static scm_sizet free_rstate (SCM rstate) { free (SCM_RSTATE (rstate)); return scm_the_rng.rstate_size; } /* * Scheme level interface. */ SCM_GLOBAL_VCELL_INIT (scm_var_random_state, "*random-state*", scm_seed_to_random_state (scm_makfrom0str ("URL:http://stat.fsu.edu/~geo/diehard.html"))); SCM_DEFINE (scm_random, "random", 1, 1, 0, (SCM n, SCM state), "Return a number in [0,N).\n" "\n" "Accepts a positive integer or real n and returns a \n" "number of the same type between zero (inclusive) and \n" "N (exclusive). The values returned have a uniform \n" "distribution.\n" "\n" "The optional argument STATE must be of the type produced by\n" "`seed->andom-state'. It defaults to the value of the variable\n" "*random-state*. This object is used to maintain the state of\n" "the pseudo-random-number generator and is altered as a side\n" "effect of the random operation.\n" "") #define FUNC_NAME s_scm_random { if (SCM_UNBNDP (state)) state = SCM_CDR (scm_var_random_state); SCM_VALIDATE_RSTATE (2,state); if (SCM_INUMP (n)) { unsigned long m = SCM_INUM (n); SCM_ASSERT_RANGE (1,n,m > 0); return SCM_MAKINUM (scm_c_random (SCM_RSTATE (state), m)); } SCM_VALIDATE_NIM (1,n); if (SCM_REALP (n)) return scm_makdbl (SCM_REALPART (n) * scm_c_uniform01 (SCM_RSTATE (state)), 0.0); SCM_VALIDATE_SMOB (1,n,bigpos); return scm_c_random_bignum (SCM_RSTATE (state), n); } #undef FUNC_NAME SCM_DEFINE (scm_copy_random_state, "copy-random-state", 0, 1, 0, (SCM state), "Return a copy of the random state STATE.") #define FUNC_NAME s_scm_copy_random_state { if (SCM_UNBNDP (state)) state = SCM_CDR (scm_var_random_state); SCM_VALIDATE_RSTATE (1,state); return make_rstate (scm_the_rng.copy_rstate (SCM_RSTATE (state))); } #undef FUNC_NAME SCM_DEFINE (scm_seed_to_random_state, "seed->random-state", 1, 0, 0, (SCM seed), "Return a new random state using SEED.") #define FUNC_NAME s_scm_seed_to_random_state { if (SCM_NUMBERP (seed)) seed = scm_number_to_string (seed, SCM_UNDEFINED); SCM_VALIDATE_STRING (1,seed); return make_rstate (scm_c_make_rstate (SCM_ROCHARS (seed), SCM_LENGTH (seed))); } #undef FUNC_NAME SCM_DEFINE (scm_random_uniform, "random:uniform", 0, 1, 0, (SCM state), "Returns a uniformly distributed inexact real random number in [0,1).") #define FUNC_NAME s_scm_random_uniform { if (SCM_UNBNDP (state)) state = SCM_CDR (scm_var_random_state); SCM_VALIDATE_RSTATE (1,state); return scm_makdbl (scm_c_uniform01 (SCM_RSTATE (state)), 0.0); } #undef FUNC_NAME SCM_DEFINE (scm_random_normal, "random:normal", 0, 1, 0, (SCM state), "Returns an inexact real in a normal distribution.\n" "The distribution used has mean 0 and standard deviation 1.\n" "For a normal distribution with mean m and standard deviation\n" "d use @code{(+ m (* d (random:normal)))}.\n" "") #define FUNC_NAME s_scm_random_normal { if (SCM_UNBNDP (state)) state = SCM_CDR (scm_var_random_state); SCM_VALIDATE_RSTATE (1,state); return scm_makdbl (scm_c_normal01 (SCM_RSTATE (state)), 0.0); } #undef FUNC_NAME #ifdef HAVE_ARRAYS static void vector_scale (SCM v, double c) { int n = SCM_LENGTH (v); if (SCM_VECTORP (v)) while (--n >= 0) SCM_REAL (SCM_VELTS (v)[n]) *= c; else while (--n >= 0) ((double *) SCM_VELTS (v))[n] *= c; } static double vector_sum_squares (SCM v) { double x, sum = 0.0; int n = SCM_LENGTH (v); if (SCM_VECTORP (v)) while (--n >= 0) { x = SCM_REAL (SCM_VELTS (v)[n]); sum += x * x; } else while (--n >= 0) { x = ((double *) SCM_VELTS (v))[n]; sum += x * x; } return sum; } /* For the uniform distribution on the solid sphere, note that in * this distribution the length r of the vector has cumulative * distribution r^n; i.e., u=r^n is uniform [0,1], so r can be * generated as r=u^(1/n). */ SCM_DEFINE (scm_random_solid_sphere_x, "random:solid-sphere!", 1, 1, 0, (SCM v, SCM state), "Fills vect with inexact real random numbers\n" "the sum of whose squares is less than 1.0.\n" "Thinking of vect as coordinates in space of \n" "dimension n = (vector-length vect), the coordinates \n" "are uniformly distributed within the unit n-shere.\n" "The sum of the squares of the numbers is returned.\n" "") #define FUNC_NAME s_scm_random_solid_sphere_x { SCM_VALIDATE_VECTOR_OR_DVECTOR (1,v); if (SCM_UNBNDP (state)) state = SCM_CDR (scm_var_random_state); SCM_VALIDATE_RSTATE (2,state); scm_random_normal_vector_x (v, state); vector_scale (v, pow (scm_c_uniform01 (SCM_RSTATE (state)), 1.0 / SCM_LENGTH (v)) / sqrt (vector_sum_squares (v))); return SCM_UNSPECIFIED; } #undef FUNC_NAME SCM_DEFINE (scm_random_hollow_sphere_x, "random:hollow-sphere!", 1, 1, 0, (SCM v, SCM state), "Fills vect with inexact real random numbers\n" "the sum of whose squares is equal to 1.0.\n" "Thinking of vect as coordinates in space of \n" "dimension n = (vector-length vect), the coordinates\n" "are uniformly distributed over the surface of the \n" "unit n-shere.\n" "") #define FUNC_NAME s_scm_random_hollow_sphere_x { SCM_VALIDATE_VECTOR_OR_DVECTOR (1,v); if (SCM_UNBNDP (state)) state = SCM_CDR (scm_var_random_state); SCM_VALIDATE_RSTATE (2,state); scm_random_normal_vector_x (v, state); vector_scale (v, 1 / sqrt (vector_sum_squares (v))); return SCM_UNSPECIFIED; } #undef FUNC_NAME SCM_DEFINE (scm_random_normal_vector_x, "random:normal-vector!", 1, 1, 0, (SCM v, SCM state), "Fills vect with inexact real random numbers that are\n" "independent and standard normally distributed\n" "(i.e., with mean 0 and variance 1).\n" "") #define FUNC_NAME s_scm_random_normal_vector_x { int n; SCM_VALIDATE_VECTOR_OR_DVECTOR (1,v); if (SCM_UNBNDP (state)) state = SCM_CDR (scm_var_random_state); SCM_VALIDATE_RSTATE (2,state); n = SCM_LENGTH (v); if (SCM_VECTORP (v)) while (--n >= 0) SCM_VELTS (v)[n] = scm_makdbl (scm_c_normal01 (SCM_RSTATE (state)), 0.0); else while (--n >= 0) ((double *) SCM_VELTS (v))[n] = scm_c_normal01 (SCM_RSTATE (state)); return SCM_UNSPECIFIED; } #undef FUNC_NAME #endif /* HAVE_ARRAYS */ SCM_DEFINE (scm_random_exp, "random:exp", 0, 1, 0, (SCM state), "Returns an inexact real in an exponential distribution with mean 1.\n" "For an exponential distribution with mean u use (* u (random:exp)).\n" "") #define FUNC_NAME s_scm_random_exp { if (SCM_UNBNDP (state)) state = SCM_CDR (scm_var_random_state); SCM_VALIDATE_RSTATE (1,state); return scm_makdbl (scm_c_exp1 (SCM_RSTATE (state)), 0.0); } #undef FUNC_NAME void scm_init_random () { int i, m; /* plug in default RNG */ scm_rng rng = { sizeof (scm_i_rstate), (unsigned long (*)()) scm_i_uniform32, (void (*)()) scm_i_init_rstate, (scm_rstate *(*)()) scm_i_copy_rstate }; scm_the_rng = rng; scm_tc16_rstate = scm_make_smob_type_mfpe ("random-state", 0, NULL, free_rstate, NULL, NULL); for (m = 1; m <= 0x100; m <<= 1) for (i = m >> 1; i < m; ++i) scm_masktab[i] = m - 1; #include "random.x" /* Check that the assumptions about bits per bignum digit are correct. */ #if SIZEOF_INT == 4 m = 16; #else m = 32; #endif if (m != SCM_BITSPERDIG) { fprintf (stderr, "Internal inconsistency: Confused about bignum digit size in random.c\n"); exit (1); } scm_add_feature ("random"); }