/* Copyright (C) 1996, 1997 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // Based on Tony Richardson's filter.m. // // Originally translated to C++ by KH (Kurt.Hornik@ci.tuwien.ac.at) // with help from Fritz Leisch and Andreas Weingessel on Oct 20, 1994. // // Rewritten to use templates to handle both real and complex cases by // jwe, Wed Nov 1 19:15:29 1995. #ifdef HAVE_CONFIG_H #include #endif #include "defun-dld.h" #include "error.h" #include "oct-obj.h" #if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL) extern MArray filter (MArray&, MArray&, MArray&); extern MArray filter (MArray&, MArray&, MArray&); #endif template MArray filter (MArray& b, MArray& a, MArray& x, MArray& si) { MArray y; int a_len = a.length (); int b_len = b.length (); int x_len = x.length (); int si_len = si.length (); int ab_len = a_len > b_len ? a_len : b_len; b.resize (ab_len, 0.0); if (si.length () != ab_len - 1) { error ("filter: si must be a vector of length max (length (a), length (b)) - 1"); return y; } T norm = a (0); if (norm == 0.0) { error ("filter: the first element of a must be non-zero"); return y; } y.resize (x_len, 0.0); if (norm != 1.0) b = b / norm; if (a_len > 1) { a.resize (ab_len, 0.0); if (norm != 1.0) a = a / norm; for (int i = 0; i < x_len; i++) { y (i) = si (0) + b (0) * x (i); if (si_len > 1) { for (int j = 0; j < si_len - 1; j++) si (j) = si (j+1) - a (j+1) * y (i) + b (j+1) * x (i); si (si_len-1) = b (si_len) * x (i) - a (si_len) * y (i); } else si (0) = b (si_len) * x (i) - a (si_len) * y (i); } } else if (si_len > 0) { for (int i = 0; i < x_len; i++) { y (i) = si (0) + b (0) * x (i); if (si_len > 1) { for (int j = 0; j < si_len - 1; j++) si (j) = si (j+1) + b (j+1) * x (i); si (si_len-1) = b (si_len) * x (i); } else si (0) = b (1) * x (i); } } else y = b (0) * x; return y; } #if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL) extern MArray filter (MArray&, MArray&, MArray&, MArray&); extern MArray filter (MArray&, MArray&, MArray&, MArray&); #endif template MArray filter (MArray& b, MArray& a, MArray& x) { int a_len = a.length (); int b_len = b.length (); int si_len = (a_len > b_len ? a_len : b_len) - 1; MArray si (si_len, T (0.0)); return filter (b, a, x, si); } DEFUN_DLD (filter, args, nargout, "usage: [y [, sf]] = filter (b, a, x [, si])\n\ \n\ y = filter (b, a, x) returns the solution to the following linear,\n\ time-invariant difference equation:\n\ \n\ a[1] y[n] + ... + a[la] y[n-la+1] = b[1] x[n] + ... + b[lb] x[n-lb+1],\n\ where la = length (a) and lb = length (b).\n\ \n\ [y, sf] = filter (b, a, x, si) sets the initial state of the system, si,\n\ and returns the final state, sf. The state vector is a column vector\n\ whose length is equal to the length of the longest coefficient vector\n\ minus one. If si is not set, the initial state vector is set to all\n\ zeros.\n\ \n\ The particular algorithm employed is known as a transposed Direct Form II\n\ implementation.") { octave_value_list retval; int nargin = args.length (); if (nargin < 3 || nargin > 4) { print_usage ("filter"); return retval; } const char *errmsg = "filter: arguments must be vectors"; int x_is_vector = (args(2).rows () == 1 || args(2).columns () == 1); int si_is_vector = (nargin == 4 && (args(3).rows () == 1 || args(3).columns () == 1)); if (args(0).is_complex_type () || args(1).is_complex_type () || args(2).is_complex_type () || (nargin == 4 && args(3).is_complex_type ())) { ComplexColumnVector b = args(0).complex_vector_value (); ComplexColumnVector a = args(1).complex_vector_value (); ComplexColumnVector x = args(2).complex_vector_value (); if (! error_state) { ComplexColumnVector si; if (nargin == 3) { int a_len = a.length (); int b_len = b.length (); int si_len = (a_len > b_len ? a_len : b_len) - 1; si.resize (si_len, 0.0); } else si = args(3).complex_vector_value (); if (! error_state) { ComplexColumnVector y (filter (b, a, x, si)); if (nargout == 2) { if (si_is_vector) retval (1) = octave_value (si, (args(3).columns () == 1)); else retval (1) = si; } if (x_is_vector) retval (0) = octave_value (y, (args(2).columns () == 1)); else retval (0) = y; } else error (errmsg); } else error (errmsg); } else { ColumnVector b = args(0).vector_value (); ColumnVector a = args(1).vector_value (); ColumnVector x = args(2).vector_value (); if (! error_state) { ColumnVector si; if (nargin == 3) { int a_len = a.length (); int b_len = b.length (); int si_len = (a_len > b_len ? a_len : b_len) - 1; si.resize (si_len, 0.0); } else si = args(3).vector_value (); if (! error_state) { ColumnVector y (filter (b, a, x, si)); if (nargout == 2) { if (si_is_vector) retval (1) = octave_value (si, (args(3).columns () == 1)); else retval (1) = si; } if (x_is_vector) retval (0) = octave_value (y, (args(2).columns () == 1)); else retval (0) = y; } else error (errmsg); } else error (errmsg); } return retval; } template MArray filter (MArray&, MArray&, MArray&, MArray&); template MArray filter (MArray&, MArray&, MArray&); template MArray filter (MArray&, MArray&, MArray&, MArray&); template MArray filter (MArray&, MArray&, MArray &); /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */