// ColumnVector manipulations. /* Copyright (C) 1996, 1997 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #if defined (__GNUG__) #pragma implementation #endif #ifdef HAVE_CONFIG_H #include #endif #include #include "f77-fcn.h" #include "lo-error.h" #include "mx-base.h" #include "mx-inlines.cc" #include "oct-cmplx.h" // Fortran functions we call. extern "C" { int F77_FCN (zgemv, ZGEMV) (const char*, const int&, const int&, const Complex&, const Complex*, const int&, const Complex*, const int&, const Complex&, Complex*, const int&, long); } // Complex Column Vector class ComplexColumnVector::ComplexColumnVector (const ColumnVector& a) : MArray (a.length ()) { for (int i = 0; i < length (); i++) elem (i) = a.elem (i); } bool ComplexColumnVector::operator == (const ComplexColumnVector& a) const { int len = length (); if (len != a.length ()) return 0; return equal (data (), a.data (), len); } bool ComplexColumnVector::operator != (const ComplexColumnVector& a) const { return !(*this == a); } // destructive insert/delete/reorder operations ComplexColumnVector& ComplexColumnVector::insert (const ColumnVector& a, int r) { int a_len = a.length (); if (r < 0 || r + a_len > length ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } for (int i = 0; i < a_len; i++) elem (r+i) = a.elem (i); return *this; } ComplexColumnVector& ComplexColumnVector::insert (const ComplexColumnVector& a, int r) { int a_len = a.length (); if (r < 0 || r + a_len > length ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } for (int i = 0; i < a_len; i++) elem (r+i) = a.elem (i); return *this; } ComplexColumnVector& ComplexColumnVector::fill (double val) { int len = length (); if (len > 0) for (int i = 0; i < len; i++) elem (i) = val; return *this; } ComplexColumnVector& ComplexColumnVector::fill (const Complex& val) { int len = length (); if (len > 0) for (int i = 0; i < len; i++) elem (i) = val; return *this; } ComplexColumnVector& ComplexColumnVector::fill (double val, int r1, int r2) { int len = length (); if (r1 < 0 || r2 < 0 || r1 >= len || r2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } for (int i = r1; i <= r2; i++) elem (i) = val; return *this; } ComplexColumnVector& ComplexColumnVector::fill (const Complex& val, int r1, int r2) { int len = length (); if (r1 < 0 || r2 < 0 || r1 >= len || r2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } for (int i = r1; i <= r2; i++) elem (i) = val; return *this; } ComplexColumnVector ComplexColumnVector::stack (const ColumnVector& a) const { int len = length (); int nr_insert = len; ComplexColumnVector retval (len + a.length ()); retval.insert (*this, 0); retval.insert (a, nr_insert); return retval; } ComplexColumnVector ComplexColumnVector::stack (const ComplexColumnVector& a) const { int len = length (); int nr_insert = len; ComplexColumnVector retval (len + a.length ()); retval.insert (*this, 0); retval.insert (a, nr_insert); return retval; } ComplexRowVector ComplexColumnVector::hermitian (void) const { int len = length (); return ComplexRowVector (conj_dup (data (), len), len); } ComplexRowVector ComplexColumnVector::transpose (void) const { return ComplexRowVector (*this); } ComplexColumnVector conj (const ComplexColumnVector& a) { int a_len = a.length (); ComplexColumnVector retval; if (a_len > 0) retval = ComplexColumnVector (conj_dup (a.data (), a_len), a_len); return retval; } // resize is the destructive equivalent for this one ComplexColumnVector ComplexColumnVector::extract (int r1, int r2) const { if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } int new_r = r2 - r1 + 1; ComplexColumnVector result (new_r); for (int i = 0; i < new_r; i++) result.elem (i) = elem (r1+i); return result; } // column vector by column vector -> column vector operations ComplexColumnVector& ComplexColumnVector::operator += (const ColumnVector& a) { int len = length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator +=", len, a_len); return *this; } if (len == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! add2 (d, a.data (), len); return *this; } ComplexColumnVector& ComplexColumnVector::operator -= (const ColumnVector& a) { int len = length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator -=", len, a_len); return *this; } if (len == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! subtract2 (d, a.data (), len); return *this; } ComplexColumnVector& ComplexColumnVector::operator += (const ComplexColumnVector& a) { int len = length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator +=", len, a_len); return *this; } if (len == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! add2 (d, a.data (), len); return *this; } ComplexColumnVector& ComplexColumnVector::operator -= (const ComplexColumnVector& a) { int len = length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator -=", len, a_len); return *this; } if (len == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! subtract2 (d, a.data (), len); return *this; } // column vector by scalar -> column vector operations ComplexColumnVector operator + (const ComplexColumnVector& v, double s) { int len = v.length (); return ComplexColumnVector (add (v.data (), len, s), len); } ComplexColumnVector operator - (const ComplexColumnVector& v, double s) { int len = v.length (); return ComplexColumnVector (subtract (v.data (), len, s), len); } ComplexColumnVector operator * (const ComplexColumnVector& v, double s) { int len = v.length (); return ComplexColumnVector (multiply (v.data (), len, s), len); } ComplexColumnVector operator / (const ComplexColumnVector& v, double s) { int len = v.length (); return ComplexColumnVector (divide (v.data (), len, s), len); } ComplexColumnVector operator + (const ColumnVector& a, const Complex& s) { int len = a.length (); return ComplexColumnVector (add (a.data (), len, s), len); } ComplexColumnVector operator - (const ColumnVector& a, const Complex& s) { int len = a.length (); return ComplexColumnVector (subtract (a.data (), len, s), len); } ComplexColumnVector operator * (const ColumnVector& a, const Complex& s) { int len = a.length (); return ComplexColumnVector (multiply (a.data (), len, s), len); } ComplexColumnVector operator / (const ColumnVector& a, const Complex& s) { int len = a.length (); return ComplexColumnVector (divide (a.data (), len, s), len); } // scalar by column vector -> column vector operations ComplexColumnVector operator + (double s, const ComplexColumnVector& a) { int a_len = a.length (); return ComplexColumnVector (add (a.data (), a_len, s), a_len); } ComplexColumnVector operator - (double s, const ComplexColumnVector& a) { int a_len = a.length (); return ComplexColumnVector (subtract (s, a.data (), a_len), a_len); } ComplexColumnVector operator * (double s, const ComplexColumnVector& a) { int a_len = a.length (); return ComplexColumnVector (multiply (a.data (), a_len, s), a_len); } ComplexColumnVector operator / (double s, const ComplexColumnVector& a) { int a_len = a.length (); return ComplexColumnVector (divide (s, a.data (), a_len), a_len); } ComplexColumnVector operator + (const Complex& s, const ColumnVector& a) { int a_len = a.length (); return ComplexColumnVector (add (a.data (), a_len, s), a_len); } ComplexColumnVector operator - (const Complex& s, const ColumnVector& a) { int a_len = a.length (); return ComplexColumnVector (subtract (s, a.data (), a_len), a_len); } ComplexColumnVector operator * (const Complex& s, const ColumnVector& a) { int a_len = a.length (); return ComplexColumnVector (multiply (a.data (), a_len, s), a_len); } ComplexColumnVector operator / (const Complex& s, const ColumnVector& a) { int a_len = a.length (); return ComplexColumnVector (divide (s, a.data (), a_len), a_len); } // matrix by column vector -> column vector operations ComplexColumnVector operator * (const ComplexMatrix& m, const ColumnVector& a) { ComplexColumnVector tmp (a); return m * tmp; } ComplexColumnVector operator * (const ComplexMatrix& m, const ComplexColumnVector& a) { ComplexColumnVector retval; int nr = m.rows (); int nc = m.cols (); int a_len = a.length (); if (nc != a_len) gripe_nonconformant ("operator *", nr, nc, a_len, 1); else { if (nc == 0 || nr == 0) retval.resize (nr, 0.0); else { int ld = nr; retval.resize (nr); Complex *y = retval.fortran_vec (); F77_XFCN (zgemv, ZGEMV, ("N", nr, nc, 1.0, m.data (), ld, a.data (), 1, 0.0, y, 1, 1L)); if (f77_exception_encountered) (*current_liboctave_error_handler) ("unrecoverable error in zgemv"); } } return retval; } // column vector by column vector -> column vector operations ComplexColumnVector operator + (const ComplexColumnVector& v, const ColumnVector& a) { int len = v.length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator +", len, a_len); return ComplexColumnVector (); } if (len == 0) return ComplexColumnVector (0); return ComplexColumnVector (add (v.data (), a.data (), len), len); } ComplexColumnVector operator - (const ComplexColumnVector& v, const ColumnVector& a) { int len = v.length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator -", len, a_len); return ComplexColumnVector (); } if (len == 0) return ComplexColumnVector (0); return ComplexColumnVector (subtract (v.data (), a.data (), len), len); } ComplexColumnVector operator + (const ColumnVector& v, const ComplexColumnVector& a) { int len = v.length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator +", len, a_len); return ComplexColumnVector (); } if (len == 0) return ComplexColumnVector (0); return ComplexColumnVector (add (v.data (), a.data (), len), len); } ComplexColumnVector operator - (const ColumnVector& v, const ComplexColumnVector& a) { int len = v.length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator -", len, a_len); return ComplexColumnVector (); } if (len == 0) return ComplexColumnVector (0); return ComplexColumnVector (subtract (v.data (), a.data (), len), len); } ComplexColumnVector product (const ComplexColumnVector& v, const ColumnVector& a) { int len = v.length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("product", len, a_len); return ComplexColumnVector (); } if (len == 0) return ComplexColumnVector (0); return ComplexColumnVector (multiply (v.data (), a.data (), len), len); } ComplexColumnVector quotient (const ComplexColumnVector& v, const ColumnVector& a) { int len = v.length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("quotient", len, a_len); return ComplexColumnVector (); } if (len == 0) return ComplexColumnVector (0); return ComplexColumnVector (divide (v.data (), a.data (), len), len); } ComplexColumnVector product (const ColumnVector& v, const ComplexColumnVector& a) { int len = v.length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("product", len, a_len); return ColumnVector (); } if (len == 0) return ComplexColumnVector (0); return ComplexColumnVector (multiply (v.data (), a.data (), len), len); } ComplexColumnVector quotient (const ColumnVector& v, const ComplexColumnVector& a) { int len = v.length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("quotient", len, a_len); return ColumnVector (); } if (len == 0) return ComplexColumnVector (0); return ComplexColumnVector (divide (v.data (), a.data (), len), len); } // matrix by column vector -> column vector operations ComplexColumnVector operator * (const Matrix& m, const ComplexColumnVector& a) { ComplexMatrix tmp (m); return tmp * a; } // diagonal matrix by column vector -> column vector operations ComplexColumnVector operator * (const DiagMatrix& m, const ComplexColumnVector& a) { int nr = m.rows (); int nc = m.cols (); int a_len = a.length (); if (nc != a_len) { gripe_nonconformant ("operator *", nr, nc, a_len, 1); return ColumnVector (); } if (nc == 0 || nr == 0) return ComplexColumnVector (0); ComplexColumnVector result (nr); for (int i = 0; i < a_len; i++) result.elem (i) = a.elem (i) * m.elem (i, i); for (int i = a_len; i < nr; i++) result.elem (i) = 0.0; return result; } ComplexColumnVector operator * (const ComplexDiagMatrix& m, const ColumnVector& a) { int nr = m.rows (); int nc = m.cols (); int a_len = a.length (); if (nc != a_len) { gripe_nonconformant ("operator *", nr, nc, a_len, 1); return ComplexColumnVector (); } if (nc == 0 || nr == 0) return ComplexColumnVector (0); ComplexColumnVector result (nr); for (int i = 0; i < a_len; i++) result.elem (i) = a.elem (i) * m.elem (i, i); for (int i = a_len; i < nr; i++) result.elem (i) = 0.0; return result; } ComplexColumnVector operator * (const ComplexDiagMatrix& m, const ComplexColumnVector& a) { int nr = m.rows (); int nc = m.cols (); int a_len = a.length (); if (nc != a_len) { gripe_nonconformant ("operator *", nr, nc, a_len, 1); return ComplexColumnVector (); } if (nc == 0 || nr == 0) return ComplexColumnVector (0); ComplexColumnVector result (nr); for (int i = 0; i < a_len; i++) result.elem (i) = a.elem (i) * m.elem (i, i); for (int i = a_len; i < nr; i++) result.elem (i) = 0.0; return result; } // other operations ComplexColumnVector ComplexColumnVector::map (c_c_Mapper f) const { ComplexColumnVector b (*this); return b.apply (f); } ColumnVector ComplexColumnVector::map (d_c_Mapper f) const { const Complex *d = data (); int len = length (); ColumnVector retval (len); double *r = retval.fortran_vec (); for (int i = 0; i < len; i++) r[i] = f (d[i]); return retval; } ComplexColumnVector& ComplexColumnVector::apply (c_c_Mapper f) { Complex *d = fortran_vec (); // Ensures only one reference to my privates! for (int i = 0; i < length (); i++) d[i] = f (d[i]); return *this; } Complex ComplexColumnVector::min (void) const { int len = length (); if (len == 0) return 0.0; Complex res = elem (0); double absres = abs (res); for (int i = 1; i < len; i++) if (abs (elem (i)) < absres) { res = elem (i); absres = abs (res); } return res; } Complex ComplexColumnVector::max (void) const { int len = length (); if (len == 0) return 0.0; Complex res = elem (0); double absres = abs (res); for (int i = 1; i < len; i++) if (abs (elem (i)) > absres) { res = elem (i); absres = abs (res); } return res; } // i/o ostream& operator << (ostream& os, const ComplexColumnVector& a) { // int field_width = os.precision () + 7; for (int i = 0; i < a.length (); i++) os << /* setw (field_width) << */ a.elem (i) << "\n"; return os; } istream& operator >> (istream& is, ComplexColumnVector& a) { int len = a.length(); if (len < 1) is.clear (ios::badbit); else { double tmp; for (int i = 0; i < len; i++) { is >> tmp; if (is) a.elem (i) = tmp; else break; } } return is; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */