// RowVector manipulations. /* Copyright (C) 1996, 1997 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #if defined (__GNUG__) #pragma implementation #endif #ifdef HAVE_CONFIG_H #include #endif #include #include "f77-fcn.h" #include "lo-error.h" #include "mx-base.h" #include "mx-inlines.cc" #include "oct-cmplx.h" // Fortran functions we call. extern "C" { int F77_FCN (zgemv, ZGEMV) (const char*, const int&, const int&, const Complex&, const Complex*, const int&, const Complex*, const int&, const Complex&, Complex*, const int&, long); } // Complex Row Vector class ComplexRowVector::ComplexRowVector (const RowVector& a) : MArray (a.length ()) { for (int i = 0; i < length (); i++) elem (i) = a.elem (i); } bool ComplexRowVector::operator == (const ComplexRowVector& a) const { int len = length (); if (len != a.length ()) return 0; return equal (data (), a.data (), len); } bool ComplexRowVector::operator != (const ComplexRowVector& a) const { return !(*this == a); } // destructive insert/delete/reorder operations ComplexRowVector& ComplexRowVector::insert (const RowVector& a, int c) { int a_len = a.length (); if (c < 0 || c + a_len > length ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } for (int i = 0; i < a_len; i++) elem (c+i) = a.elem (i); return *this; } ComplexRowVector& ComplexRowVector::insert (const ComplexRowVector& a, int c) { int a_len = a.length (); if (c < 0 || c + a_len > length ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } for (int i = 0; i < a_len; i++) elem (c+i) = a.elem (i); return *this; } ComplexRowVector& ComplexRowVector::fill (double val) { int len = length (); if (len > 0) for (int i = 0; i < len; i++) elem (i) = val; return *this; } ComplexRowVector& ComplexRowVector::fill (const Complex& val) { int len = length (); if (len > 0) for (int i = 0; i < len; i++) elem (i) = val; return *this; } ComplexRowVector& ComplexRowVector::fill (double val, int c1, int c2) { int len = length (); if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } for (int i = c1; i <= c2; i++) elem (i) = val; return *this; } ComplexRowVector& ComplexRowVector::fill (const Complex& val, int c1, int c2) { int len = length (); if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } for (int i = c1; i <= c2; i++) elem (i) = val; return *this; } ComplexRowVector ComplexRowVector::append (const RowVector& a) const { int len = length (); int nc_insert = len; ComplexRowVector retval (len + a.length ()); retval.insert (*this, 0); retval.insert (a, nc_insert); return retval; } ComplexRowVector ComplexRowVector::append (const ComplexRowVector& a) const { int len = length (); int nc_insert = len; ComplexRowVector retval (len + a.length ()); retval.insert (*this, 0); retval.insert (a, nc_insert); return retval; } ComplexColumnVector ComplexRowVector::hermitian (void) const { int len = length (); return ComplexColumnVector (conj_dup (data (), len), len); } ComplexColumnVector ComplexRowVector::transpose (void) const { return ComplexColumnVector (*this); } ComplexRowVector conj (const ComplexRowVector& a) { int a_len = a.length (); ComplexRowVector retval; if (a_len > 0) retval = ComplexRowVector (conj_dup (a.data (), a_len), a_len); return retval; } // resize is the destructive equivalent for this one ComplexRowVector ComplexRowVector::extract (int c1, int c2) const { if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } int new_c = c2 - c1 + 1; ComplexRowVector result (new_c); for (int i = 0; i < new_c; i++) result.elem (i) = elem (c1+i); return result; } // row vector by row vector -> row vector operations ComplexRowVector& ComplexRowVector::operator += (const RowVector& a) { int len = length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator +=", len, a_len); return *this; } if (len == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! add2 (d, a.data (), len); return *this; } ComplexRowVector& ComplexRowVector::operator -= (const RowVector& a) { int len = length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator -=", len, a_len); return *this; } if (len == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! subtract2 (d, a.data (), len); return *this; } ComplexRowVector& ComplexRowVector::operator += (const ComplexRowVector& a) { int len = length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator +=", len, a_len); return *this; } if (len == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! add2 (d, a.data (), len); return *this; } ComplexRowVector& ComplexRowVector::operator -= (const ComplexRowVector& a) { int len = length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator -=", len, a_len); return *this; } if (len == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! subtract2 (d, a.data (), len); return *this; } // row vector by scalar -> row vector operations ComplexRowVector operator + (const ComplexRowVector& v, double s) { int len = v.length (); return ComplexRowVector (add (v.data (), len, s), len); } ComplexRowVector operator - (const ComplexRowVector& v, double s) { int len = v.length (); return ComplexRowVector (subtract (v.data (), len, s), len); } ComplexRowVector operator * (const ComplexRowVector& v, double s) { int len = v.length (); return ComplexRowVector (multiply (v.data (), len, s), len); } ComplexRowVector operator / (const ComplexRowVector& v, double s) { int len = v.length (); return ComplexRowVector (divide (v.data (), len, s), len); } ComplexRowVector operator + (const RowVector& v, const Complex& s) { int len = v.length (); return ComplexRowVector (add (v.data (), len, s), len); } ComplexRowVector operator - (const RowVector& v, const Complex& s) { int len = v.length (); return ComplexRowVector (subtract (v.data (), len, s), len); } ComplexRowVector operator * (const RowVector& v, const Complex& s) { int len = v.length (); return ComplexRowVector (multiply (v.data (), len, s), len); } ComplexRowVector operator / (const RowVector& v, const Complex& s) { int len = v.length (); return ComplexRowVector (divide (v.data (), len, s), len); } // scalar by row vector -> row vector operations ComplexRowVector operator + (double s, const ComplexRowVector& a) { int a_len = a.length (); return ComplexRowVector (add (a.data (), a_len, s), a_len); } ComplexRowVector operator - (double s, const ComplexRowVector& a) { int a_len = a.length (); return ComplexRowVector (subtract (s, a.data (), a_len), a_len); } ComplexRowVector operator * (double s, const ComplexRowVector& a) { int a_len = a.length (); return ComplexRowVector (multiply (a.data (), a_len, s), a_len); } ComplexRowVector operator / (double s, const ComplexRowVector& a) { int a_len = a.length (); return ComplexRowVector (divide (s, a.data (), a_len), a_len); } ComplexRowVector operator + (const Complex& s, const RowVector& a) { int a_len = a.length (); return ComplexRowVector (add (a.data (), a_len, s), a_len); } ComplexRowVector operator - (const Complex& s, const RowVector& a) { int a_len = a.length (); return ComplexRowVector (subtract (s, a.data (), a_len), a_len); } ComplexRowVector operator * (const Complex& s, const RowVector& a) { int a_len = a.length (); return ComplexRowVector (multiply (a.data (), a_len, s), a_len); } ComplexRowVector operator / (const Complex& s, const RowVector& a) { int a_len = a.length (); return ComplexRowVector (divide (s, a.data (), a_len), a_len); } // row vector by matrix -> row vector ComplexRowVector operator * (const ComplexRowVector& v, const ComplexMatrix& a) { ComplexRowVector retval; int len = v.length (); int a_nr = a.rows (); int a_nc = a.cols (); if (a_nr != len) gripe_nonconformant ("operator *", 1, len, a_nr, a_nc); else { int a_nr = a.rows (); int a_nc = a.cols (); if (len == 0) retval.resize (a_nc, 0.0); else { // Transpose A to form A'*x == (x'*A)' int ld = a_nr; retval.resize (a_nc); Complex *y = retval.fortran_vec (); F77_XFCN (zgemv, ZGEMV, ("T", a_nr, a_nc, 1.0, a.data (), ld, v.data (), 1, 0.0, y, 1, 1L)); if (f77_exception_encountered) (*current_liboctave_error_handler) ("unrecoverable error in zgemv"); } } return retval; } ComplexRowVector operator * (const RowVector& v, const ComplexMatrix& a) { ComplexRowVector tmp (v); return tmp * a; } // row vector by row vector -> row vector operations ComplexRowVector operator + (const ComplexRowVector& v, const RowVector& a) { int len = v.length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator +", len, a_len); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (add (v.data (), a.data (), len), len); } ComplexRowVector operator - (const ComplexRowVector& v, const RowVector& a) { int len = v.length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator -", len, a_len); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (subtract (v.data (), a.data (), len), len); } ComplexRowVector operator + (const RowVector& v, const ComplexRowVector& a) { int len = v.length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator +", len, a_len); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (add (v.data (), a.data (), len), len); } ComplexRowVector operator - (const RowVector& v, const ComplexRowVector& a) { int len = v.length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator -", len, a_len); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (subtract (v.data (), a.data (), len), len); } ComplexRowVector product (const ComplexRowVector& v, const RowVector& a) { int len = v.length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("product", len, a_len); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (multiply (v.data (), a.data (), len), len); } ComplexRowVector quotient (const ComplexRowVector& v, const RowVector& a) { int len = v.length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("quotient", len, a_len); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (divide (v.data (), a.data (), len), len); } ComplexRowVector product (const RowVector& v, const ComplexRowVector& a) { int len = v.length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("product", len, a_len); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (multiply (v.data (), a.data (), len), len); } ComplexRowVector quotient (const RowVector& v, const ComplexRowVector& a) { int len = v.length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("quotient", len, a_len); return ComplexRowVector (); } if (len == 0) return ComplexRowVector (0); return ComplexRowVector (divide (v.data (), a.data (), len), len); } // other operations ComplexRowVector ComplexRowVector::map (c_c_Mapper f) const { ComplexRowVector b (*this); return b.apply (f); } RowVector ComplexRowVector::map (d_c_Mapper f) const { const Complex *d = data (); int len = length (); RowVector retval (len); double *r = retval.fortran_vec (); for (int i = 0; i < len; i++) r[i] = f (d[i]); return retval; } ComplexRowVector& ComplexRowVector::apply (c_c_Mapper f) { Complex *d = fortran_vec (); // Ensures only one reference to my privates! for (int i = 0; i < length (); i++) d[i] = f (d[i]); return *this; } Complex ComplexRowVector::min (void) const { int len = length (); if (len == 0) return Complex (0.0); Complex res = elem (0); double absres = abs (res); for (int i = 1; i < len; i++) if (abs (elem (i)) < absres) { res = elem (i); absres = abs (res); } return res; } Complex ComplexRowVector::max (void) const { int len = length (); if (len == 0) return Complex (0.0); Complex res = elem (0); double absres = abs (res); for (int i = 1; i < len; i++) if (abs (elem (i)) > absres) { res = elem (i); absres = abs (res); } return res; } // i/o ostream& operator << (ostream& os, const ComplexRowVector& a) { // int field_width = os.precision () + 7; for (int i = 0; i < a.length (); i++) os << " " /* setw (field_width) */ << a.elem (i); return os; } istream& operator >> (istream& is, ComplexRowVector& a) { int len = a.length(); if (len < 1) is.clear (ios::badbit); else { Complex tmp; for (int i = 0; i < len; i++) { is >> tmp; if (is) a.elem (i) = tmp; else break; } } return is; } // row vector by column vector -> scalar // row vector by column vector -> scalar Complex operator * (const ComplexRowVector& v, const ColumnVector& a) { ComplexColumnVector tmp (a); return v * tmp; } Complex operator * (const ComplexRowVector& v, const ComplexColumnVector& a) { int len = v.length (); int a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator *", len, a_len); return 0.0; } Complex retval (0.0, 0.0); for (int i = 0; i < len; i++) retval += v.elem (i) * a.elem (i); return retval; } // other operations ComplexRowVector linspace (const Complex& x1, const Complex& x2, int n) { ComplexRowVector retval; if (n > 0) { retval.resize (n); Complex delta = (x2 - x1) / (n - 1.0); retval.elem (0) = x1; for (int i = 1; i < n-1; i++) retval.elem (i) = x1 + 1.0 * i * delta; retval.elem (n-1) = x2; } else if (n == 1) { if (x1 == x2) { retval.resize (1); retval.elem (0) = x1; } else (*current_liboctave_error_handler) ("linspace: npoints is 1, but x1 != x2"); } else (*current_liboctave_error_handler) ("linspace: npoints must be greater than 0"); return retval; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */