Client-Side JavaScript
Reference

Netscape Communications Corporation ("Netscape") and its licensors retain all ownership rights to the software programs
offered by Netscape (referred to herein as "Software") and related documentation. Use of the Software and related
documentation is governed by the license agreement accompanying the Software and applicable copyright law.

Your right to copy this documentation is limited by copyright law. Making unauthorized copies, adaptations, or compilation
works is prohibited and constitutes a punishable violation of the law. Netscape may revise this documentation from time to
time without notice.

THIS DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL NETSCAPE BE
LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND ARISING FROM ANY
ERROR IN THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION ANY LOSS OR INTERRUPTION OF BUSINESS,
PROFITS, USE, OR DATA.

The Software and documentation are copyright ©1994-1999 Netscape Communications Corporation. All rights reserved.
Netscape, Netscape Navigator, Netscape Certificate Server, Netscape DevEdge, Netscape FastTrack Server, Netscape ONE,
SuiteSpot and the Netscape N and Ship’s Wheel logos are registered trademarks of Netscape Communications Corporation in
the United States and other countries. Other Netscape logos, product names, and service names are also trademarks of
Netscape Communications Corporation, which may be registered in other countries. JavaScript is a trademark of Sun
Microsystems, Inc. used under license for technology invented and implemented by Netscape Communications Corporation.
Other product and brand names are trademarks of their respective owners.

The downloading, exporting, or reexporting of Netscape software or any underlying information or technology must be in
full compliance with all United States and other applicable laws and regulations. Any provision of Netscape software or
documentation to the U.S. Government is with restricted rights as described in the license agreement accompanying Netscape
software.

{ﬁ Recycled and Recyclable Paper

Version 1.3
©1999 Netscape Communications Corporation. All Rights Reserved

Printed in the United States of America. 00 99 98 5 4 3 2 1

Netscape Communications Corporation, 501 East Middlefield Road, Mountain View, CA 94043

New Features in this Release

JavaScript version 1.3 provides the following new features and enhancements:

ECMA compliance. JavaScript 1.3 is fully compatible with ECMA-262. See
the Client-Side JavaScript Guide for details.

Unicode support. The Unicode character set can be used for all known
encoding, and you can use the Unicode escape sequence in string literals.
See escape and unescape . See the Client-Side JavaScript Guide for
details.

Changes to the Array object.

e When you specify a single numeric parameter with the Array
constructor, you specify the initial length of the array.

e The push method returns the new length of the array rather than the last
element added to the array.

e The splice method always returns an array containing the removed
elements, even if only one element is removed.

e The toString method joins an array and returns a string containing
each array element separated by commas, rather than returning a string
representing the source code of the array.

e The length property contains an unsigned, 32-bit integer with a value

less than 232,

4 Client-Side JavaScript Reference

Changes to the Date object.

Removed platform dependencies to provide a uniform behavior across
platforms.

Changed the range for dates to -100,000,000 days to 100,000,000 days
relative to 01 January, 1970 UTC.

Added a milliseconds parameter to the Date constructor.

Added the getFullYear | setFullyear | getMilliseconds , and
setMilliseconds methods.

Added the getUTCDate , getUTCDay, getUTCFullYear
getUTCHours , getUTCMilliseconds , getUTCMinutes
getUTCMonth | getUTCSeconds , setUTCDate , setUTCFullYear
setUTCHours |, setUTCMilliseconds , setUTCMinutes
setUTCMonth | setUTCSeconds , and toUTCString methods.

Added a day parameter to the setMonth method.

Added minutes, seconds, and milliseconds parameters to the setHours
method.

Added seconds and milliseconds parameters to the setMinutes
method.

Added a milliseconds parameter to the setSeconds method.
Added a milliseconds parameter to the UTCmethod.

Deprecated the getYear , setYear , and toGMTString methods.

Changes to the Function object.

Added the apply method, which allows you to apply a method of
another object in the context of a different object (the calling object).

Added the call method, which allows you to call (execute) a method
of another object in the context of a different object (the calling object).

Deprecated the arguments.caller property.

Changes to the String object.

e The charCodeAt and fromCharCode methods use Unicode values
rather than ISO-Latin-1 values.

e Thereplace method supports the nesting of a function in place of the
second argument.

New method toSource. The toSource method returns a string
representing the source code of the object. See Array.toSource
Boolean.toSource , Date.toSource , Function.toSource ,
Number.toSource , Object.toSource , RegExp.toSource |, and
String.toSource

)

New top-level properties Infinity, NaN, and undefined. Infinity isa
numeric value representing infinity. NaNis a value representing Not-A-
Number. undefined is the value undefined.

New top-level function isFinite. isFinite evaluates an argument to
determine whether it is a finite number.

Changes to the top-level eval function. You should not indirectly use the
eval function by invoking it via a name other than eval .

New strict equality operators === and !==. The === (strict equal)
operator returns true if the operands are equal and of the same type. The
== (strict not equal) operator returns true if the operands are not equal
and/or not of the same type. See “Comparison Operators” on page 635 and
“Using the Equality Operators” on page 637.

Changes to the equality operators == and !=. The use of the == (equal)
and I= (not equal) operators reverts to the JavaScript 1.1 implementation. If
the two operands are not of the same type, JavaScript attempts to convert
the operands to an appropriate type for the comparison. See “Using the
Equality Operators” on page 637.

6 Client-Side JavaScript Reference

Changes to the behavior of conditional tests.

You should not use simple assignments in a conditional statement; for
example, do not specify the condition if(x = y) . Previous JavaScript
versions converted if(x = y) toif(x == y) |, but 1.3 generates a
runtime error. See “if...else” on page 623.

Any object whose value is not undefined or null | including a
Boolean object whose value is false, evaluates to true when passed to a
conditional statement. See “Boolean” on page 51.

The JavaScript console. The JavaScript console is a window that can
display all JavaScript error messages. Then, when a JavaScript error occurs,
the error message is directed to the JavaScript console and no dialog box
appears. See the Client-Side JavaScript Guide for details.

New Features in this Release ..o, 3

About this BOOKcooooiiiiiiiiii 13
New Features in this REleasecccccviiiiiiiiiiiiiiiii 13
What You Should Already KNOWcoociiiiiiiiiiiiiei e 13
JAVASCIIPE VEISIONS .ttt 14
Where to Find JavaScript Informationcoccooviiiiiiiiiiii i 15
DOCUMENT CONVEINTOTS ...vviitieiiiieiiest ettt ete et ieseeseeteese et essess e 16

Part | Object Reference

Chapter 1 Objects, Methods, and Properties 19
ANICRIOL oo e e 20
APPIEL e 25
AATCA o e 27
ATTAY oo 28
BOOICAN ..ottt 51
BULLOTL L.ttt et ettt 56
CRECKDOX ..o e 64
DAl 72
AOCUIMENE L.oiiiiiiiii ettt e e e e e e e ettt e e e e eaabaaee e 108
1S < o L O T OO P PSP P PR UUPRRURPPRRPPTPO 143
FIleUPloadoooii e 151
FOIM Lo 157
FIAME oot 168
FUNCUON 1t 169
HIAAEN 1t 190
HIESEOTY ettt ettt 194
TIMAGE i 201
JAVEA ottt ettt 214

Contents vii

JAVAALTAY oottt et 215

JAVACIASS ..veeiiiiie e e 218
JAVAODIECL .ttt 219
JAVAPACKAZE ..iivviiiiiiiiiiie e 221
LAYOT o 222
LENIK s 238
LOCALIONL ..ttt e 251
AT Lot 269
MIMETYPE ottt 288
TYAVIGATOT oieiiiiiiiiiiiiit ettt ettt e e e e e ettt e e e e 292
DYESCADE .ttt eeiie it eette et ettt ettt et e et e ettt ettt ettt 303
INUITIDET .ttt ettt ettt ettt ettt 304
ODJECE ittt 313
(@) 0] 5o) s R USSP SRR PUPRPP 324
PACKAGES .ottt 333
PaASSWOIT ..ot 337
PLIUGIN oot 344
RAGIO s 349
REGEXD ittt 359
RESEU ot 381
L6 (TSl s NP P PP UPPSOPP 389
SCLECT ettt 392
SELINIE ettt 404
UYL et 442
SUDIMUL Lttt ettt 468
L ST 's E RSSO PP USSP PR 475
TTEXE ettt ettt ettt ettt bttt sttt ettt r e en ettt 476
TTEXEATEA ..ttt ettt ettt ettt ettt ettt e ettt et e ea et et e eae e 485
WATMAOW 1ttt ettt ettt 496

viii Client-Side JavaScript Reference

ESCAPE vttt ettt ettt etttk h sttt ettt sttt er e a ettt ens 556
VAL Lottt a e 558
TOEINLY ©eovviie ettt 560
ISFINITE ..ot e 561
ISINAN Lottt ettt 561
INAN et 562
INUMDET .o 563
PALSEFLOALiiiiiiiii e 564
PALSEINT ©.ooviiie ittt ettt ettt ettt 565
SEIITIE 1ottt ettt ettt ettt ettt h ettt ettt ettt 567
(7211 (AT UUR ST 568
UNAEFINEA ..o 569
UTIESCAPE .vvvvevteetesitetieeteetteteett st e teeae e b e ess st e aees et ebs st ts s et e se et e easenb e ene s 569
1872172 1o | A PP PPRUPPRR 570
Chapter 3 Event Handlers ..., 573
ONLADOIT .ottt ettt 575
ONBIUL .o e 576
ONCRANZE ..viiiiiiii ettt e ettt e 578
ONCIICK ottt a e 579
ONDDICHCK oviiiiiiiiiiii et 582
ONDIAZDITOPD ittt 583
ONEITOL 1ottt ettt ettt e et e et e et eesneeeane 584
ONFOCUS ottt ettt e e e e e e et ee e e e e e e e 587
ONKEYDIOWIL ..ottt 589
ONKEYPIESS ..iiieiiiiiii ettt 590
ONKEYUD ittt 592
0301 oY I K U O U O OO PP PP U UPPURRUPPPPRIN 593
ONMOUSEDOWIL ...ooviiviiiiiii ettt 596
ONIMOUSEMOVE .ottt e e ettt e e e e e ettt et e e e e e e e e ettt taeeeeaeaeaeennnes 599
ONMOUSEOUL ..ottt ettt ettt 600
ONMOUSEOVETiiuiiiiieie e 601
ONMOUSEUD ..ttt s ettt eae ettt ene e 602

Contents ix

OMNRESELiviiiie ettt ettt 605
ONRESIZE .o 606
ONSEIECE ..ottt 607
ONSUDITHL .ot 608
ONUNIOAA ... 609

Part 2 Language Elements

Chapter 4 State€MENtSocooooviiiiiiiiieeeeeeeeeee e 613
DICAK oo 615
COMMUMIEIIE ...t e ettt e et e et ettt 616
CONTIMUE ...uiiii ettt ettt ettt et e et ettt 617
O WHILE oo 618
EXPOTT 1otittietitt ettt ettt ettt a ettt ettt et h et et b et et s et eae ettt 619
T e 620
1) S | o KOOSO OO R UT NP RUUPUPRRUPUTRRPRON 621
FUNCHON Lo e 622
HEL €IS oo 623
TIMIPOTT vttt ettt ettt ettt ettt ettt ettt et e et ettt et et ene e 624
TADEL oo 625
TEUUITL ooiuiie ettt 625
SWILCHL L.t 626
VAT oot 627
WHILE oo 628
WAL e 629

x Client-Side JavaScript Reference

Chapter 5 OPEratorSccccooiiiiiiiiiiiiii et 631

ASSIGNMENT OPETALOTS .veoviiiiiiiiiiiieiiete ettt ettt ettt ese e 634
ComMPATiSON OPETATOTS ..eeiiiiiiiiiiiiiiiiie ettt e e ettt e e e s 635
Using the EQUality OPEratorsccociiviiiioiieeiieriseee oo, 637
ATITNMELIC OPEIATOLS .viviiviiiiieiiiie ettt ettt ettt eee s 638
90 (MOAUIUS) .ottt 638
F (INCTEIMEIID) ittt ettt 639
== (DIECTEMEND) .oiiviiiiiiieiie ettt ettt ettt er et 639
- (UNATY NEGATON) ©.ivvivieeeeeieeceii et 639
BItWiSE OPEIALOTS ...iviiiviiiiiiiietieiieiie ettt ettt ettt et 640
Bitwise LOZICal OPEIAtOrSc.ccioiiiiiiiiiiiiiiiee ettt 641
Bitwise Shift OPEratorsccoocvoiiiiiiiiiie it 641
LOGICAL OPETALOTS ..vviviivievieiiiieie ettt ettt 643
SEIANG OPEIALOTS .oovvivvieiiiieeieeieie et ie ettt ettt et et et e e ete et ere s e sae e 645
SPECIAL OPETALOTS ..oviiviiviieieeietiieiee ettt ettt ettt 645
?: (Conditional OPETATOT) ...ioviiviiiiiiiiie ettt 645
, (COMMA OPETALOT) .oviiiiiiiiieit ettt 646
AELETE ..ttt 646
TUEW ottt ettt 648
TRES 1ttt ettt 650
EYPEOL ot 651
VORI ottt ettt 652

Chapter 6 Java Classes, Constructors, and Methods 655
JSEXCEPHON ..viiiiiieit ettt ettt 656
TSODIEECE ottt ettt ettt 658
PIUZIN oot 662

Contents xi

Part 4 Appendixes

Appendix A Reserved Wordsccccocoeiviiiiiioiiiiiiiiii 667
Appendix B Color Values ..., 669
Appendix C Netscape COOKIESc...ccocooiiiiiiiiiiiiiie 675
TIUAEX ..o 681

xii Client-Side JavaScript Reference

About this Book

JavaScript is Netscape’s cross-platform, object-based scripting language for
client and server applications. This book is a reference manual for the
JavaScript language, including both core and client-side JavaScript.

This preface contains the following sections:
¢ New Features in this Release

e What You Should Already Know

e JavaScript Versions

e Where to Find JavaScript Information

e Document Conventions

New Features in this Release

For a summary of JavaScript 1.3 features, see “New Features in this Release” on
page 3. Information on these features has been incorporated in this manual.

What You Should Already Know

This book assumes you have the following basic background:
e A general understanding of the Internet and the World Wide Web (WWW).
e Good working knowledge of HyperText Markup Language (HTML).

Some programming experience with a language such as C or Visual Basic is
useful, but not required.

JavaScript Versions

JavaScript Versions

Each version of Navigator supports a different version of JavaScript. To help
you write scripts that are compatible with multiple versions of Navigator, this
manual lists the JavaScript version in which each feature was implemented.

The following table lists the JavaScript version supported by different Navigator
versions. Versions of Navigator prior to 2.0 do not support JavaScript.

Table | JavaScript and Navigator versions

JavaScript version Navigator version
JavaScript 1.0 Navigator 2.0
JavaScript 1.1 Navigator 3.0
JavaScript 1.2 Navigator 4.0-4.05
JavaScript 1.3 Navigator 4.06-4.5

Each version of the Netscape Enterprise Server also supports a different version
of JavaScript. To help you write scripts that are compatible with multiple
versions of the Enterprise Server, this manual uses an abbreviation to indicate
the server version in which each feature was implemented.

Table 2 JavaScript and Netscape Enterprise Server versions

Abbreviation Enterpriser Server version
NES 2.0 Netscape Enterprise Server 2.0
NES 3.0 Netscape Enterprise Server 3.0

14 Client-Side JavaScript Reference

Where to Find JavaScript Information

Where to Find JavaScript Information

The client-side JavaScript documentation includes the following books:

e The Client-Side JavaScript Guide provides information about the JavaScript
language and its objects. This book contains information for both core and
client-side JavaScript.

e The Client-Side JavaScript Reference (this book) provides reference material
for the JavaScript language, including both core and client-side JavaScript.

If you are new to JavaScript, start with the Client-Side JavaScript Guide. Once
you have a firm grasp of the fundamentals, you can use the Client-Side
JavaScript Reference to get more details on individual objects and statements.

If you are developing a client-server JavaScript application, use the material in
the client-side books to familiarize yourself with core and client-side JavaScript.
Then, use the Server-Side JavaScript Guide and Server-Side JavaScript Reference
for help developing a server-side JavaScript application.

DevEdge, Netscape’s online developer resource, contains information that can
be useful when you’re working with JavaScript. The following URLs are of
particular interest:

e http://developer.netscape.com/docs/manuals/
javascript.html

The JavaScript page of the DevEdge library contains documents of interest
about JavaScript. This page changes frequently. You should visit it
periodically to get the newest information.

e http://developer.netscape.com/docs/manuals/

The DevEdge library contains documentation on many Netscape products
and technologies.

e http://developer.netscape.com

The DevEdge home page gives you access to all DevEdge resources.

Document Conventions

Document Conventions

Occasionally this book tells you where to find things in the user interface of
Navigator. In these cases, the book describes the user interface in Navigator 4.5.
The interface may be different in earlier versions of the browser.

JavaScript applications run on many operating systems; the information in this
book applies to all versions. File and directory paths are given in Windows
format (with backslashes separating directory names). For Unix versions, the
directory paths are the same, except that you use slashes instead of backslashes
to separate directories.

This book uses uniform resource locators (URLs) of the following form:

http:// server.domain | path | file .html

In these URLs, server represents the name of the server on which you run your
application, such as researchl or www domain represents your Internet
domain name, such as netscape.com or uiuc.edu ; path represents the
directory structure on the server; and file.html represents an individual file
name. In general, items in italics in URLs are placeholders and items in normal
monospace font are literals. If your server has Secure Sockets Layer (SSL)
enabled, you would use https instead of http in the URL.

This book uses the following font conventions:

e The monospace font is used for sample code and code listings, API and
language elements (such as method names and property names), file
names, path names, directory names, HTML tags, and any text that must be
typed on the screen. (Monospace italic font is used for placeholders
embedded in code.)

e [talic type is used for book titles, emphasis, variables and placeholders, and
words used in the literal sense.

e Boldface type is used for glossary terms.

16 Client-Side JavaScript Reference

Object Reference

Objects, Methods, and
Properties

Top-Level Properties and
Functions

Event Handlers

18 Client-Side JavaScript Reference

Chapter

Objects, Methods, and Properties

This chapter documents all the JavaScript objects, along with their methods and
properties. It is an alphabetical reference for the main features of JavaScript.

The reference is organized as follows:

e TFull entries for each object appear in alphabetical order; properties and
functions not associated with any object appear in Chapter 2, “Top-Level
Properties and Functions.”

Each entry provides a complete description for an object. Tables included
in the description of each object summarize the object’s methods and
properties.

e Full entries for an object’s methods and properties appear in alphabetical
order after the object’s entry.

These entries provide a complete description for each method or property,
and include cross-references to related features in the documentation.

Chapter |, Objects, Methods, and Properties 19

Anchor

Anchor

Created by

Description

Property
Summary

Method Summary

A place in a document that is the target of a hypertext link.
Client-side object
Implemented in JavaScript 1.0

JavaScript 1.2: added name, text |, X, and y properties
Using the HTML A tag or calling the String.anchor method. The JavaScript
runtime engine creates an Anchor object corresponding to each A tag in your
document that supplies the NAMEattribute. It puts these objects in an array in

the document.anchors property. You access an Anchor object by indexing
this array.

To define an anchor with the String.anchor method:

theString .anchor(nameAttribute)

where:
theString A String object.
nameAttribute A string.

To define an anchor with the A tag, use standard HTML syntax. If you specify
the NAMEattribute, you can use the value of that attribute to index into the
anchors array.

If an Anchor object is also a Link object, the object has entries in both the
anchors and links arrays.

Property Description

name A string specifying the anchor’s name.

text A string specifying the text of an anchor.

X The horizontal position of the anchor’s left edge, in pixels,

relative to the left edge of the document.

y The vertical position of the anchor’s top edge, in pixels, relative
to the top edge of the document.

This object inherits the watch and unwatch methods from Object

20 Client-Side JavaScript Reference

Examples

Anchor

Example 1: An anchor. The following example defines an anchor for the text
“Welcome to JavaScript”™:

<H2>Welcome to JavaScript</H2>

If the preceding anchor is in a file called intro.html | a link in another file
could define a jump to the anchor as follows:

Introduction

Example 2: anchors array. The following example opens two windows. The
first window contains a series of buttons that set location.hash in the second
window to a specific anchor. The second window defines four anchors named
“0,” “1,” “2,” and “3.” (The anchor names in the document are therefore 0, 1, 2,
... (document.anchors.length-1).) When a button is pressed in the first window,
the onClick event handler verifies that the anchor exists before setting
windowz2.location.hash to the specified anchor name.

linkl.html | which defines the first window and its buttons, contains the
following code:

<HTML>
<HEAD>
<TITLE>Links and Anchors: Window 1</TITLE>
</HEAD>
<BODY>
<SCRIPT>
window2=open("link2.html","secondLinkWindow",
"scrollbars=yes,width=250, height=400")
function linkToWindow(num) {
if (window2.document.anchors.length > num)
window?2.location.hash=num
else
alert("Anchor does not exist!")

}
</SCRIPT>

Chapter |, Objects, Methods, and Properties 21

Anchor

Links and Anchors

<FORM>

<P>Click a button to display that anchor in window #2

<P><INPUT TYPE="button" VALUE="0" NAME="link0_button"
onClick="linkToWindow(this.value)">

<INPUT TYPE="button" VALUE="1" NAME="link0_button"
onClick="linkToWindow(this.value)">

<INPUT TYPE="button" VALUE="2" NAME="link0_button"
onClick="linkToWindow(this.value)">

<INPUT TYPE="button" VALUE="3" NAME="link0_button"
onClick="linkToWindow(this.value)">

<INPUT TYPE="button" VALUE="4" NAME="link0_button"
onClick="linkToWindow(this.value)">

</[FORM>

</BODY>

</HTML>

link2.html | which contains the anchors, contains the following code:

<HTML>

<HEAD>

<TITLE>Links and Anchors: Window 2</TITLE>
</HEAD>

<BODY>

Some numbers (Anchor 0)
one

two

three

four

<P>Some colors (Anchor 1)
red

orange

yellow

green

<P>Some music types (Anchor 2)
R&B

Jazz

Soul

Reggae

Rock

<P>Some countries (Anchor 3)
Afghanistan

Brazil

Canada

Finland

India

</BODY>

</HTML>

Seealso Link

22 Client-Side JavaScript Reference

Anchor.name

name

Description

Examples

A string specifying the anchor’s name.
Property of Anchor
Read-only

Implemented in JavaScript 1.2

The name property reflects the value of the NAMExttribute.

The following example displays the name of the first anchor in a document:

alert("The first anchor i s " + document.anchors[0].name)

text

Description

A string specifying the text of an anchor.
Property of Anchor
Read-only

Implemented in JavaScript 1.2

The text property specifies the string that appears within the A tag.

Examples The following example displays the text of the first anchor in a document:

alert("The text of the first anchor i s " + document.anchors[0].text)
X
The horizontal position of the anchor’s left edge, in pixels, relative to the left
edge of the document.
Property of Anchor
Read-only
Implemented in JavaScript 1.2

See also Anchor.y

Chapter |, Objects, Methods, and Properties 23

Anchor.y

Yy

The vertical position of the anchor’s top edge, in pixels, relative to the top edge
of the document.
Property of Anchor

Read-only
Implemented in JavaScript 1.2

Seealso Anchor.x

24 Client-Side JavaScript Reference

Applet

Created by

Description

Property
Summary

Method Summary

Applet

Includes a Java applet in a web page.
Client-side object

Implemented in JavaScript 1.1

The HTML APPLETtag. The JavaScript runtime engine creates an Applet object
corresponding to each applet in your document. It puts these objects in an
array in the document.applets property. You access an Applet object by
indexing this array.

To define an applet, use standard HTML syntax. If you specify the NAME
attribute, you can use the value of that attribute to index into the applets
array. To refer to an applet in JavaScript, you must supply the MAYSCRIPT
attribute in its definition.

The author of an HTML page must permit an applet to access JavaScript by
specifying the MAYSCRIPTattribute of the APPLETtag. This prevents an applet
from accessing JavaScript on a page without the knowledge of the page author.
For example, to allow the musicPicker.class applet access to JavaScript on
your page, specify the following:

<APPLET CODE="musicPicker.class" WIDTH=200 HEIGHT=35
NAME="musicApp" MAYSCRIPT>

Accessing JavaScript when the MAYSCRIPTattribute is not specified results in an
exception.

For more information on using applets, see the LiveConnect information in the
Client-Side JavaScript Guide.

The Applet object inherits all public properties of the Java applet.

The Applet object inherits all public methods of the Java applet.

Chapter |, Objects, Methods, and Properties 25

Applet

Examples The following code launches an applet called musicApp :

<APPLET CODE="musicSelect.class" WIDTH=200 HEIGHT=35
NAME="musicApp" MAYSCRIPT>
</APPLET>

For more examples, see the LiveConnect information in the Client-Side
JavaScript Guide.

Seealso MimeType, Plugin

26 Client-Side JavaScript Reference

Area

Area

Defines an area of an image as an image map. When the user clicks the area,
the area’s hypertext reference is loaded into its target window. Area objects are
a type of Link object.

Client-side object

Implemented in JavaScript 1.1

For information on Area objects, see Link .

Chapter |, Objects, Methods, and Properties 27

Array

Array

Lets you work with arrays.
Core object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.3: added toSource method; changed length property;
changed push and splice methods.

ECMA version ECMA-262

Created by The Array object constructor:

new Array(arraylLength)
new Array(element0 , elementl , ..., elementN)

An array literal:
[element0 , elementl , ..., elementN]

JavaScript 1.2 when you specify LANGUAGE="JavaScriptl.2" in the
<SCRIPT> tag:

new Array(element0 , elementl , .., elementN ')

JavaScript 1.2 when you do not specify LANGUAGE="JavaScript1.2" in the
<SCRIPT> tag:

new Array([arrayLength 1)
new Array([element0 [, elementl |, ..., elementN 1]])

JavaScript 1.1:

new Array([arrayLength)
new Array([element0 [, elementl [, ..., elementN 1]])

Parameters
arrayLength The initial length of the array. You can access this value using the
length property. If the value specified is not a number, an array of
length 1 is created, with the first element having the specified value.
The maximum length allowed for an array is 4,294,967,295.

element N A list of values for the array’s elements. When this form is specified,
the array is initialized with the specified values as its elements, and
the array’s length property is set to the number of arguments.

28 Client-Side JavaScript Reference

Description

Array

An array is an ordered set of values associated with a single variable name.

The following example creates an Array object with an array literal; the
coffees array contains three elements and a length of three:

coffees = ['French Roast", "Columbian”, "Kona"]

Indexing an array. You index an array by its ordinal number. For example,
assume you define the following array:

myArray = new Array("Wind","Rain","Fire")

You then refer to the first element of the array as myArray[0] and the second
element of the array as myArray[1]

Specifying a single parameter. When you specify a single numeric parameter
with the Array constructor, you specify the initial length of the array. The
following code creates an array of five elements:

billingMethod = new Array(5)

The behavior of the Array constructor depends on whether the single
parameter is a number.

e If the value specified is a number, the constructor converts the number to
an unsigned, 32-bit integer and generates an array with the length
property (size of the array) set to the integer. The array initially contains no
elements, even though it might have a non-zero length.

e If the value specified is not a number, an array of length 1 is created, with
the first element having the specified value.

The following code creates an array of length 25, then assigns values to the first
three elements:

musicTypes = new Array(25)
musicTypes[0] = "R&B"
musicTypes[1] "Blues"
musicTypes[2] "Jazz"

You can construct a dense array of two or more elements starting with index 0
if you define initial values for all elements. A dense array is one in which each
element has a value. The following code creates a dense array with three
elements:

myArray = new Array("Hello", myVar, 3.14159)

Chapter |, Objects, Methods, and Properties 29

Array

Increasing the array length indirectly. An array’s length increases if you
assign a value to an element higher than the current length of the array. The
following code creates an array of length 0, then assigns a value to element 99.
This changes the length of the array to 100.

colors = new Array()
colors[99] = "midnightblue"

Creating an array using the result of a match. The result of a match
between a regular expression and a string can create an array. This array has
properties and elements that provide information about the match. An array is
the return value of RegExp.exec , String.match | and String.replace

To help explain these properties and elements, look at the following example
and then refer to the table below:

<SCRIPT LANGUAGE="JavaScriptl.2">

/IMatch one d followed by one or more b's followed by one d
//IRemember matched b's and the following d

/lignore case

myRe=/d(b+)(d)/i;
myArray = myRe.exec("cdbBdbsbz");

</SCRIPT>

The properties and elements returned from this match are as follows:

Property/Element Description Example

input A read-only property that reflects the cdbBdbsbz
original string against which the regular
expression was matched.

index A read-only property that is the zero-based 1
index of the match in the string.

[0] A read-only element that specifies the last dbBd
matched characters.

[1], ...In] Read-only elements that specify the [11=bB
parenthesized substring matches, if (2]=d

included in the regular expression. The
number of possible parenthesized
substrings is unlimited.

30 Client-Side JavaScript Reference

Array

Backward JavaScript 1.2. When you specify a single parameter with the Array
constructor, the behavior depends on whether you specify
LANGUAGE="JavaScriptl.2" in the <SCRIPT> tag:

Compatibility

Property
Summary

If you specify LANGUAGE="JavaScriptl.2" in the <SCRIPT> tag, a
single-element array is returned. For example, new Array(5) creates a
one-element array with the first element being 5. A constructor with a single
parameter acts in the same way as a multiple parameter constructor. You

cannot specify the length property of an Array using a constructor with
one parameter.

If you do not specify LANGUAGE="JavaScriptl.2" in the <SCRIPT>

tag, you specify the initial length of the array as with other JavaScript
versions.

JavaScript 1.1 and earlier. When you specify a single parameter with the

Array constructor, you specify the initial length of the array. The following
code creates an array of five elements:

billingMethod = new Array(5)

JavaScript 1.0. You must index an array by its ordinal number; for example

myArray[0]

Property Description

constructor Specifies the function that creates an object’s prototype.

index For an array created by a regular expression match, the zero-based
index of the match in the string.

input For an array created by a regular expression match, reflects the
original string against which the regular expression was matched.

length Reflects the number of elements in an array

prototype Allows the addition of properties to all objects.

Chapter |, Objects, Methods, and Properties 31

Array

Method Summary

Method

Description

concat
join
pop
push

reverse

shift
slice
splice
sort

toSource

toString

unshift

valueOf

Joins two arrays and returns a new array.
Joins all elements of an array into a string.
Removes the last element from an array and returns that element.

Adds one or more elements to the end of an array and returns the new
length of the array.

Transposes the elements of an array: the first array element becomes
the last and the last becomes the first.

Removes the first element from an array and returns that element
Extracts a section of an array and returns a new array.

Adds and/or removes elements from an array.

Sorts the elements of an array.

Returns an array literal representing the specified array; you can use
this value to create a new array. Overrides the Object.toSource
method.

Returns a string representing the array and its elements. Overrides the
Object.toString method.

Adds one or more elements to the front of an array and returns the
new length of the array.

Returns the primitive value of the array. Overrides the
Object.valueOf method.

In addition, this object inherits the watch and unwatch methods from

Object

32 Client-Side JavaScript Reference

Examples

See also

Array

Example 1. The following example creates an array, msgArray , with a length
of 0, then assigns values to msgArray[0] and msgArray[99] , changing the
length of the array to 100.

msgArray = new Array()
msgArray[0] = "Hello"
msgArray[99] = "world"
/I The following statement is true,
/I because defined msgArray[99] element.
if (msgArray.length == 100)
myVar="The length is 100."

See also the examples for onError

Example 2: Two-dimensional array. The following code creates a two-
dimensional array and assigns the results to myVar.

myVar="Multidimensional array test; "
a = new Array(4)
for (i=0 ;i < 4 i++) {
afi] = new Array(4)
for (=0 ;j < 4; j++) {
afilfi] = [+ T

}
for (i=0 ;i < 4 i++) {
str = "Row "+i+":"
for (=0 ;j < 4; j++) {
str +=al[i][j]
myVar += str +"; "
}

This example assigns the following string to myVar (line breaks are used here
for readability):

Multidimensional array test;
Row 0:[0,0][0,1][0,2][0,3];
Row 1:[1,0][1,1][1,2][1,3];
Row 2:[2,0][2,1][2,2][2,3];
Row 3:[3,0][3,1][3,2][3,3];

Image

Chapter |, Objects, Methods, and Properties 33

Array.concat

concat

Joins two arrays and returns a new array.
Method of Array

Implemented in JavaScript 1.2, NES 3.0

Syntax concat(arrayName2 , arrayName3 , ..., arrayNameN)

Parameters

arrayName?2... Arrays to concatenate to this array.
arrayName N

Description concat does not alter the original arrays, but returns a “one level deep” copy
that contains copies of the same elements combined from the original arrays.
Elements of the original arrays are copied into the new array as follows:

e Object references (and not the actual object): concat copies object
references into the new array. Both the original and new array refer to the
same object. If a referenced object changes, the changes are visible to both
the new and original arrays.

e Strings and numbers (not String and Number objects): concat copies
strings and numbers into the new array. Changes to the string or number in
one array does not affect the other arrays.

If a new element is added to either array, the other array is not affected.

The following code concatenates two arrays:

alpha=new Array("a","b","c")
numeric=new Array(1,2,3)
alphaNumeric=alpha.concat(numeric) // creates array ['a","b","c",1,2,3]

The following code concatenates three arrays:

num1=[1,2,3]
num2=[4,5,6]
num3=[7,8,9]
nums=num1l.concat(num2,num3) // creates array [1,2,3,4,5,6,7,8,9]

34 Client-Side JavaScript Reference

Array.constructor

constructor

Description

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

See Object.constructor

index

For an array created by a regular expression match, the zero-based index of the
match in the string.

Property of Array

Static

Implemented in JavaScript 1.2, NES 3.0

input

For an array created by a regular expression match, reflects the original string
against which the regular expression was matched.

Property of Array

Static

Implemented in JavaScript 1.2, NES 3.0

Chapter |, Objects, Methods, and Properties 35

Array .join

join

Joins all elements of an array into a string.

Method of Array
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

Syntax join(separator)

Parameters

separator Specifies a string to separate each element of the array. The separator is
converted to a string if necessary. If omitted, the array elements are
separated with a comma.

Description The string conversions of all array elements are joined into one string.

Examples The following example creates an array, a, with three elements, then joins the

array three times: using the default separator, then a comma and a space, and
then a plus.

a = new Array("Wind","Rain","Fire")

myVarl=a.join() /I assigns "Wind,Rain,Fire" to myVarl
myVar2=a.join(", ") // assigns "Wind, Rain, Fire" to myVarl
myVar3=a.join(" + ") // assigns "Wind + Rain + Fire" to myVarl

See also Array.reverse

36 Client-Side JavaScript Reference

Array length

length

Description

Examples

An unsigned, 32-bit integer that specifies the number of elements in an array.
Property of Array
Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.3: length is an unsigned, 32-bit integer with a value
less than 2%,

ECMA version ECMA-262

The value of the length property is an integer with a positive sign and a value
less than 2 to the 32 power (239).

You can set the length property to truncate an array at any time. When you
extend an array by changing its length property, the number of actual
elements does not increase; for example, if you set length to 3 when it is
currently 2, the array still contains only 2 elements.

In the following example, the getChoice function uses the length property to
iterate over every element in the musicType array. musicType is a select
element on the musicForm form.

function getChoice() {
for (var i = 0; i < document.musicForm.musicType.length; i++) {
if (document.musicForm.musicType.options][i].selected == true) {
return document.musicForm.musicType.options[i].text

}
}

The following example shortens the array statesUS to a length of 50 if the
current length is greater than 50.

if (statesUS.length > 50) {
statesUS.length=50
}

Chapter |, Objects, Methods, and Properties 37

Array.pop

pop

Syntax
Parameters

Example

See also

Removes the last element from an array and returns that element. This method
changes the length of the array.
Method of Array

Implemented in JavaScript 1.2, NES 3.0

pop()

None.

The following code creates the myFish array containing four elements, then
removes its last element.

myFish = ["angel", "clown", "mandarin”, "surgeon'];
popped = myFish.pop();

push | shift | unshift

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype

Property of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

38 Client-Side JavaScript Reference

Array.push

push

Syntax

Parameters

Description
Backward
Compatibility

Example

See also

Adds one or more elements to the end of an array and returns the new length
of the array. This method changes the length of the array.
Method of Array

Implemented in JavaScript 1.2, NES 3.0

JavaScript 1.3: push returns the new length of the array rather than
the last element added to the array.

push(elementl , ..., elementN)
elementl, ..., The elements to add to the end of the array.
element N

The behavior of the push method is analogous to the push function in Perl 4.
Note that this behavior is different in Perl 5.

JavaScript 1.2. The push method returns the last element added to an array.

The following code creates the myFish array containing two elements, then
adds two elements to it. After the code executes, pushed contains 4. (In
JavaScript 1.2, pushed contains “lion” after the code executes.)

myFish
pushed

["angel”, "clown"];
myFish.push("drum”, "lion");

pop, shift , unshift

Chapter |, Objects, Methods, and Properties 39

Array.reverse

reverse

Syntax
Parameters

Description

Transposes the elements of an array: the first array element becomes the last
and the last becomes the first.

Method of Array

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

reverse()

None

The reverse method transposes the elements of the calling array object.

Examples The following example creates an array myArray , containing three elements,
then reverses the array.
myArray = new Array("one", "two", "three")
myArray.reverse()
This code changes myArray so that:
e myArray[0] is “three”
e myArray[l] is “two”
e myArray[2] is “one”
Seealso Array.join , Array.sort
shift
Removes the first element from an array and returns that element. This method
changes the length of the array.
Method of Array
Implemented in JavaScript 1.2, NES 3.0
Syntax shift()
Parameters None.

40 Client-Side JavaScript Reference

Array.slice

Example The following code displays the myFish array before and after removing its first
element. It also displays the removed element:
myFish = ["angel", "clown", "mandarin”, "surgeon'];
document.writeln("myFish before ;" + myFish);
shifted = myFish.shift();
document.writeln("myFish after . "+ myFish);
document.writeln("Removed this element ;" + shifted);
This example displays the following:
myFish before: ["angel”, "clown", "mandarin”, "surgeon"]
myFish after: ["clown”, "mandarin”, "surgeon"]
Removed this element: angel

See also pop, push, unshift
slice
Extracts a section of an array and returns a new array.
Method of Array
Implemented in JavaScript 1.2, NES 3.0

Syntax slice(begin [, end])
Parameters

begin Zero-based index at which to begin extraction.
end Zero-based index at which to end extraction:
e slice extracts up to but not including end. slice(1,4) extracts
the second element through the fourth element (elements indexed 1,
2, and 3)

e As a negative index, end indicates an offset from the end of the
sequence. slice(2,-1) extracts the third element through the
second to last element in the sequence.

e If end is omitted, slice extracts to the end of the sequence.

Chapter |, Objects, Methods, and Properties 41

Array.slice

Description slice does not alter the original array, but returns a new “one level deep”
copy that contains copies of the elements sliced from the original array.
Elements of the original array are copied into the new array as follows:

e For object references (and not the actual object), slice copies object
references into the new array. Both the original and new array refer to the
same object. If a referenced object changes, the changes are visible to both
the new and original arrays.

e For strings and numbers (not String and Number objects), slice copies
strings and numbers into the new array. Changes to the string or number in
one array does not affect the other array.

If a new element is added to either array, the other array is not affected.

Example In the following example, slice creates a new array, newCar, from myCar.
Both include a reference to the object myHonda. When the color of myHonda is
changed to purple | both arrays reflect the change.

<SCRIPT LANGUAGE="JavaScriptl.2">

/IUsing slice, create newCar from myCar.

myHonda = {color:"red",wheels:4,engine:{cylinders:4,size:2.2}}
myCar = [myHonda, 2, “cherry condition”, "purchased 1997"]
newCar = myCar.slice(0,2)

/I\Write the values of myCar, newCar, and the color of myHonda
/I referenced from both arrays.

document.write("myCa r="+ myCar + "
")

document.write("newCa r="+ newCar + "
")
document.write("myCar[0].colo r =" + myCar[0].color + "
")
document.write("newCar[0].colo r =" + newCar[0].color + "

")

/IChange the color of myHonda.
myHonda.color = "purple"
document.write("The new color of my Honda is

+ myHonda.color +

"

")
//Write the color of myHonda referenced from both arrays.
document.write("myCar[0].colo r =" + myCar[0].color + "
")
document.write("newCar[0].colo r =" + newCar[0].color + "
")
</SCRIPT>

42 Client-Side JavaScript Reference

Array.sort

This script writes:

myCar = [{color:"red", wheels:4, engine:{cylinders:4, size:2.2}}, 2,
"cherry condition", "purchased 1997"]

newCar = [{color:"red", wheels:4, engine:{cylinders:4, size:2.2}}, 2]

myCar[0].color = red newCar[0].color = red

The new color of my Honda is purple

myCar[0].color = purple

newCar[0].color = purple

sort

Syntax

Parameters

Description

Sorts the elements of an array.
Method of Array

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: modified behavior.

ECMA version ECMA-262

sort(compareFunction)

compareFunction Specifies a function that defines the sort order. If omitted, the array
is sorted lexicographically (in dictionary order) according to the
string conversion of each element.

If compareFunction is not supplied, elements are sorted by converting them to
strings and comparing strings in lexicographic (“dictionary” or “telephone
book,” not numerical) order. For example, “80” comes before “9” in
lexicographic order, but in a numeric sort 9 comes before 80.

If compareFunction is supplied, the array elements are sorted according to the
return value of the compare function. If a and b are two elements being
compared, then:

e If compareFunction(a, b) is less than 0, sort b to a lower index than a.

e If compareFunction(a, b) returns 0, leave a and b unchanged with
respect to each other, but sorted with respect to all different elements.

e If compareFunction(a, b) is greater than 0, sort b to a higher index than
a.

Chapter |, Objects, Methods, and Properties 43

Array.sort

So, the compare function has the following form:

function compare(a, b) {
if (a is less than b by some ordering criterion)

return -1

if (a is greater than b by the ordering criterion)
return 1

/I a must be equal to b

return O

}

To compare numbers instead of strings, the compare function can simply
subtract b from a:

function compareNumbers(a, b) {
retur na-»b

}

JavaScript uses a stable sort: the index partial order of a and b does not change
if a and b are equal. If a’s index was less than b’s before sorting, it will be after
sorting, no matter how a and b move due to sorting.

The behavior of the sort method changed between JavaScript 1.1 and
JavaScript 1.2.

In JavaScript 1.1, on some platforms, the sort method does not work. This
method works on all platforms for JavaScript 1.2.

In JavaScript 1.2, this method no longer converts undefined elements to null;
instead it sorts them to the high end of the array. For example, assume you
have this script:

<SCRIPT>

a = new Array();
a[0] = "Ant",
a[5] = "Zebra";

function writeArray(x) {
for (i = 0; i < x.length; i++) {
document.write(x[i]);
if (i < x.length-1) document.write(", ");

}

writeArray(a);

a.sort();
document.write("

");
writeArray(a);

</SCRIPT>

44 Client-Side JavaScript Reference

Array.sort

In JavaScript 1.1, JavaScript prints:

ant, null, null, null, null, zebra
ant, null, null, null, null, zebra

In JavaScript 1.2, JavaScript prints:

ant, undefined, undefined, undefined, undefined, zebra
ant, zebra, undefined, undefined, undefined, undefined

Examples The following example creates four arrays and displays the original array, then
the sorted arrays. The numeric arrays are sorted without, then with, a compare
function.

<SCRIPT>

stringArray = new Array("Blue","Humpback","Beluga")
numericStringArray = new Array("80","9","700")
numberArray = new Array(40,1,5,200)
mixedNumericArray = new Array("80","9","700",40,1,5,200)

function compareNumbers(a, b) {
retur na-»b

}

document.write("stringArray: " + stringArray.join() +"
")
document.write("Sorted: " + stringArray.sort() +"<P>")

document.write("numberArray: " + numberArray.join() +"
")

document.write("Sorted without a compare function: " + numberArray.sort() +"
")
document.write("Sorted with compareNumbers: " + numberArray.sort(compareNumbers)
+1<P>")

document.write("numericStringArray: " + numericStringArray.join() +"
")
document.write("Sorted without a compare function: " + numericStringArray.sort()
+'
")

document.write("Sorted with compareNumbers: " +
numericStringArray.sort(compareNumbers) +"<P>")

document.write("mixedNumericArray: " + mixedNumericArray.join() +"
")
document.write("Sorted without a compare function: " + mixedNumericArray.sort()
+'
")

document.write("Sorted with compareNumbers: " +
mixedNumericArray.sort(compareNumbers) +"'
")
</SCRIPT>

Chapter |, Objects, Methods, and Properties 45

Array.splice

This example produces the following output. As the output shows, when a
compare function is used, numbers sort correctly whether they are numbers or
numeric strings.

stringArray: Blue,Humpback,Beluga
Sorted: Beluga,Blue,Humpback

numberArray: 40,1,5,200

Sorted without a compare function: 1,200,40,5

Sorted with compareNumbers: 1,5,40,200

numericStringArray: 80,9,700

Sorted without a compare function: 700,80,9

Sorted with compareNumbers: 9,80,700

mixedNumericArray: 80,9,700,40,1,5,200

Sorted without a compare function: 1,200,40,5,700,80,9

Sorted with compareNumbers: 1,5,9,40,80,200,700
Seealso Array.join , Array.reverse

splice

Changes the content of an array, adding new elements while removing old
elements.
Method of Array

Implemented in JavaScript 1.2, NES 3.0

JavaScript 1.3: returns an array containing the removed elements

Syntax splice(index , howMany, [elementl]], ..., elementN 1)
Parameters
index Index at which to start changing the array.
howMany An integer indicating the number of old array elements to

remove. If howMany is 0, no elements are removed. In this
case, you should specify at least one new element.

elementl, ..., The elements to add to the array. If you don'’t specify any
element N elements, splice simply removes elements from the array.

Description If you specify a different number of elements to insert than the number you're
removing, the array will have a different length at the end of the call.

The splice method returns an array containing the removed elements. If only
one element is removed, an array of one element is returned

46 Client-Side JavaScript Reference

Backward
Compatibility

Examples

Array.splice

JavaScript 1.2. The splice method returns the element removed, if only one
element is removed (howMany parameter is 1); otherwise, the method returns
an array containing the removed elements.

The following script illustrate the use of splice

<SCRIPT LANGUAGE="JavaScriptl.2">

myFish = ['angel", "clown", "mandarin”, "surgeon';
document.writeln("myFish . "+ myFish + "
");

removed = myFish.splice(2, 0, "drum");
document.writeln("After adding 1 ;" + myFish);
document.writeln("removed is . " + removed + "
");

removed = myFish.splice(3, 1)

document.writeln("After removing 1 ;" + myFish);
document.writeln("removed is © "+ removed + "
");
removed = myFish.splice(2, 1, "trumpet")
document.writeln("After replacing 1 ;" + myFish);
document.writeln("removed is © " + removed + "
");
removed = myFish.splice(0, 2, "parrot’, "anemone", "blue")
document.writeln("After replacing 2 o "+ myFish);
document.writeln("removed is © "+ removed);
</SCRIPT>

This script displays:
myFish: ['angel”, "clown", "mandarin”, "surgeon"]

After adding 1: ['angel”, "clown", "drum", "mandarin”, "surgeon"]
removed is: undefined

After removing 1: ['angel", "clown", "drum", "surgeon"]
removed is: mandarin

After replacing 1: ["angel”, "clown", "trumpet", "surgeon"]
removed is: drum

After replacing 2: ['parrot”, "anemone”, "blue", "trumpet", "surgeon"]
removed is: ['angel”, “clown"]

Chapter |, Objects, Methods, and Properties 47

Array.toSource

toSource

Syntax
Parameters

Description

Examples

See also

Returns a string representing the source code of the array.

Method of Array
Implemented in JavaScript 1.3
toSource()

None

The toSource method returns the following values:
e For the built-in Array object, toSource returns the following string
indicating that the source code is not available:

function Array() {
[native code]
}
e For instances of Array , toSource returns a string representing the source
code.

This method is usually called internally by JavaScript and not explicitly in code.
You can call toSource while debugging to examine the contents of an array.

To examine the source code of an array:

alpha = new Array("a", "b", "c")
alpha.toSource() //returns ["a", "b", "c"]

Array.toString

48 Client-Side JavaScript Reference

Array .toString

toString

Syntax
Parameters

Description

Returns a string representing the specified array and its elements.
Method of Array

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

toString()
None.

The Array object overrides the toString method of Object . For Array
objects, the toString method joins the array and returns one string
containing each array element separated by commas. For example, the
following code creates an array and uses toString to convert the array to a
string.

var monthNames = new Array("Jan","Feb","Mar","Apr")

myVar=monthNames.toString() // assigns "Jan,Feb,Mar,Apr" to myVar

JavaScript calls the toString method automatically when an array is to be
represented as a text value or when an array is referred to in a string
concatenation.

Backward JavaScript 1.2. In JavaScript 1.2 and earlier versions, toString returns a

Compatibility string representing the source code of the array. This value is the same as the

value returned by the toSource method in JavaScript 1.3 and later versions.
See also Array.toSource
unshift
Adds one or more elements to the beginning of an array and returns the new
length of the array.
Method of Array
Implemented in JavaScript 1.2, NES 3.0
Syntax arrayName.unshift(elementl ..., elementN ')
Parameters

elementl,..., The elements to add to the front of the array.
element N

Chapter |, Objects, Methods, and Properties 49

Array.valueOf

Example

See also

The following code displays the myFish array before and after adding elements
to it.

myFish = ["angel", "clown"];

document.writeln("myFish before ;" + myFish);

unshifted = myFish.unshift("drum", "lion");

document.writeln("myFish after . "+ myFish);
document.writeln("New length ;" + unshifted);

This example displays the following:

myFish before: ["angel”, "clown"]
myFish after: ["drum”, "lion", "angel", "clown"]
New length: 4

pop, push, shift

valueOf

Syntax
Parameters

Description

See also

Returns the primitive value of an array.
Method of Array

Implemented in JavaScript 1.1

ECMA version ECMA-262

valueOf()
None

The Array object inherits the valueOf method of Object . The valueOf
method of Array returns the primitive value of an array or the primitive value
of its elements as follows:

Object type of element Data type of returned value

Boolean Boolean
Number or Date number

All others string

This method is usually called internally by JavaScript and not explicitly in code.

Object.valueOf

50 Client-Side JavaScript Reference

Boolean

Created by

Parameters

Description

Boolean

The Boolean object is an object wrapper for a boolean value.
Core object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.3: added toSource method
ECMA version ECMA-262

The Boolean constructor:

new Boolean(value)

value The initial value of the Boolean object. The value is converted to a
boolean wvalue, if necessary. If value is omitted or is 0, -0, null, false, NaN
undefined, or the empty string (""), the object has an initial value of false.
All other values, including any object or the string "false” | create an
object with an initial value of true.

Do not confuse the primitive Boolean values true and false with the true and
false values of the Boolean object.

Any object whose value is not undefined or null | including a Boolean
object whose value is false, evaluates to true when passed to a conditional
statement. For example, the condition in the following if statement evaluates
to true

X = new Boolean(false);
if(x) //the condition is true

This behavior does not apply to Boolean primitives. For example, the condition
in the following if statement evaluates to false

x = false;
if(x) //the condition is false

Do not use a Boolean object to convert a non-boolean value to a boolean
value. Instead, use Boolean as a function to perform this task:

X
X

Boolean(expression) //preferred
new Boolean(expression) //don’'t use

Chapter |, Objects, Methods, and Properties 51

Boolean

Backward
Compatibility

Property
Summary

Method Summary

If you specify any object, including a Boolean object whose value is false, as
the initial value of a Boolean object, the new Boolean object has a value of
true.

myFalse=new Boolean(false) // initial value of false

g=new Boolean(myFalse) /linitial value of true
myString=new String("Hello") // string object
s=new Boolean(myString) /linitial value of true

In JavaScript 1.3 and later versions, do not use a Boolean object in place of a
Boolean primitive.

JavaScript 1.2 and earlier versions. When a Boolean object is used as the
condition in a conditional test, JavaScript returns the value of the Boolean
object. For example, a Boolean object whose value is false is treated as the
primitive value false, and a Boolean object whose value is true is treated as
the primitive value true in conditional tests. If the Boolean object is a false
object, the conditional statement evaluates to false

Property Description

constructor Specifies the function that creates an object’s prototype.
prototype Defines a property that is shared by all Boolean objects.
Method Description

toSource Returns an object literal representing the specified Boolean

object; you can use this value to create a new object. Overrides
the Object.toSource method.

toString Returns a string representing the specified object. Overrides the
Object.toString method.

valueOf Returns the primitive value of a Boolean object. Overrides the
Object.valueOf method.

In addition, this object inherits the watch and unwatch methods from
Object

52 Client-Side JavaScript Reference

Examples

Boolean.constructor

The following examples create Boolean objects with an initial value of false:

bNoParam = new Boolean()
bZero = new Boolean(0)

bNull = new Boolean(null)
bEmptyString = new Boolean("™)
bfalse = new Boolean(false)

The following examples create Boolean objects with an initial value of true:

btrue = new Boolean(true)
btrueString = new Boolean("true")
bfalseString = new Boolean("false")
bSuLin = new Boolean("Su Lin")

constructor

Description

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of Boolean

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

See Object.constructor

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype

Property of Boolean

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Chapter |, Objects, Methods, and Properties 53

Boolean.toSource

toSource

Returns a string representing the source code of the object.
Method of Boolean

Implemented in JavaScript 1.3

Syntax toSource()
Parameters None

Description The toSource method returns the following values:
e For the built-in Boolean object, toSource returns the following string
indicating that the source code is not available:

function Boolean() {
[native code]
}
e For instances of Boolean , toSource returns a string representing the
source code.

This method is usually called internally by JavaScript and not explicitly in code.

Seealso Object.toSource

toString

Returns a string representing the specified Boolean object.
Method of Boolean

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

Syntax toString()

Parameters None.

Description The Boolean object overrides the toString method of the Object object; it
does not inherit Object.toString . For Boolean objects, the toString
method returns a string representation of the object.

JavaScript calls the toString method automatically when a Boolean is to be
represented as a text value or when a Boolean is referred to in a string
concatenation.

54 Client-Side JavaScript Reference

Boolean.valueOf

For Boolean objects and values, the built-in toString method returns the
string "true" or "false” depending on the value of the boolean object. In the
following code, flag.toString returns "true"

var flag = new Boolean(true)
var myVar=flag.toString()

Seealso Object.toString
valueOf
Returns the primitive value of a Boolean object.
Method of Boolean
Implemented in JavaScript 1.1
ECMA version ECMA-262
Syntax valueOf()
Parameters None

Description

Examples

See also

The valueOf method of Boolean returns the primitive value of a Boolean
object or literal Boolean as a Boolean data type.

This method is usually called internally by JavaScript and not explicitly in code.

X = new Boolean();
myVar=x.valueOf() /lassigns false to myVar

Object.valueOf

Chapter |, Objects, Methods, and Properties 55

Button

Button

A push button on an HTML form.
Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added type property; added onBlur and onFocus
event handlers; added blur and focus methods.

JavaScript 1.2: added handleEvent method.

Created by The HTML INPUT tag, with "button" as the value of the TYPEattribute. For a
given form, the JavaScript runtime engine creates appropriate Button objects
and puts these objects in the elements array of the corresponding Form
object. You access a Button object by indexing this array. You can index the
array either by number or, if supplied, by using the value of the NAMEattribute.

Event handlers ¢ onBlur
e onClick
e onFocus
e onMouseDown
e onMouseUp

Description A Button object on a form looks as follows:

I Netscape - [Login] | |¢
User name: |kkelley

| Log in ‘ | Cancel i

Button object

A Button object is a form element and must be defined within a FORMag.

The Button object is a custom button that you can use to perform an action
you define. The button executes the script specified by its onClick event
handler.

56 Client-Side JavaScript Reference

Property
Summary

Method Summary

Button.blur

Property Description

form Specifies the form containing the Button object.
name Reflects the NAMEttribute.

type Reflects the TYPE attribute.

value Reflects the VALUEattribute.

Method Description

blur Removes focus from the button.

click Simulates a mouse-click on the button.

focus Gives focus to the button.

handleEvent

Invokes the handler for the specified event.

In addition, this object inherits the watch and unwatch methods from

The following example creates a button named calcButton . The text
“Calculate” is displayed on the face of the button. When the button is clicked,
the function calcFunction is called.

<INPUT TYPE="button" VALUE="Calculate" NAME="calcButton"
onClick="calcFunction(this.form)">

Form, Reset , Submit

Object
Examples
See also
blur
Method of
Implemented in
Syntax blur()
Parameters None

Removes focus from the button.

Button

JavaScript 1.0

Chapter |, Objects, Methods, and Properties 57

Button.click

Examples The following example removes focus from the button element userButton:

userButton.blur()

This example assumes that the button is defined as

<INPUT TYPE="button" NAME="userButton">

See also Button.focus

click

Simulates a mouse-click on the button, but does not trigger the button’s
onClick event handler.
Method of Button

Implemented in JavaScript 1.0

Syntax click()
Parameters None.

Security Submitting a form to a mailto: or news: URL requires the
UniversalSendMail privilege. For information on security, see the Client-Side
JavaScript Guide.

focus

Navigates to the button and gives it focus.
Method of Button

Implemented in JavaScript 1.0

Syntax focus()
Parameters None.

See also Button.blur

58 Client-Side JavaScript Reference

Button.form

form

Description

Examples

An object reference specifying the form containing the button.
Property of Button

Read-only

Implemented in JavaScript 1.0

Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

Example 1. In the following example, the form myForm contains a Text object
and a button. When the user clicks the button, the value of the Text object is
set to the form’s name. The button’s onClick event handler uses this.form to
refer to the parent form, myForm.

<FORM NAME="myForm">

Form name:<INPUT TYPE="text" NAME="textl" VALUE="Beluga">

<p>

<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"
onClick="this.form.textl.value=this.form.name">

</FORM>

Example 2. The following example shows a form with several elements. When
the user clicks button2 | the function showElements displays an alert dialog
box containing the names of each element on the form myForm.

function showElements(theForm) {
str = "Form Elements of for m " + theForm.name + ": \n "
for (i = 0; i < theForm.length; i++)
str += theForm.elements[i.name + "\n"
alert(str)
}
</script>
<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="textl" VALUE="Beluga">
<p>
<INPUT NAME="button1l" TYPE="button" VALUE="Show Form Name"
onClick="this.form.textl.value=this.form.name">
<INPUT NAME="button2" TYPE="button" VALUE="Show Form Elements"
onClick="showElements(this.form)">
</FORM>

Chapter |, Objects, Methods, and Properties 59

Button.handleEvent

The alert dialog box displays the following text:

JavaScript Alert:

Form Elements of form myForm:
textl

buttonl

button2

Example 3. The following example uses an object reference, rather than the
this keyword, to refer to a form. The code returns a reference to myForm,
which is a form containing myButton .

document.myForm.myButton.form

Seealso Form
handleEvent
Invokes the handler for the specified event.
Method of Button
Implemented in JavaScript 1.2
Syntax handleEvent(event)
Parameters

Description

event The name of an event for which the object has an event handler.

For information on handling events, see the Client-Side JavaScript Guide.

name

Security

A string specifying the button’s name.
Property of Button

Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

60 Client-Side JavaScript Reference

Description

Examples

Button.name

The name property initially reflects the value of the NAMEattribute. Changing the
name property overrides this setting.

Do not confuse the name property with the label displayed on a button. The
value property specifies the label for the button. The name property is not
displayed on the screen; it is used to refer programmatically to the object.

If multiple objects on the same form have the same NAMEattribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Button element on the same form
have their NAMEattribute set to "myField" | an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {

var msgWindow=window.open("")

for (var i = 0; i <

newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")

}

See also

In the following example, the first statement creates a window called
netscapeWin . The second statement displays the value "netscapeHomePage"
in the Alert dialog box, because "netscapeHomePage" is the value of the
windowName argument of netscapeWin

netscapeWin=window.open("http://home.netscape.com","netscapeHomePage")

alert(netscapeWin.name)

Button.value

Chapter |, Objects, Methods, and Properties 61

Button.type

type

Examples

For all Button objects, the value of the type property is "button” . This
property specifies the form element’s type.
Property of Button

Read-only

Implemented in JavaScript 1.1

The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.forml.elements.length; i++) {
document.writeln("
type i s " + document.forml.elements]i].type)

}

value

Security

Description

A string that reflects the button’s VALUEattribute.
Property of Button

Read-only on Mac and UNIX; modifiable on Windows

Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

This string is displayed on the face of the button.

The value property is read-only for Macintosh and UNIX systems. On
Windows, you can change this property.

When a VALUEattribute is not specified in HTML, the value property is an
empty string.

Do not confuse the value property with the name property. The name property
is not displayed on the screen; it is used to refer programmatically to the
objects.

62 Client-Side JavaScript Reference

Examples

See also

Button.value

The following function evaluates the value property of a group of buttons and
displays it in the msgWindow window:

function valueGetter() {

}

var msgWindow=window.open("")
msgWindow.document.write("submitButton.value is " +
document.valueTest.submitButton.value + "
")
msgWindow.document.write("resetButton.value is " +
document.valueTest.resetButton.value + "
")
msgWindow.document.write("helpButton.value is " +
document.valueTest.helpButton.value + "
")
msgWindow.document.close()

This example displays the following values:

Query Submit
Reset
Help

The previous example assumes the buttons have been defined as follows:

<INPUT TYPE="submit" NAME="submitButton">
<INPUT TYPE="reset" NAME="resetButton">
<INPUT TYPE="button" NAME="helpButton" VALUE="Help">

Button.name

Chapter |, Objects, Methods, and Properties 63

Checkbox

Checkbox

A checkbox on an HTML form. A checkbox is a toggle switch that lets the user
set a value on or off.
Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added type property; added onBlur and onFocus
event handlers; added blur and focus methods.

JavaScript 1.2: added handleEvent method.

Created by The HTML INPUT tag, with "checkbox" as the value of the TYPE attribute. For
a given form, the JavaScript runtime engine creates appropriate Checkbox
objects and puts these objects in the elements array of the corresponding
Form object. You access a Checkbox object by indexing this array. You can
index the array either by number or, if supplied, by using the value of the NAME
attribute.

Event handlers e« onBlur
e onClick
e onFocus

64 Client-Side JavaScript Reference

Checkbox

Description A Checkbox object on a form looks as follows:

i Metscape - [Join the music club!] [|¢

First name: |JESSE |

Last name: |Schaefer |

Shipping Music types for
method: your free CDs:

viey[3

B Zend catalog

L Checkbox object

A Checkbox object is a form element and must be defined within a FORMag.

Use the checked property to specify whether the checkbox is currently
checked. Use the defaultChecked property to specify whether the checkbox
is checked when the form is loaded or reset.

Property

Summary Property Description

checked Boolean property that reflects the current state of the
checkbox.

defaultChecked Boolean property that reflects the CHECKED ttribute.
form Specifies the form containing the Checkbox object.
name Reflects the NAMEattribute.
type Reflects the TYPEattribute.
value Reflects the TYPEattribute.

Chapter |, Objects, Methods, and Properties 65

Checkbox

Method Summary

Method Description

blur Removes focus from the checkbox.

click Simulates a mouse-click on the checkbox.
focus Gives focus to the checkbox.

handleEvent Invokes the handler for the specified event.

In addition, this object inherits the watch and unwatch methods from
Object

Examples Example 1. The following example displays a group of four checkboxes that
all appear checked by default:

Specify your music preferences (check all that apply):

<INPUT TYPE="checkbox" NAME="musicpref_rnb" CHECKED> R&B

<INPUT TYPE="checkbox" NAME="musicpref_jazz" CHECKED> Jazz

<INPUT TYPE="checkbox" NAME="musicpref_blues" CHECKED> Blues

<INPUT TYPE="checkbox" NAME="musicpref_newage" CHECKED> New Age

Example 2. The following example contains a form with three text boxes and
one checkbox. The user can use the checkbox to choose whether the text fields
are converted to uppercase. Each text field has an onChange event handler that
converts the field value to uppercase if the checkbox is checked. The checkbox
has an onClick event handler that converts all fields to uppercase when the
user checks the checkbox.

<HTML>
<HEAD>
<TITLE>Checkbox object example</TITLE>
</HEAD>
<SCRIPT>
function convertField(field) {
if (document.forml.convertUpper.checked) {
field.value = field.value.toUpperCase()}
}
function convertAllFields() {
document.forml.lastName.value = document.forml.lastName.value.toUpperCase()
document.form1l.firstName.value = document.forml.firstName.value.toUpperCase()
document.forml.cityName.value = document.forml.cityName.value.toUpperCase()

}
</SCRIPT>

66 Client-Side JavaScript Reference

Checkbox.blur

<BODY>
<FORM NAME="form1">
Last name:
<INPUT TYPE="text" NAME="lastName" SIZE=20 onChange="convertField(this)">

First name:
<INPUT TYPE="text" NAME="firstName" SIZE=20 onChange="convertField(this)">

City:
<INPUT TYPE="text" NAME="cityName" SIZE=20 onChange="convertField(this)">
<P><INPUT TYPE="checkBox" NAME="convertUpper"
onClick="if (this.checked) {convertAllFields()}"
> Convert fields to upper case
</[FORM>
</BODY>
</HTML>

Seealso Form, Radio

blur

Removes focus from the checkbox.
Method of Checkbox

Implemented in JavaScript 1.0

Syntax blur()
Parameters None

See also Checkbox.focus

checked

A Boolean value specifying the selection state of the checkbox.
Property of Checkbox

Implemented in JavaScript 1.0

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description If a checkbox button is selected, the value of its checked property is true;
otherwise, it is false.

You can set the checked property at any time. The display of the checkbox
button updates immediately when you set the checked property.

Chapter |, Objects, Methods, and Properties 67

Checkbox.click

See also

Checkbox.defaultChecked

click

Syntax
Parameters

Examples

Simulates a mouse-click on the checkbox, but does not trigger its onClick
event handler. The method checks the checkbox and sets toggles its value.
Method of Checkbox

Implemented in JavaScript 1.0
click()
None.

The following example toggles the selection status of the newAge checkbox on
the musicForm form:

document.musicForm.newAge.click()

defaultChecked

Security

Description

See also

A Boolean value indicating the default selection state of a checkbox button.
Property of Checkbox

Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

If a checkbox is selected by default, the value of the defaultChecked property
is true; otherwise, it is false. defaultChecked initially reflects whether the
CHECKED:ttribute is used within an INPUT tag; however, setting
defaultChecked overrides the CHECKEDR:ttribute.

You can set the defaultChecked property at any time. The display of the
checkbox does not update when you set the defaultChecked property, only
when you set the checked property.

Checkbox.checked

68 Client-Side JavaScript Reference

Checkbox.focus

focus

Syntax
Parameters

Description

See also

Gives focus to the checkbox.
Method of Checkbox

Implemented in JavaScript 1.0
focus()
None

Use the focus method to navigate to a the checkbox and give it focus. The
user can then toggle the state of the checkbox.

Checkbox.blur

form

Description

An object reference specifying the form containing the checkbox.
Property of Checkbox

Read-only
Implemented in JavaScript 1.0

Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

Seealso Form
handleEvent
Invokes the handler for the specified event.
Method of Checkbox
Implemented in JavaScript 1.2
Syntax handleEvent(event)
Parameters

event The name of an event for which the specified object has an event
handler.

Chapter |, Objects, Methods, and Properties 69

Checkbox.name

name

A string specifying the checkbox’s name.
Property of Checkbox

Implemented in JavaScript 1.0

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description If multiple objects on the same form have the same NAMEattribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Button element on the same form
have their NAMEattribute set to "myField" | an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Examples In the following example, the valueGetter ~ function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {
msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")

}

70 Client-Side JavaScript Reference

Checkbox.type

type

Examples

For all Checkbox objects, the value of the type property is "checkbox" . This
property specifies the form element’s type.
Property of Checkbox

Read-only

Implemented in JavaScript 1.1

The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.forml.elements.length; i++) {
document.writeln("
type i s " + document.forml.elements]i].type)

}

value

Security

See also

A string that reflects the VALUEattribute of the checkbox.
Property of Checkbox

Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Checkbox.checked , Checkbox.defaultChecked

Chapter |, Objects, Methods, and Properties 71

Date

Date

Lets you work with dates and times.

Core object

Implemented in

ECMA version

JavaScript 1.0, NES 2.0
JavaScript 1.1: added prototype property

JavaScript 1.3: removed platform dependencies to provide a
uniform behavior across platforms; added ms_numparameter to
Date constructor; added getFullYear |, setFullyear
getMilliseconds , setMilliseconds , toSource , and UTC
methods (such as getUTCDate and setUTCDate).

ECMA-262

Created by The Date constructor:

new Date()

new Date(milliseconds)
new Date(dateString)
new Date(yr_ num, mo_num day_num
[, hr_num, min_num, sec_num, ms_nunj)

Versions prior to JavaScript 1.3:

new Date()

new Date(milliseconds)
new Date(dateString)
new Date(yr num, mo_num day_num[, hr_num, min_num, sec_num])

Parameters
milliseconds

dateString

yr_num, mo_num,
day_num

hr_num, min_num,
sec_num, ms_num

72 Client-Side JavaScript Reference

Integer value representing the number of milliseconds since 1
January 1970 00:00:00.

String value representing a date. The string should be in a
format recognized by the Date.parse method.

Integer values representing part of a date. As an integer value,

the month is represented by 0 to 11 with O=January and
11=December.

Integer values representing part of a date.

Description

Backward
Compatibility

Property
Summary

Date

If you supply no arguments, the constructor creates a Date object for today’s
date and time according to local time. If you supply some arguments but not
others, the missing arguments are set to 0. If you supply any arguments, you
must supply at least the year, month, and day. You can omit the hours,
minutes, seconds, and milliseconds.

The date is measured in milliseconds since midnight 01 January, 1970 UTC. A
day holds 86,400,000 milliseconds. The Date object range is -100,000,000 days
to 100,000,000 days relative to 01 January, 1970 UTC.

The Date object provides uniform behavior across platforms.

The Date object supports a number of UTC (universal) methods, as well as
local time methods. UTC, also known as Greenwich Mean Time (GMT), refers
to the time as set by the World Time Standard. The local time is the time known
to the computer where JavaScript is executed.

For compatibility with millennium calculations (in other words, to take into
account the year 2000), you should always specify the year in full; for example,
use 1998, not 98. To assist you in specifying the complete year, JavaScript
includes the methods getFullYear | setFullYear | getFullUTCYear ,and
setFullUTCYear

The following example returns the time elapsed between timeA and timeB in
milliseconds.

timeA = new Date();

/I Statements here to take some action.
timeB = new Date();

timeDifference = timeB - timeA;

JavaScript 1.2 and earlier. The Date object behaves as follows:
e Dates prior to 1970 are not allowed.

e JavaScript depends on platform-specific date facilities and behavior; the
behavior of the Date object varies from platform to platform.

Property Description
constructor Specifies the function that creates an object’s prototype.
prototype Allows the addition of properties to a Date object.

Chapter |, Objects, Methods, and Properties 73

Date

Method Summary

Method Description

getDate Returns the day of the month for the specified date
according to local time.

getDay Returns the day of the week for the specified date
according to local time.

getFullYear Returns the year of the specified date according to
local time.

getHours Returns the hour in the specified date according to

getMilliseconds

getMinutes

getMonth

getSeconds

getTime

getTimezoneOffset

getUTCDate

getUTCDay

getUTCFullYear

getUTCHours

getUTCMilliseconds

getUTCMinutes

getUTCMonth

local time.

Returns the milliseconds in the specified date
according to local time.

Returns the minutes in the specified date according to
local time.

Returns the month in the specified date according to
local time.

Returns the seconds in the specified date according to
local time.

Returns the numeric value corresponding to the time
for the specified date according to local time.
Returns the time-zone offset in minutes for the current

locale.

Returns the day (date) of the month in the specified
date according to universal time.

Returns the day of the week in the specified date
according to universal time.

Returns the year in the specified date according to
universal time.

Returns the hours in the specified date according to
universal time.

Returns the milliseconds in the specified date
according to universal time.

Returns the minutes in the specified date according to
universal time.

Returns the month according in the specified date
according to universal time.

74 Client-Side JavaScript Reference

Date

Method Description

getUTCSeconds Returns the seconds in the specified date according to
universal time.

getYear Returns the year in the specified date according to
local time.

parse Returns the number of milliseconds in a date string
since January 1, 1970, 00:00:00, local time.

setDate Sets the day of the month for a specified date
according to local time.

setFullYear Sets the full year for a specified date according to local
time.

setHours Sets the hours for a specified date according to local

setMilliseconds

setMinutes

setMonth

setSeconds

setTime

setUTCDate

setUTCFullYear

setUTCHours

setUTCMilliseconds

setUTCMinutes

setUTCMonth

time.

Sets the milliseconds for a specified date according to
local time.

Sets the minutes for a specified date according to local
time.

Sets the month for a specified date according to local
time.

Sets the seconds for a specified date according to local
time.

Sets the value of a Date object according to local time.

Sets the day of the month for a specified date
according to universal time.

Sets the full year for a specified date according to
universal time.

Sets the hour for a specified date according to
universal time.

Sets the milliseconds for a specified date according to
universal time.

Sets the minutes for a specified date according to
universal time.

Sets the month for a specified date according to
universal time.

Chapter |, Objects, Methods, and Properties 75

Date

Method Description

setUTCSeconds Sets the seconds for a specified date according to
universal time.

setYear Sets the year for a specified date according to local
time.

toGMTString Converts a date to a string, using the Internet GMT
conventions.

toLocaleString Converts a date to a string, using the current locale’s
conventions.

toSource Returns an object literal representing the specified

Date object; you can use this value to create a new
object. Overrides the Object.toSource method.

toString Returns a string representing the specified Date object.
Overrides the Object.toString method.

toUTCString Converts a date to a string, using the universal time
convention.

uTC Returns the number of milliseconds in a Date object

since January 1, 1970, 00:00:00, universal time.

valueOf Returns the primitive value of a Date object. Overrides
the Object.valueOf method.

In addition, this object inherits the watch and unwatch methods from
Object

Examples The following examples show several ways to assign dates:

today = new Date()

birthday = new Date("December 17, 1995 03:24:00")
birthday = new Date(95,11,17)

birthday = new Date(95,11,17,3,24,0)

76 Client-Side JavaScript Reference

Date.constructor

constructor

Description

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of Date

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

See Object.constructor

getDate

Syntax
Parameters
Description

Examples

See also

Returns the day of the month for the specified date according to local time.
Method of Date

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

getDate()
None
The value returned by getDate is an integer between 1 and 31.

The second statement below assigns the value 25 to the variable day, based on
the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
day = Xmas95.getDate()

Date.getUTCDate , Date.getUTCDay , Date.setDate

Chapter |, Objects, Methods, and Properties 77

Date.getDay

getDay

Syntax
Parameters

Description

Examples

See also

Returns the day of the week for the specified date according to local time.
Method of Date

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

getDay()
None

The value returned by getDay is an integer corresponding to the day of the
week: 0 for Sunday, 1 for Monday, 2 for Tuesday, and so on.

The second statement below assigns the value 1 to weekday , based on the
value of the Date object Xmas95. December 25, 1995, is a Monday.

Xmas95 = new Date("December 25, 1995 23:15:00")
weekday = Xmas95.getDay()

Date.getUTCDay , Date.setDate

getFullYear

Syntax
Parameters

Description

Returns the year of the specified date according to local time.
Method of Date

Implemented in JavaScript 1.3
ECMA version ECMA-262

getFullYear()
None

The value returned by getFullYear is an absolute number. For dates
between the years 1000 and 9999, getFullYear returns a four-digit number,
for example, 1995. Use this function to make sure a year is compliant with
years after 2000.

Use this method instead of the getYear method.

78 Client-Side JavaScript Reference

Date.getHours

Examples The following example assigns the four-digit value of the current year to the
variable yr .
var yr;

Today = new Date();
yr = Today.getFullYear();

Seealso Date.getYear |, Date.getUTCFullYear, Date.setFullYear

getHours

Returns the hour for the specified date according to local time.

Method of Date
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax getHours()
Parameters None
Description The value returned by getHours is an integer between 0 and 23.

Examples The second statement below assigns the value 23 to the variable hours | based
on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
hours = Xmas95.getHours()

See also Date.getUTCHours |, Date.setHours

getMilliseconds

Returns the milliseconds in the specified date according to local time.

Method of Date
Implemented in JavaScript 1.3
ECMA version ECMA-262

Syntax getMilliseconds()
Parameters None

Description The value returned by getMilliseconds is a number between 0 and 999.

Chapter |, Objects, Methods, and Properties 79

Date.getMinutes

Examples The following example assigns the milliseconds portion of the current time to
the variable ms,

var ms;
Today = new Date();
ms = Today.getMilliseconds();

See also Date.getUTCMilliseconds, Date.setMilliseconds

getMinutes

Returns the minutes in the specified date according to local time.
Method of Date

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax getMinutes()
Parameters None
Description The value returned by getMinutes is an integer between 0 and 59.

Examples The second statement below assigns the value 15 to the variable minutes
based on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
minutes = Xmas95.getMinutes()

Seealso Date.getUTCMinutes | Date.setMinutes

getMonth

Returns the month in the specified date according to local time.
Method of Date

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Syntax getMonth()
Parameters None

Description The value returned by getMonth is an integer between 0 and 11. 0 corresponds
to January, 1 to February, and so on.

80 Client-Side JavaScript Reference

Date.getSeconds

Examples The second statement below assigns the value 11 to the variable month , based
on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
month = Xmas95.getMonth()

Seealso Date.getUTCMonth | Date.setMonth

getSeconds

Returns the seconds in the current time according to local time.

Method of Date
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax getSeconds()
Parameters None
Description The value returned by getSeconds is an integer between 0 and 59.

Examples The second statement below assigns the value 30 to the variable secs , based
on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:30")
secs = Xmas95.getSeconds()

Seealso Date.getUTCSeconds , Date.setSeconds

getTime

Returns the numeric value corresponding to the time for the specified date
according to local time.

Method of Date
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax getTime()

Parameters None

Chapter |, Objects, Methods, and Properties 81

Date.getTimezoneOffset

Description

Examples

See also

The value returned by the getTime method is the number of milliseconds since
1 January 1970 00:00:00. You can use this method to help assign a date and
time to another Date object.

The following example assigns the date value of theBigDay to sameAsBigDay :

theBigDay = new Date("July 1, 1999")
sameAsBigDay = new Date()
sameAsBigDay.setTime(theBigDay.getTime())

Date.getUTCHours , Date.setTime

getTimezoneOffset

Syntax
Parameters

Description

Returns the time-zone offset in minutes for the current locale.
Method of Date

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

getTimezoneOffset()
None

The time-zone offset is the difference between local time and Greenwich Mean
Time (GMT). Daylight savings time prevents this value from being a constant.

Examples x = new Date()
currentTimeZoneOffsetinHours = x.getTimezoneOffset()/60
getUTCDate
Returns the day (date) of the month in the specified date according to universal
time.
Method of Date
Implemented in JavaScript 1.3
ECMA version ECMA-262
Syntax getUTCDate()
Parameters None

Description

The value returned by getUTCDate is an integer between 1 and 31.

82 Client-Side JavaScript Reference

Date.getUTCDay

Examples The following example assigns the day portion of the current date to the
variable d.
var d;
Today = new Date();
d = Today.getUTCDate();
See also Date.getDate, Date.getUTCDay, Date.setUTCDate
getUTCDay
Returns the day of the week in the specified date according to universal time.
Method of Date
Implemented in JavaScript 1.3
ECMA version ECMA-262
Syntax getUTCDay()
Parameters None

Description

Examples

See also

The value returned by getUTCDay is an integer corresponding to the day of
the week: 0 for Sunday, 1 for Monday, 2 for Tuesday, and so on.

The following example assigns the weekday portion of the current date to the
variable ms.

var weekday;
Today = new Date()
weekday = Today.getUTCDay()

Date.getDay, Date.getUTCDate, Date.setUTCDate

getUTCFullYear

Syntax

Parameters

Returns the year in the specified date according to universal time.
Method of Date

Implemented in JavaScript 1.3
ECMA version ECMA-262

getUTCFullYear()

None

Chapter |, Objects, Methods, and Properties 83

Date.getUTCHours

Description

Examples

See also

The value returned by getUTCFullYear is an absolute number that is
compliant with year-2000, for example, 1995.

The following example assigns the four-digit value of the current year to the
variable yr .

var yr;
Today = new Date();
yr = Today.getUTCFullYear();

Date.getFullYear, Date.setFullYear

getUTCHours

Syntax
Parameters
Description

Examples

See also

Returns the hours in the specified date according to universal time.
Method of Date

Implemented in JavaScript 1.3
ECMA version ECMA-262

getUTCHours()
None
The value returned by getUTCHours is an integer between 0 and 23.

The following example assigns the hours portion of the current time to the
variable hrs .

var hrs;
Today = new Date();
hrs = Today.getUTCHours();

Date.getHours, Date.setUTCHours

84 Client-Side JavaScript Reference

Date.getUTCMilliseconds

getUTCMilliseconds

Syntax
Parameters

Description

Examples

See also

Returns the milliseconds in the specified date according to universal time.
Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

getUTCMilliSeconds()
None

The value returned by getUTCMilliseconds is an integer between 0 and
999.

The following example assigns the milliseconds portion of the current time to
the variable ms,

var ms;
Today = new Date();
ms = Today.getUTCMilliseconds();

Date.getMilliseconds, Date.setUTCMilliseconds

getUTCMinutes

Syntax
Parameters

Description

Returns the minutes in the specified date according to universal time.
Method of Date

Implemented in JavaScript 1.3
ECMA version ECMA-262
getUTCMinutes()

None

The value returned by getUTCMinutes is an integer between 0 and 59.

Chapter |, Objects, Methods, and Properties 85

Date.getUTCMonth

Examples

See also

The following example assigns the minutes portion of the current time to the
variable min .

var min;
Today = new Date();
min = Today.getUTCMinutes();

Date.getMinutes, Date.setUTCMinutes

getUTCMonth

Syntax
Parameters

Description

Examples

See also

Returns the month according in the specified date according to universal time.
Method of Date

Implemented in JavaScript 1.3
ECMA version ECMA-262

getUTCMonth()
None

The value returned by getUTCMonth is an integer between 0 and 11
corresponding to the month. 0 for January, 1 for February, 2 for March, and so
on.

The following example assigns the month portion of the current date to the
variable mon.

var mon;
Today = new Date();
mon = Today.getUTCMonth();

Date.getMonth, Date.setUTCMonth

86 Client-Side JavaScript Reference

Date.getUTCSeconds

getUTCSeconds

Syntax
Parameters

Description

Returns the seconds in the specified date according to universal time.
Method of Date

Implemented in JavaScript 1.3
ECMA version ECMA-262
getUTCSeconds()

None

The value returned by getUTCSeconds is an integer between 0 and 59.

Examples The following example assigns the seconds portion of the current time to the

variable sec .

var sec;

Today = new Date();

sec = Today.getUTCSeconds();

Seealso Date.getSeconds, Date.setUTCSeconds

getYear

Returns the year in the specified date according to local time.

Method of Date

Implemented in JavaScript 1.0, NES 2.0
JavaScript 1.3: deprecated; also, getYear returns the year minus
1900 regardless of the year specified

ECMA version ECMA-262

Syntax getYear()
Parameters None

Chapter |, Objects, Methods, and Properties 87

Date.getYear

Description

Backward
Compatibility

Examples

getYear is no longer used and has been replaced by the getFullYear
method.

The getYear method returns the year minus 1900; thus:

e For years above 2000, the value returned by getYear is 100 or greater. For
example, if the year is 2026, getYear returns 126.

e For years between and including 1900 and 1999, the value returned by
getYear is between 0 and 99. For example, if the year is 1976, getYear
returns 70.

e For years less than 1900 or greater than 1999, the value returned by
getYear is less than 0. For example, if the year is 1800, getYear returns -
100.

To take into account years before and after 2000, you should use
Date.getFullYear instead of getYear so that the year is specified in full.

JavaScript 1.2 and earlier versions. The getYear method returns either a
2-digit or 4-digit year:

e For years between and including 1900 and 1999, the value returned by
getYear is the year minus 1900. For example, if the year is 1976, the value
returned is 76.

e For years less than 1900 or greater than 1999, the value returned by
getYear is the four-digit year. For example, if the year is 1856, the value
returned is 1856. If the year is 2026, the value returned is 2026.

Example 1. The second statement assigns the value 95 to the variable year .

Xmas = new Date("December 25, 1995 23:15:00")
year = Xmas.getYear() // returns 95

Example 2. The second statement assigns the value 100 to the variable year .

Xmas = new Date("December 25, 2000 23:15:00")
year = Xmas.getYear() // returns 100

Example 3. The second statement assigns the value -100 to the variable year .

Xmas = new Date("December 25, 1800 23:15:00")
year = Xmas.getYear() // returns -100

88 Client-Side JavaScript Reference

Date.parse

Example 4. The second statement assigns the value 95 to the variable year ,
representing the year 1995.

Xmas.setYear(95)
year = Xmas.getYear() // returns 95

Seealso Date.getFullYear , Date.getUTCFullYear , Date.setYear
parse
Returns the number of milliseconds in a date string since January 1, 1970,
00:00:00, local time.
Method of Date

Syntax

Parameters

Description

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Date.parse(dateString)

dateString A string representing a date.

The parse method takes a date string (such as "Dec 25, 1995") and returns
the number of milliseconds since January 1, 1970, 00:00:00 (local time). This
function is useful for setting date values based on string values, for example in
conjunction with the setTime method and the Date object.

Given a string representing a time, parse returns the time value. It accepts the
IETF standard date syntax: "Mon, 25 Dec 1995 13:30:00 GMT" .1t
understands the continental US time-zone abbreviations, but for general use,
use a time-zone offset, for example, "Mon, 25 Dec 1995 13:30:00

GMT+0430" (4 hours, 30 minutes west of the Greenwich meridian). If you do
not specify a time zone, the local time zone is assumed. GMT and UTC are
considered equivalent.

Because parse is a static method of Date , you always use it as Date.parse()
rather than as a method of a Date object you created.

Chapter |, Objects, Methods, and Properties 89

Date.prototype

Examples If IPOdate is an existing Date object, then you can set it to August 9, 1995 as
follows:
IPOdate.setTime(Date.parse("Aug 9, 1995"))
Seealso Date.UTC
prototype
Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype
Property of Date
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262
setDate
Sets the day of the month for a specified date according to local time.
Method of Date
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262
Syntax setDate(dayValue)
Parameters
dayValue An integer from 1 to 31, representing the day of the month.
Examples The second statement below changes the day for theBigDay to July 24 from its
original value.
theBigDay = new Date("July 27, 1962 23:30:00")
theBigDay.setDate(24)
Seealso Date.getDate |, Date.setUTCDate

90 Client-Side JavaScript Reference

Date.setFullYear

setFullYear

Syntax

Parameters

Description

Examples

See also

Sets the full year for a specified date according to local time.
Method of Date

Implemented in JavaScript 1.3
ECMA version ECMA-262

setFullyear(yearValue [, monthValue , dayValue])

yearValue An integer specifying the numeric value of the year, for example,
1995.
monthValue An integer between 0 and 11 representing the months January

through December.

dayValue An integer between 1 and 31 representing the day of the month. If
you specify the dayValue parameter, you must also specify the
monthValue .

If you do not specify the monthValue and dayValue parameters, the values
returned from the getMonth and getDate methods are used.

If a parameter you specify is outside of the expected range, setFullYear
attempts to update the other parameters and the date information in the Date
object accordingly. For example, if you specify 15 for monthValue | the year is
incremented by 1 (year + 1), and 3 is used for the month.

theBigDay = new Date();
theBigDay.setFullYear(1997);

Date.getUTCFullYear,Date.setUTCFullYear , Date.setYear

Chapter |, Objects, Methods, and Properties 91

Date.setHours

setHours

Syntax

Parameters

Description

Examples

See also

Sets the hours for a specified date according to local time.
Method of Date

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.3: Added minutesValue | secondsValue | and
msValue parameters

ECMA version ECMA-262
setHours(hoursValue [, minutesValue , secondsValue , msValue))
Versions prior to JavaScript 1.3:

setHours(hoursValue)

hoursValue An integer between 0 and 23, representing the hour.
minutesValue An integer between 0 and 59, representing the minutes.
secondsValue An integer between 0 and 59, representing the seconds. If you

specify the secondsValue parameter, you must also specify the
minutesValue

msValue A number between 0 and 999, representing the milliseconds. If you

specify the msValue parameter, you must also specify the
minutesValue and secondsValue

If you do not specify the minutesValue | secondsValue |, and msValue
parameters, the values returned from the getUTCMinutes | getUTCSeconds
and getMilliseconds methods are used.

If a parameter you specify is outside of the expected range, setHours
attempts to update the date information in the Date object accordingly. For
example, if you use 100 for secondsValue , the minutes will be incremented
by 1 (min + 1), and 40 will be used for seconds.

theBigDay.setHours(7)

Date.getHours |, Date.setUTCHours

92 Client-Side JavaScript Reference

Date.setMilliseconds

setMilliseconds

Syntax

Parameters

Description

Examples

See also

Sets the milliseconds for a specified date according to local time.
Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

setMilliseconds(millisecondsValue)

millisecondsValue A number between 0 and 999, representing the milliseconds.

If you specify a number outside the expected range, the date information in the
Date object is updated accordingly. For example, if you specify 1005, the
number of seconds is incremented by 1, and 5 is used for the milliseconds.

theBigDay = new Date();
theBigDay.setMilliseconds(100);

Date.getMilliseconds, Date.setUTCMilliseconds

setMinutes

Syntax

Sets the minutes for a specified date according to local time.
Method of Date

Implemented in JavaScript 1.0, NES 2.0
JavaScript 1.3: Added secondsValue and msValue parameters

ECMA version ECMA-262

setMinutes(minutesValue [, secondsValue , msValue])
Versions prior to JavaScript 1.3:

setMinutes(minutesValue)

Chapter |, Objects, Methods, and Properties 93

Date.setMonth

Parameters
minutesValue An integer between 0 and 59, representing the minutes.
secondsValue An integer between 0 and 59, representing the seconds. If you

specify the secondsValue parameter, you must also specify the
minutesValue

msValue A number between 0 and 999, representing the milliseconds. If you
specify the msValue parameter, you must also specify the
minutesValue and secondsValue

Examples theBigDay.setMinutes(45)

Description If you do not specify the secondsValue and msValue parameters, the values
returned from getSeconds and getMilliseconds methods are used.

If a parameter you specify is outside of the expected range, setMinutes
attempts to update the date information in the Date object accordingly. For
example, if you use 100 for secondsValue | the minutes (minutesValue)
will be incremented by 1 (minutesValue + 1), and 40 will be used for
seconds.

Seealso Date.getMinutes | Date.setUTCMilliseconds

setMonth

Sets the month for a specified date according to local time.
Method of Date

Implemented in JavaScript 1.0, NES 2.0
JavaScript 1.3: Added dayValue parameter
ECMA version ECMA-262
Syntax setMonth(monthValue [, dayValue])
Versions prior to JavaScript 1.3:
setMonth(monthValue)

Parameters

monthValue An integer between 0 and 11 (representing the months January
through December).

dayValue An integer from 1 to 31, representing the day of the month.

94 Client-Side JavaScript Reference

Description

Examples

See also

Date.setSeconds

If you do not specify the dayValue parameter, the value returned from the
getDate method is used.

If a parameter you specify is outside of the expected range, setMonth
attempts to update the date information in the Date object accordingly. For
example, if you use 15 for monthValue | the year will be incremented by 1
(year + 1), and 3 will be used for month.

theBigDay.setMonth(6)

Date.getMonth | Date.setUTCMonth

setSeconds

Syntax

Parameters

Description

Examples

See also

Sets the seconds for a specified date according to local time.
Method of Date

Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.3: Added msValue parameter
ECMA version ECMA-262

setSeconds(secondsValue [, msValue))
Versions prior to JavaScript 1.3:

setSeconds(secondsValue)

secondsValue An integer between 0 and 59.

msValue A number between 0 and 999, representing the milliseconds.
If you do not specify the msValue parameter, the value returned from the
getMilliseconds methods is used.

If a parameter you specify is outside of the expected range, setSeconds
attempts to update the date information in the Date object accordingly. For
example, if you use 100 for secondsValue | the minutes stored in the Date
object will be incremented by 1, and 40 will be used for seconds.

theBigDay.setSeconds(30)

Date.getSeconds |, Date.setUTCSeconds

Chapter |, Objects, Methods, and Properties 95

Date.setTime

setTime

Syntax

Parameters

Description

Examples

See also

Sets the value of a Date object according to local time.

Method of Date
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

setTime(timevalue)

timevalue An integer representing the number of milliseconds since 1 January
1970 00:00:00.

Use the setTime method to help assign a date and time to another Date object.

theBigDay = new Date("July 1, 1999")

sameAsBigDay = new Date()

sameAsBigDay.setTime(theBigDay.getTime())

Date.getTime , Date.setUTCHours

setUTCDate

Syntax

Parameters

Description

Sets the day of the month for a specified date according to universal time.
Method of Date

Implemented in JavaScript 1.3
ECMA version ECMA-262

setUTCDate(dayValue)

dayValue An integer from 1 to 31, representing the day of the month.

If a parameter you specify is outside of the expected range, setUTCDate
attempts to update the date information in the Date object accordingly. For
example, if you use 40 for dayValue , and the month stored in the Date
object is June, the day will be changed to 10 and the month will be
incremented to July.

96 Client-Side JavaScript Reference

Examples

See also

Date.setUTCFullYear

theBigDay = new Date();
theBigDay.setUTCDate(20);

Date.getUTCDate, Date.setDate

setUTCFullYear

Syntax

Parameters

Description

Examples

See also

Sets the full year for a specified date according to universal time.
Method of Date

Implemented in JavaScript 1.3
ECMA version ECMA-262

setUTCFullYear(yearValue [, monthValue , dayValue])

yearValue An integer specifying the numeric value of the year, for example,
1995.

monthValue An integer between 0 and 11 representing the months January
through December.

dayValue An integer between 1 and 31 representing the day of the month. If
you specify the dayValue parameter, you must also specify the
monthValue .

If you do not specify the monthValue and dayValue parameters, the values
returned from the getMonth and getDate methods are used.

If a parameter you specify is outside of the expected range, setUTCFullYear
attempts to update the other parameters and the date information in the Date
object accordingly. For example, if you specify 15 for monthValue , the year is
incremented by 1 (year + 1), and 3 is used for the month.

theBigDay = new Date();
theBigDay.setUTCFullYear(1997);

Date.getUTCFullYear, Date.setFullYear

Chapter |, Objects, Methods, and Properties 97

Date.setUTCHours

setUTCHours

Syntax

Parameters

Description

Examples

See also

Sets the hour for a specified date according to universal time.
Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

setUTCHour(hoursValue [, minutesValue , secondsValue , msValue])
hoursValue An integer between 0 and 23, representing the hour.
minutesValue An integer between 0 and 59, representing the minutes.
secondsValue An integer between 0 and 59, representing the seconds. If you

specify the secondsValue parameter, you must also specify the
minutesValue

msValue A number between 0 and 999, representing the milliseconds. If you
specify the msValue parameter, you must also specify the
minutesValue and secondsValue

If you do not specify the minutesValue | secondsValue |, and msValue
parameters, the values returned from the getUTCMinutes |, getUTCSeconds
and getUTCMilliseconds methods are used.

If a parameter you specify is outside of the expected range, setUTCHours
attempts to update the date information in the Date object accordingly. For
example, if you use 100 for secondsValue , the minutes will be incremented
by 1 (min + 1), and 40 will be used for seconds.

theBigDay = new Date();
theBigDay.setUTCHour(8);

Date.getUTCHours, Date.setHours

98 Client-Side JavaScript Reference

Date.setUTCMilliseconds

setUTCMilliseconds

Syntax

Parameters

Description

Examples

See also

Sets the milliseconds for a specified date according to universal time.
Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

setUTCMilliseconds(millisecondsValue)

millisecondsValue A number between 0 and 999, representing the milliseconds.

If a parameter you specify is outside of the expected range,
setUTCMilliseconds attempts to update the date information in the Date
object accordingly. For example, if you use 1100 for millisecondsValue ,
the seconds stored in the Date object will be incremented by 1, and 100 will
be used for milliseconds.

theBigDay = new Date();
theBigDay.setUTCMilliseconds(500);

Date.getUTCMilliseconds, Date.setMilliseconds

setUTCMinutes

Syntax

Parameters

Sets the minutes for a specified date according to universal time.
Method of Date

Implemented in JavaScript 1.3
ECMA version ECMA-262

setUTCMinutes(minutesValue [, secondsValue , msValuel)

minutesValue An integer between 0 and 59, representing the minutes.

secondsValue An integer between 0 and 59, representing the seconds. If you
specify the secondsValue parameter, you must also specify the
minutesValue

msValue A number between 0 and 999, representing the milliseconds. If you
specify the msValue parameter, you must also specify the
minutesValue and secondsValue

Chapter |, Objects, Methods, and Properties 99

Date.setUTCMonth

Description If you do not specify the secondsValue and msValue parameters, the values
returned from getUTCSeconds and getUTCMilliseconds methods are
used.

If a parameter you specify is outside of the expected range, setUTCMinutes
attempts to update the date information in the Date object accordingly. For
example, if you use 100 for secondsValue | the minutes (minutesValue)
will be incremented by 1 (minutesValue + 1), and 40 will be used for
seconds.

Examples theBigDay = new Date();
theBigDay.setUTCMinutes(43);

Seealso Date.getUTCMinutes, Date.setMinutes

setUTCMonth

Sets the month for a specified date according to universal time.
Method of Date

Implemented in JavaScript 1.3
ECMA version ECMA-262

Syntax setUTCMonth(monthValue [, dayValue])

Parameters
monthValue An integer between 0 and 11, representing the months January
through December.
dayValue An integer from 1 to 31, representing the day of the month.

Description If you do not specify the dayValue parameter, the value returned from the
getUTCDate method is used.

If a parameter you specify is outside of the expected range, setUTCMonth
attempts to update the date information in the Date object accordingly. For
example, if you use 15 for monthValue | the year will be incremented by 1
(year + 1), and 3 will be used for month.

Examples theBigDay = new Date();
theBigDay.setUTCMonth(11);

Seealso Date.getUTCMonth, Date.setMonth

100 Client-Side JavaScript Reference

Date.setUTCSeconds

setUTCSeconds

Syntax

Parameters

Description

Examples

See also

Sets the seconds for a specified date according to universal time.
Method of Date

Implemented in JavaScript 1.3

ECMA version ECMA-262

setUTCSeconds(secondsValue [, msValuel)

secondsValue An integer between 0 and 59.

msValue A number between 0 and 999, representing the milliseconds.
If you do not specify the msValue parameter, the value returned from the
getUTCMilliseconds methods is used.

If a parameter you specify is outside of the expected range, setUTCSeconds
attempts to update the date information in the Date object accordingly. For
example, if you use 100 for secondsValue | the minutes stored in the Date
object will be incremented by 1, and 40 will be used for seconds.

theBigDay = new Date();
theBigDay.setUTCSeconds(20);

Date.getUTCSeconds, Date.setSeconds

setYear

Syntax

Parameters

Sets the year for a specified date according to local time.
Method of Date

Implemented in JavaScript 1.0, NES 2.0

Deprecated in JavaScript 1.3
ECMA version ECMA-262

setYear(yearValue)

yearValue An integer.

Chapter |, Objects, Methods, and Properties 101

Date.toGMTString

Description setYear is no longer used and has been replaced by the setFullYear
method.

If yearValue is a number between 0 and 99 (inclusive), then the year for
dateObjectName is set to 1900 + yearValue . Otherwise, the year for
dateObjectName is set to yearValue

To take into account years before and after 2000, you should use
setFullYear instead of setYear so that the year is specified in full.

Examples Note that there are two ways to set years in the 20th century.

Example 1. The year is set to 1996.

theBigDay.setYear(96)

Example 2. The year is set to 1996.

theBigDay.setYear(1996)

Example 3. The year is set to 2000.

theBigDay.setYear(2000)

Seealso Date.getYear , Date.setFullYear , Date.setUTCFullYear

toGMTString

Converts a date to a string, using the Internet GMT conventions.
Method of Date

Implemented in JavaScript 1.0, NES 2.0

Deprecated in JavaScript 1.3
ECMA version ECMA-262

Syntax toGMTString()

Parameters None

102 Client-Side JavaScript Reference

Description

Date.toLocaleString

toGMTString is no longer used and has been replaced by the toUTCString
method.

The exact format of the value returned by toGMTString varies according to the
platform.

You should use Date.toUTCString instead of toGMTSTring .

Examples In the following example, today is a Date object:
today.toGMTString()
In this example, the toGMTString method converts the date to GMT (UTC)
using the operating system’s time-zone offset and returns a string value that is
similar to the following form. The exact format depends on the platform.
Mon, 18 Dec 1995 17:28:35 GMT
See also Date.toLocaleString , Date.toUTCString
toLocaleString
Converts a date to a string, using the current locale’s conventions.
Method of Date
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262
Syntax tolLocaleString()
Parameters None
Description If you pass a date using toLocaleString , be aware that different platforms

assemble the string in different ways. Methods such as getHours
getMinutes |, and getSeconds give more portable results.

The toLocaleString method relies on the underlying operating system in
formatting dates. It converts the date to a string using the formatting convention
of the operating system where the script is running. For example, in the United
States, the month appears before the date (04/15/98), whereas in Germany the
date appears before the month (15.04.98). If the operating system is not year-
2000 compliant and does not use the full year for years before 1900 or over
2000, toLocaleString returns a string that is not year-2000 compliant.
toLocaleString behaves similarly to toString ~ when converting a year
that the operating system does not properly format.

Chapter |, Objects, Methods, and Properties 103

Date.toSource

Examples In the following example, today is a Date object:

today = new Date(95,11,18,17,28,35) //months are represented by 0 to 11
today.toLocaleString()

In this example, toLocaleString returns a string value that is similar to the
following form. The exact format depends on the platform.

12/18/95 17:28:35

Seealso Date.toGMTString , Date.toUTCString

toSource

Returns a string representing the source code of the object.

Method of Date
Implemented in JavaScript 1.3
ECMA version ECMA-262

Syntax toSource()
Parameters None

Description The toSource method returns the following values:
e For the built-in Date object, toSource returns the following string
indicating that the source code is not available:

function Date() {
[native code]

}

e TFor instances of Date , toSource returns a string representing the source
code.

This method is usually called internally by JavaScript and not explicitly in code.

See also Object.toSource

104 Client-Side JavaScript Reference

Date.toString

Syntax
Parameters

Description

toString

Returns a string representing the specified Date object.
Method of Date

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

toString()

None.

The Date object overrides the toString method of the Object object; it
does not inherit Object.toString . For Date objects, the toString
method returns a string representation of the object.

JavaScript calls the toString method automatically when a date is to be
represented as a text value or when a date is referred to in a string
concatenation.

Examples The following example assigns the toString value of a Date object to myVar:
x = new Date();
myVar=x.toString(); /lassigns a value to myVar similar to:
/IMon Sep 28 14:36:22 GMT-0700 (Pacific Daylight Time) 1998

See also Object.toString
toUTCString
Converts a date to a string, using the universal time convention.
Method of Date
Implemented in JavaScript 1.3
ECMA version ECMA-262

Syntax toUTCString()
Parameters None

Description

The value returned by toUTCString is a readable string formatted according
to UTC convention. The format of the return value may vary according to the
platform.

Chapter |, Objects, Methods, and Properties 105

Date.UTC

Examples var UTCstring;
Today = new Date();
UTCstring = Today.toUTCString();

Seealso Date.toLocaleString , Date.toUTCString

UTC

Returns the number of milliseconds in a Date object since January 1, 1970,
00:00:00, universal time.
Method of Date

Static
Implemented in JavaScript 1.0, NES 2.0

JavaScript 1.3: added ms parameter
ECMA version ECMA-262

Syntax Date.UTC(year, month, day[, hrs, min, sec, mg)

Parameters
year A year after 1900.
month An integer between 0 and 11 representing the month.
date An integer between 1 and 31 representing the day of the month.
hrs An integer between 0 and 23 representing the hours.
min An integer between 0 and 59 representing the minutes.
sec An integer between 0 and 59 representing the seconds.
ms An integer between 0 and 999 representing the milliseconds.

Description UTCtakes comma-delimited date parameters and returns the number of
milliseconds between January 1, 1970, 00:00:00, universal time and the time
you specified.

You should specify a full year for the year; for example, 1998. If a year between
0 and 99 is specified, the method converts the year to a year in the 20th century
(1900 + yean); for example, if you specify 95, the year 1995 is used.

106 Client-Side JavaScript Reference

Examples

Date.valueOf

The UTCmethod differs from the Date constructor in two ways.
e Date.UTC uses universal time instead of the local time.

e Date.UTC returns a time value as a number instead of creating a Date
object.

If a parameter you specify is outside of the expected range, the UTCmethod
updates the other parameters to allow for your number. For example, if you
use 15 for month , the year will be incremented by 1 (year + 1), and 3 will be
used for the month.

Because UTC is a static method of Date , you always use it as Date.UTC() ,
rather than as a method of a Date object you created.

The following statement creates a Date object using GMT instead of local time:

gmtDate = new Date(Date.UTC(96, 11, 1, 0, 0, 0))

See also Date.parse
valueOf
Returns the primitive value of a Date object.
Method of Date
Implemented in JavaScript 1.1
ECMA version ECMA-262
Syntax valueOf()
Parameters None

Description

Examples

See also

The valueOf method of Date returns the primitive value of a Date object as a
number data type, the number of milliseconds since midnight 01 January, 1970
UTC.

This method is usually called internally by JavaScript and not explicitly in code.

x = new Date(56,6,17);
myVar=x.valueOf() /lassigns -424713600000 to myVar

Object.valueOf

Chapter |, Objects, Methods, and Properties 107

document

document

Created by

Event handlers

Description

Contains information about the current document, and provides methods for
displaying HTML output to the user.
Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added onBlur and onFocus syntax; added
applets , domain , embeds, forms , formName, images , and
plugins properties.

JavaScript 1.2: added classes , ids , layers , and tags
properties; added captureEvents | contextual
getSelection , handleEvent | releaseEvents
routeEvent methods.

)

and

)

The HTML BODVYtag. The JavaScript runtime engine creates a document object
for each HTML page. Each window object has a document property whose
value is a document object.

To define a document object, use standard HTML syntax for the BODYtag with
the addition of JavaScript event handlers.

The onBlur , onFocus , onLoad , and onUnload event handlers are specified in
the BODYtag but are actually event handlers for the window object. The
following are event handlers for the document object.

e onClick

e onDbIClick

e onKeyDown

e onKeyPress

e onKeyUp

e onMouseDown

e onMouseUp

An HTML document consists of HEADand BODYtags. The HEADtag includes
information on the document’s title and base (the absolute URL base to be used
for relative URL links in the document). The BODYtag encloses the body of a
document, which is defined by the current URL. The entire body of the
document (all other HTML elements for the document) goes within the BODY
tag.

108 Client-Side JavaScript Reference

Property
Summary

document

You can load a new document by setting the window.location property.

You can clear the document pane (and remove the text, form elements, and so
on so they do not redisplay) with these statements:

document.close();
document.open();
document.write();

You can omit the document.open call if you are writing text or HTML, since
write does an implicit open of that MIME type if the document stream is
closed.

You can refer to the anchors, forms, and links of a document by using the
anchors | forms | and links arrays. These arrays contain an entry for each
anchor, form, or link in a document and are properties of the document object.

Do not use location as a property of the document object; use the
document.URL property instead. The document.location property, which is a
synonym for document.URL , is deprecated.

Property Description

alinkColor A string that specifies the ALINK attribute.

anchors An array containing an entry for each anchor in the document.

applets An array containing an entry for each applet in the document.

bgColor A string that specifies the BGCOLORttribute.

classes Creates a Style object that can specify the styles of HTML tags
with a specific CLASS attribute.

cookie Specifies a cookie.

domain Specifies the domain name of the server that served a
document.

embeds An array containing an entry for each plug-in in the document.

fgColor A string that specifies the TEXT attribute.

formName A separate property for each named form in the document.

forms An array a containing an entry for each form in the document.

height The height of the document, in pixels.

Chapter |, Objects, Methods, and Properties 109

document

Method Summary

Property Description

ids Creates a Style object that can specify the style of individual
HTML tags.

images An array containing an entry for each image in the document.

lastModified A string that specifies the date the document was last modified.

layers Array containing an entry for each layer within the document.

linkColor A string that specifies the LINK attribute.

links An array containing an entry for each link in the document.

plugins An array containing an entry for each plug-in in the document.

referrer A string that specifies the URL of the calling document.

tags Creates a Style object that can specify the styles of HTML tags.

title A string that specifies the contents of the TITLE tag.

URL A string that specifies the complete URL of a document.

vlinkColor A string that specifies the VLINK attribute.

width The width of the document, in pixels.

Method Description

captureEvents Sets the document to capture all events of the specified type.

close Closes an output stream and forces data to display.

contextual Uses contextual selection criteria to specify a Style object

getSelection
handleEvent

open

releaseEvents

routeEvent

that can set the style of individual HTML tags.
Returns a string containing the text of the current selection.
Invokes the handler for the specified event.

Opens a stream to collect the output of write or writeln
methods.

Sets the window or document to release captured events of
the specified type, sending the event to objects further along
the event hierarchy.

Passes a captured event along the normal event hierarchy.

110 Client-Side JavaScript Reference

Examples

document

Method Description

write Writes one or more HTML expressions to a document in the
specified window.

writeln Writes one or more HTML expressions to a document in the
specified window and follows them with a newline character.

In addition, this object inherits the watch and unwatch methods from
Object

The following example creates two frames, each with one document. The
document in the first frame contains links to anchors in the document of the
second frame. Each document defines its colors.

docO.html | which defines the frames, contains the following code:

<HTML>

<HEAD>

<TITLE>Document object example</TITLE>
</HEAD>

<FRAMESET COLS="30%,70%">

<FRAME SRC="docl.html" NAME="framel">
<FRAME SRC="doc2.html" NAME="frame2">
</FRAMESET>

</HTML>

docl.html | which defines the content for the first frame, contains the following
code:

<HTML>
<SCRIPT>
</SCRIPT>
<BODY

BGCOLOR="antiquewhite"

TEXT="darkviolet"

LINK="fuchsia"

ALINK="forestgreen"

VLINK="navy">
<P>Some links
Numbers
Colors
Music types
Countries
</BODY>
</HTML>

Chapter |, Objects, Methods, and Properties 111

document.alinkColor

doc2.html | which defines the content for the second frame, contains the
following code:

<HTML>

<SCRIPT>

</SCRIPT>

<BODY
BGCOLOR="oldlace" onLoad="alert('Hello, World.")"
TEXT="navy">

<P>Some numbers

one

two

<Ll>three

four

<P>Some colors

red

orange

yellow

green

<P>Some music types

R&B

Jazz

Soul

Reggae

<P>Some countries

Afghanistan

Brazil

Canada

Finland

</BODY>

</HTML>

Seealso Frame, window

alinkColor

A string specifying the color of an active link (after mouse-button down, but
before mouse-button up).
Property of document

Implemented in JavaScript 1.0

Description The alinkColor ~ property is expressed as a hexadecimal RGB triplet or as a
string literal (see the Client-Side JavaScript Guide). This property is the
JavaScript reflection of the ALINK attribute of the BODYtag.

112 Client-Side JavaScript Reference

Examples

See also

document.anchors

If you express the color as a hexadecimal RGB triplet, you must use the format
rrggbb . For example, the hexadecimal RGB values for salmon are red=FA |
green=80 , and blue=72 , so the RGB triplet for salmon is "FA8072" .

The following example sets the color of active links using a string literal:
document.alinkColor="aqua"

The following example sets the color of active links to aqua using a
hexadecimal triplet:

document.alinkColor="00FFFF"

document.bgColor |, document.fgColor |, document.linkColor ,
document.vlinkColor

anchors

Description

An array of objects corresponding to named anchors in source order.
Property of document

Read-only

Implemented in JavaScript 1.0

You can refer to the Anchor objects in your code by using the anchors array.
This array contains an entry for each A tag containing a NAMEattribute in a
document; these entries are in source order. For example, if a document
contains three named anchors whose NAMEattributes are anchorl , anchor2 |,
and anchor3 | you can refer to the anchors either as:

document.anchors["anchor1"]
document.anchors["anchor2"]
document.anchors[*"anchor3"]

or as:

document.anchors[0]
document.anchors[1]
document.anchors[2]

To obtain the number of anchors in a document, use the length property:
document.anchors.length . If a document names anchors in a systematic way
using natural numbers, you can use the anchors array and its length property
to validate an anchor name before using it in operations such as setting
location.hash

Chapter |, Objects, Methods, and Properties 113

document.applets

applets

Description

An array of objects corresponding to the applets in a document in source order.
Property of document

Read-only

Implemented in JavaScript 1.1

You can refer to the applets in your code by using the applets — array. This
array contains an entry for each Applet object (APPLETtag) in a document;
these entries are in source order. For example, if a document contains three
applets whose NAMEattributes are appl, app2, and app3, you can refer to the
anchors either as:

document.applets[‘appl"]
document.applets['app2"]
document.applets[*app3"]

or as:

document.applets[0]
document.applets[1]
document.applets[2]

To obtain the number of applets in a document, use the length property:
document.applets.length

bgColor

Description

A string specifying the color of the document background.
Property of document

Implemented in JavaScript 1.0

The bgColor property is expressed as a hexadecimal RGB triplet or as a string
literal (see the Client-Side JavaScript Guide). This property is the JavaScript
reflection of the BGCOLORUttribute of the BODYtag. The default value of this
property is set by the user with the preferences dialog box.

If you express the color as a hexadecimal RGB triplet, you must use the format
rrggbb . For example, the hexadecimal RGB values for salmon are red=FA |
green=80 , and blue=72 , so the RGB triplet for salmon is "FA8072" .

114 Client-Side JavaScript Reference

document.captureEvents

Examples The following example sets the color of the document background to aqua
using a string literal:

document.bgColor="aqua"

The following example sets the color of the document background to aqua
using a hexadecimal triplet:

document.bgColor="00FFFF"

Seealso document.alinkColor , document.fgColor , document.linkColor
document.vlinkColor

)

captureEvents

Sets the document to capture all events of the specified type.
Method of document

Implemented in JavaScript 1.2

Syntax captureEvents(eventType)

Parameters

eventType The type of event to be captured. The available event types are
listed with the event object.

Description When a window with frames wants to capture events in pages loaded from
different locations (servers), you need to use window.captureEvents ina
signed script and precede it with window.enableExternalCapture . For
more information and an example, see window.enableExternalCapture

captureEvents works in tandem with releaseEvents | routeEvent , and
handleEvent . For more information on events, see the Client-Side JavaScript
Guide.

Chapter |, Objects, Methods, and Properties 115

document.classes

classes

Syntax

Parameters

Description

Examples

Creates a Style object that can specify the styles of HTML tags with a specific
CLASSattribute.

Property of document

Implemented in JavaScript 1.2

document.classes. className . tagName

className The case-insensitive value of the CLASSattribute of the specified
HTML tag in tagName.

tagName The case-insensitive name of any HTML tag, such as H1 or
BLOCKQUOTHT the value of tagName is all , tagName refers to all
HTML tags.

Use the classes property to specify the style of HTML tags that have a
specific CLASSattribute. For example, you can specify that the color of the
GreenBody class of both the P or the BLOCKQUOTEgs is green. See the
Style object for a description of the style properties you can specify for
classes

If you use the classes property within the STYLE tag (instead of within the
SCRIPT tag), you can optionally omit document from the classes syntax.
The classes property always applies to the current document object.

This example sets the color of all tags using the GreenBody CLASSattribute to
green:

<STYLE TYPE="text/javascript">
classes.GreenBody.all.color="green"
</STYLE>

Notice that you can omit the document object within the STYLE tag. Within the
SCRIPT tag, you must specify the document object as follows:

<SCRIPT LANGUAGE="JavaScriptl.2">
document.classes.GreenBody.all.color="green"
</SCRIPT>

In this example, text appearing within either of the following tags appears
green:

<P CLASS="GreenBody">
<BLOCKQUOTE CLASS="GreenBody">

116 Client-Side JavaScript Reference

document.close

See also document.contextual , document.ids , document.tags , Style
close
Closes an output stream and forces data sent to layout to display.
Method of document
Implemented in JavaScript 1.0
Syntax close()
Parameters None.

Description

Examples

See also

The close method closes a stream opened with the document.open method.
If the stream was opened to layout, the close method forces the content of the
stream to display. Font style tags, such as BIG and CENTER automatically flush
a layout stream.

The close method also stops the “meteor shower” in the Netscape icon and
displays Document: Done in the status bar.

The following function calls document.close to close a stream that was
opened with document.open . The document.close method forces the content
of the stream to display in the window.

function windowWriter1() {
var myString = "Hello, world!"
msgWindow.document.open()
msgWindow.document.write(myString + "<P>")
msgWindow.document.close()

}

document.open , document.write | document.writeln

Chapter |, Objects, Methods, and Properties 117

document.contextual

contextual

Syntax

Parameters

Description

Examples

Uses contextual selection criteria to specify a Style object that can set the
style of individual HTML tags.

Method of document

Implemented in JavaScript 1.2

contextual(contextl , ..[contextN || affectedStyle)

contextl, The Style objects, described by document.classes or

...[contextN] document.tags , that establish the context for the affected Style
object.

affectedStyle The Style object whose style properties you want to change.

The contextual method provides a fine level of control for specifying styles.
It lets you selectively apply a style to an HTML element that appears in a very
specific context. For example, you can specify that the color of text within any
EMtag that appears in an H1 is blue.

You can further narrow the selection by specifying multiple contexts. For
example, you can set the color of any LI tags with two or more UL parents by
specifying UL for the first two contexts.

Example 1. This example sets the color of text within any EMtag that appears
in an H1 to blue.

<STYLE TYPE="text/javascript">
contextual(document.tags.H1, document.tags.EM).color="blue";
</STYLE>

Notice that you can omit the document object within the STYLE tag. Within the
SCRIPT tag, you must specify the document object as follows:

<SCRIPT LANGUAGE="JavaScriptl.2">
document.contextual(document.tags.H1, document.tags.EM).color="blue";
</SCRIPT>

In this example, text appearing within the EMtag is blue:

<H1 CLASS="Main">The following text is blue</H1>

118 Client-Side JavaScript Reference

See also

document.cookie

Example 2. This example sets the color of an LI element with two or more UL
parents to red.

<STYLE TYPE="text/javascript">
contextual(tags.UL, tags.UL, tags.Ll).color="red";
</STYLE>

document.classes , document.tags , Style

cookie

Security

Description

String value representing all of the cookies associated with this document.
Property of document

Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

A cookie is a small piece of information stored by the web browser in the
cookies.txt file. Use string methods such as substring , charAt , indexOf |
and lastindexOf to determine the value stored in the cookie. See Appendix C,
“Netscape Cookies” for a complete specification of the cookie syntax.

You can set the cookie property at any time.

The "expires=" component in the cookie file sets an expiration date for the
cookie, so it persists beyond the current browser session. This date string is
formatted as follows:

Wdy, DD-Mon-YY HH:MM:SS GMT

This format represents the following values:

e Widyis a string representing the full name of the day of the week.

e DDis an integer representing the day of the month.

e Monis a string representing the three-character abbreviation of the month.
e YYis an integer representing the last two digits of the year.

e HH MMand SSare 2-digit representations of hours, minutes, and seconds,
respectively.

Chapter |, Objects, Methods, and Properties 119

document.domain

Examples

See also

For example, a valid cookie expiration date is

expires=Wednesday, 09-Nov-99 23:12:40 GMT

The cookie date format is the same as the date returned by toGMTString , with
the following exceptions:

e Dashes are added between the day, month, and year.
e The year is a 2-digit value for cookies.

The following function uses the cookie property to record a reminder for users
of an application. The cookie expiration date is set to one day after the date of
the reminder.

function RecordReminder(time, expression) {
/I Record a cookie of the form "@<T>=<E>" to map
/I from <T> in milliseconds since the epoch,
/I returned by Date.getTime(), onto an encoded expression,
/I <E> (encoded to contain no white space, semicolon,
/I or comma characters)
document.cookie = "@" + time + "=" + expression + ";"
/I set the cookie expiration time to one day
/I beyond the reminder time
document.cookie += "expires=" + cookieDate(time + 24*60*60*1000)
/I cookieDate is a function that formats the date
/laccording to the cookie spec

=

}
Hidden

domain

Security

Specifies the domain name of the server that served a document.
Property of document

Implemented in JavaScript 1.1

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

120 Client-Side JavaScript Reference

Description

Examples

document.domain

JavaScript 1.1. The domain property lets scripts on multiple servers share
properties when data tainting is not enabled. With tainting disabled, a script
running in one window can read properties of another window only if both
windows come from the same Web server. But large Web sites with multiple
servers might need to share properties among servers. For example, a script on
the host www.royalairways.com might need to share properties with a script
on the host search.royalairways.com

If scripts on two different servers change their domain property so that both
scripts have the same domain name, both scripts can share properties. For
example, a script loaded from search.royalairways.com could set its
domain property to "royalairways.com" . A script from
www.royalairways.com running in another window could also set its domain
property to "royalairways.com” . Then, since both scripts have the domain
“royalairways.com” , these two scripts can share properties, even though
they did not originate from the same server.

You can change domain only in a restricted way. Initially, domain contains the
hostname of the Web server from which the document was loaded. You can set
domain only to a domain suffix of itself. For example, a script from
search.royalairways.com can’t set its domain property to
"search.royalairways" . And a script from IWantYourMoney.com cannot set
its domain to "royalairways.com”

Once you change the domain property, you cannot change it back to its
original value. For example, if you change domain from
"search.royalairways.com" to "royalairways.com” , you cannot reset it to
"search.royalairways.com"

The following statement changes the domain property to
"braveNewWorld.com" . This statement is valid only if "braveNewWorld.com"
is a suffix of the current domain, such as "www.braveNewWorld.com"

document.domain="braveNewWorld.com"

Chapter |, Objects, Methods, and Properties 121

document.embeds

embeds

Description

Examples

See also

An array containing an entry for each object embedded in the document.
Property of document

Read-only

Implemented in JavaScript 1.1

You can refer to embedded objects (created with the EMBEDag) in your code
by using the embeds array. This array contains an entry for each EMBEDag in a
document in source order. For example, if a document contains three
embedded objects whose NAMEattributes are el, e2, and e3, you can refer to
the objects either as:

document.embeds['el"]
document.embeds['e2"]
document.embeds["e3"]

or as:

document.embeds[0]
document.embeds[1]
document.embeds[2]

To obtain the number of embedded objects in a document, use the length
property: document.embeds.length

Elements in the embeds array may have public callable functions, if they refer
to a plug-in that uses LiveConnect. See the LiveConnect information in the
Client-Side JavaScript Guide.

Use the elements in the embeds array to interact with the plug-in that is
displaying the embedded object. If a plug-in is not Java-enabled, you cannot do
anything with its element in the embeds array. The fields and methods of the
elements in the embeds array vary from plug-in to plug-in; see the
documentation supplied by the plug-in manufacturer.

When you use the EMBEDag to generate output from a plug-in application, you
are not creating a Plugin object.

The following code includes an audio plug-in in a document.

<EMBED SRC="train.au" HEIGHT=50 WIDTH=250>

Plugin

122 Client-Side JavaScript Reference

document.fgColor

fgColor

Description

A string specifying the color of the document (foreground) text.
Property of document

Implemented in JavaScript 1.0

The fgColor property is expressed as a hexadecimal RGB triplet or as a string
literal (see the Client-Side JavaScript Guide). This property is the JavaScript
reflection of the TEXT attribute of the BODYtag. The default value of this
property is set by the user with the preferences dialog box You cannot set this
property after the HTML source has been through layout.

If you express the color as a hexadecimal RGB triplet, you must use the format
rrggbb . For example, the hexadecimal RGB values for salmon are red=FA |
green=80 , and blue=72 , so the RGB triplet for salmon is "FA8072" .

You can override the value set in the fgColor property in either of the
following ways:

e Setting the COLORattribute of the FONTtag.

e Using the fontcolor ~ method.

formName

Property of document

Implemented in JavaScript 1.1

The document object contains a separate property for each form in the
document. The name of this property is the value of its NAMEattribute. See
Hidden for information on Form objects. You cannot add new forms to the
document by creating new properties, but you can modify the form by
modifying this object.

Chapter |, Objects, Methods, and Properties 123

document.forms

forms

Security

Description

An array containing an entry for each form in the document.
Property of document

Read-only

Implemented in JavaScript 1.1

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

You can refer to the forms in your code by using the forms array (you can also
use the form name). This array contains an entry for each Form object (FORM
tag) in a document; these entries are in source order. For example, if a
document contains three forms whose NAMEattributes are form1 |, form2 | and
form3 | you can refer to the objects in the forms array either as:

document.forms[" form1 "]
document.forms[* form2 "]
document.forms[" form3 "]
or as:

document.forms[0]
document.forms[1]
document.forms[2]

Additionally, the document object has a separate property for each named
form, so you could refer to these forms also as:

document. forml
document. form2
document. form3

For example, you would refer to a Text object named quantity in the second
form as document.forms[1].quantity . You would refer to the value
property of this Text object as document.forms[1].quantity.value

The value of each element in the forms array is <object nameAttribute> ,
where nameAttribute is the NAMEattribute of the form.

To obtain the number of forms in a document, use the length property:
document.forms.length

124 Client-Side JavaScript Reference

document.getSelection

getSelection

Syntax
Description
Security

Examples

Returns a string containing the text of the current selection.
Method of document

Implemented in JavaScript 1.2
getSelection()
This method works only on the current document.

You cannot determine selected areas in another window.

If you have a form with the following code and you click on the button,
JavaScript displays an alert box containing the currently selected text from the
window containing the button:

<INPUT TYPE="BUTTON" NAME="getstring"

VALUE="Show highlighted text (if any)"
onClick="alert("You have selected:\n'+document.getSelection());">

handleEvent

Syntax

Parameters

Description

Invokes the handler for the specified event.
Method of document

Implemented in JavaScript 1.2

handleEvent(event)

event The name of an event for which the specified object has an event
handler.

For information on handling events, see the Client-Side JavaScript Guide.

Chapter |, Objects, Methods, and Properties 125

document.height

See also

height

The height of a document, in pixels.
Property of document
Implemented in JavaScript 1.2

document.width

ids

Syntax

Parameters

Description

Examples

Creates a Style object that can specify the style of individual HTML tags.
Property of document

Implemented in JavaScript 1.2

document.ids. idValue

idvalue The case-insensitive value of the ID attribute of any HTML tag.

Use the ids property to specify the style of any HTML tag that has a specific
ID attribute. For example, you can specify that the color of the NewTopic ID
is green. See the Style object for a description of the style properties you can
specify for ids .

The ids property is useful when you want to provide an exception to a class
defined in the document.classes property.

If you use the ids property within the STYLE tag (instead of within the
SCRIPT tag), you can optionally omit document from the ids syntax. The
ids property always applies to the current document object.

This example sets the Main CLASSattribute to 18-point bold green, but
provides an exception for tags whose ID is NewTopic :

<STYLE TYPE="text/javascript">
classes.Main.all.color="green"
classes.Main.all.fontSize="18pt"
classes.Main.all.fontWeight="bold"
ids.NewTopic.color="blue"
</STYLE>

126 Client-Side JavaScript Reference

See also

document.images

Notice that you can omit the document object within the STYLE tag. Within the
SCRIPT tag, you must specify the document object as follows:

<SCRIPT LANGUAGE="JavaScriptl.2">
document.classes.Main.all.color="green"
document.classes.Main.all.fontSize="18pt"
document.classes.Main.all.fontWeight="bold"
document.ids.NewTopic.color="blue"
</SCRIPT>

In this example, text appearing within the following tag is 18-point bold green:

<H1 CLASS="Main">Green head</H1>

However, text appearing within the following tag is 18-point bold blue:

<H1 CLASS="Main" ID="NewTopic">Blue head</H1>

document.classes , document.contextual , document.tags , Style

images

An array containing an entry for each image in the document.
Property of document

Read-only

Implemented in JavaScript 1.1

You can refer to the images in a document by using the images array. This
array contains an entry for each Image object (IMG tag) in a document; the
entries are in source order. Images created with the Image constructor are not
included in the images array. For example, if a document contains three
images whose NAMEattributes are im1, im2, and im3, you can refer to the
objects in the images array either as:

document.images[" im1"]
document.images[* im2"]
document.images[* im3"]
or as:

document.images|0]
document.images[1]
document.images|2]

To obtain the number of images in a document, use the length property:
document.images.length

Chapter |, Objects, Methods, and Properties 127

document.lastModified

lastModified

Security

Description

Examples

A string representing the date that a document was last modified.
Property of document

Read-only
Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

The lastModified property is derived from the HTTP header data sent by the
web server. Servers generally obtain this date by examining the file’s
modification date.

The last modified date is not a required portion of the header, and some servers
do not supply it. If the server does not return the last modified information,
JavaScript receives a 0, which it displays as January 1, 1970 GMT. The following
code checks the date returned by lastModified and prints out a value that
corresponds to unknown.

lastmod = document.lastModified // get string of last modified date
lastmoddate = Date.parse(lastmod)// convert modified string to date
if(lastmoddate == 0){// unknown date (or January 1, 1970 GMT)

document.writeln("Lastmodified: Unknown")

} else {

document.writeln("LastModified . "+ lastmod)

}

In the following example, the lastModified property is used in a SCRIPT tag
at the end of an HTML file to display the modification date of the page:

document.write("This page updated o n " + document.lastModified)

128 Client-Side JavaScript Reference

document.layers

layers

Description

The layers property is an array containing an entry for each layer within the
document.
Property of document

Implemented in JavaScript 1.2

You can refer to the layers in your code by using the layers —array. This array
contains an entry for each Layer object (LAYERor ILAYER tag) in a document;
these entries are in source order. For example, if a document contains three
layers whose NAMEattributes are layerl | layer2 | and layer3 |, you can refer to
the objects in the layers array either as:

document.layers["layerl"]
document.layers["layer2"]
document.layers["layer3"]

or as:

document.layers[0]
document.layers[1]
document.layers[2]

When accessed by integer index, array elements appear in z-order from back to
front, where 0 is the bottommost layer and higher layers are indexed by
consecutive integers. The index of a layer is not the same as its zIndex
property, as the latter does not necessarily enumerate layers with consecutive
integers. Adjacent layers can have the same zIndex property values.

These are valid ways of accessing layer objects:

document.layerName

document.layers[index]

document.layers["layerName"]

/I example of using layers property to access nested layers:
document.layers["parentlayer"].layers["childlayer"]

Elements of a layers array are JavaScript objects that cannot be set by
assignment, though their properties can be set. For example, the statement
document.layers[0]="music"

is invalid (and ignored) because it attempts to alter the layers array. However,

the properties of the objects in the array readable and some are writable. For
example, the statement

document.layers['suspectl"].left = 100;

Chapter |, Objects, Methods, and Properties 129

document.linkColor

is valid. This sets the layer’s horizontal position to 100. The following example
sets the background color to blue for the layer bluehouse which is nested in
the layer houses .

document.layers[*"houses"].layers["bluehouse"].bgColor="blue";

To obtain the number of layers in a document, use the length property:
document.layers.length

Description

Examples

See also

linkColor

A string specifying the color of the document hyperlinks.
Property of document

Implemented in JavaScript 1.0

The linkColor property is expressed as a hexadecimal RGB triplet or as a
string literal (see the Client-Side JavaScript Guide). This property is the
JavaScript reflection of the LINK attribute of the BODYtag. The default value of
this property is set by the user with the preferences dialog box. You cannot set
this property after the HTML source has been through layout.

If you express the color as a hexadecimal RGB triplet, you must use the format
rrggbb . For example, the hexadecimal RGB values for salmon are red=FA |
green=80 , and blue=72 , so the RGB triplet for salmon is "FA8072" .

The following example sets the color of document links to aqua using a string
literal:

document.linkColor="aqua"

The following example sets the color of document links to aqua using a
hexadecimal triplet:

document.linkColor="00FFFF"

document.alinkColor , document.bgColor |, document.fgColor |
document.vlinkColor

130 Client-Side JavaScript Reference

document.links

links

Security

Description

An array of objects corresponding to Area and Link objects in source order.
Property of document

Read-only

Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

You can refer to the Area and Link objects in your code by using the links
array. This array contains an entry for each Area (<AREA HREF=".."> tag)
and Link (tag) object in a document in source order. It also
contains links created with the link method. For example, if a document
contains three links, you can refer to them as:

document.links[0]
document.links[1]
document.links[2]

To obtain the number of links in a document, use the length property:
document.links.length

open

Syntax

Parameters

Opens a stream to collect the output of write or writeln methods.
Method of document

Implemented in JavaScript 1.0
JavaScript 1.1: added "replace” parameter; document.open()

or document.open("text/html") clears the current document
if it has finished loading

open([mimeType, [replace 1]])

mimeType A string specifying the type of document to which you are writing.
If you do not specify mimeType, text/html is the default.

replace The string "replace"” . If you supply this parameter, mimeType
must be "text/html" . Causes the new document to reuse the

history entry that the previous document used.

Chapter |, Objects, Methods, and Properties 131

document.open

Description

Sample values for mimeType are:

e text/html specifies a document containing ASCII text with HTML
formatting.

e text/plain specifies a document containing plain ASCII text with end-of-
line characters to delimit displayed lines.

e image/gif specifies a document with encoded bytes constituting a GIF
header and pixel data.

e imagefjpeg specifies a document with encoded bytes constituting a JPEG
header and pixel data.

e image/x-bitmap specifies a document with encoded bytes constituting a
bitmap header and pixel data.

e plugin loads the specified plug-in and uses it as the destination for write
and writeln methods. For example, "x-world/vrml" loads the VR Scout
VRML plug-in from Chaco Communications, and "application/x-
director" loads the Macromedia Shockwave plug-in. Plug-in MIME types
are only valid if the user has installed the required plug-in software.

The open method opens a stream to collect the output of write or writeln
methods. If the mimeType is text or image , the stream is opened to layout;
otherwise, the stream is opened to a plug-in. If a document exists in the target
window, the open method clears it.

End the stream by using the document.close ~ method. The close method
causes text or images that were sent to layout to display. After using
document.close , call document.open again when you want to begin another
output stream.

In JavaScript 1.1 and later, document.open or document.open("text/html")

clears the current document if it has finished loading. This is because this type
of open call writes a default <BASE HREF=3ag so you can generate relative
URLs based on the generating script’s document base.

The "replace” keyword causes the new document to reuse the history entry
that the previous document used. When you specify "replace” while opening
a document, the target window’s history length is not incremented even after
you write and close.

132 Client-Side JavaScript Reference

Examples

document.open

“replace” s typically used on a window that has a blank document or an
"about:blank” URL. After "replace" is specified, the write method typically
generates HTML for the window, replacing the history entry for the blank URL.
Take care when using generated HTML on a window with a blank URL. If you
do not specify "replace” |, the generated HTML has its own history entry, and
the user can press the Back button and back up until the frame is empty.

After document.open(“text/html","replace") executes,
history.current for the target window is the URL of document that executed
document.open

Example 1. The following function calls document.open to open a stream
before issuing a write method:

function windowWriter1() {
var myString = "Hello, world!"
msgWindow.document.open()
msgWindow.document.write("<P>" + myString)
msgWindow.document.close()

}

Example 2. The following function calls document.open with the "replace”
keyword to open a stream before issuing write methods. The HTML code in
the write methods is written to msgWindow, replacing the current history entry.
The history length of msgWindow is not incremented.

function windowWriter2() {
var myString = "Hello, world!"
msgWindow.document.open(“text/html","replace")
msgWindow.document.write("<P>" + myString)
msgWindow.document.write("<P>history.length is " +
msgWindow.history.length)
msgWindow.document.close()

}

The following code creates the msgWindow window and calls the function:

msgWindow=window.open(",",
'toolbar=yes,scrollbars=yes,width=400,height=300")
windowWriter2()

Chapter |, Objects, Methods, and Properties 133

document.plugins

Example 3. In the following example, the probePlugin function determines
whether a user has the Shockwave plug-in installed:

function probePlugin(mimeType) {
var havePlugln = false
var tiny = window.open(", "teensy", "width=1,height=1")
if (tiny !'= null) {
if (tiny.document.open(mimeType) != null)
havePlugin = true

tiny.close()

}

return havePlugin
}
var haveShockwavePlugin = probePlugIn(“application/x-director")

Seealso document.close |, document.write |, document.writeln ,

Location.reload , Location.replace
plugins
An array of objects corresponding to Plugin objects in source order.
Property of document
Read-only
Implemented in JavaScript 1.1

You can refer to the Plugin objects in your code by using the plugins array.
This array contains an entry for each Plugin object in a document in source
order. For example, if a document contains three plugins, you can refer to them
as:

document.plugins[0]
document.plugins[1]
document.plugins[2]

134 Client-Side JavaScript Reference

document.referrer

referrer

Security

Description

Specifies the URL of the calling document when a user clicks a link.
Property of document
Read-only

Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

When a user navigates to a destination document by clicking a Link object on
a source document, the referrer property contains the URL of the source
document.

referrer is empty if the user typed a URL in the Location box, or used some
other means to get to the current URL. referrer is also empty if the server
does not provide environment variable information.

Examples In the following example, the getReferrer function is called from the
destination document. It returns the URL of the source document.
function getReferrer() {
return document.referrer
}
releaseEvents
Sets the document to release captured events of the specified type, sending the
event to objects further along the event hierarchy.
Method of document
Implemented in JavaScript 1.2
Note If the original target of the event is a window, the window receives the event
even if it is set to release that type of event.
Syntax releaseEvents(eventType)
Parameters

eventType Type of event to be captured.

Chapter |, Objects, Methods, and Properties 135

document.routeEvent

Description

releaseEvents works in tandem with captureEvents | routeEvent | and
handleEvent . For more information on events, see the Client-Side JavaScript
Guide.

routeEvent

Syntax

Parameters

Description

Passes a captured event along the normal event hierarchy.
Method of document

Implemented in JavaScript 1.2

routeEvent(event)

event Name of the event to be routed.

If a sub-object (document or layer) is also capturing the event, the event is sent
to that object. Otherwise, it is sent to its original target.

routeEvent works in tandem with captureEvents | releaseEvents | and
handleEvent . For more information on events, see the Client-Side JavaScript
Guide.

tags

Syntax

Parameters

Description

Creates a Style object that can specify the styles of HTML tags.
Property of document

Implemented in JavaScript 1.2

document.tags. tagName

tagName The case-insensitive name of any HTML tag, such as H1 or
BLOCKQUOTE

Use the tags property to specify the style of HTML tags. For example, you can
specify that the color of any H1 tag is blue, and that the alignment of any H1 or
H2 tag is centered. See the Style object for a description of the properties you
can specify for HTML tags.

136 Client-Side JavaScript Reference

Examples

See also

document.title

Because all HTML elements inherit from the BODYtag, you can specify a default
document style by setting the style properties of BODY

If you use the tags property within the STYLE tag (instead of within the
SCRIPT tag), you can optionally omit document from the tags syntax. The
tags property always applies to the current document object.

Example 1. This example sets the color of all H1 tags to blue:

<STYLE TYPE="text/javascript">
tags.H1.color="blue"
</STYLE>

Notice that you can omit the document object within the STYLE tag. Within
the SCRIPT tag, you must specify the document object as follows:

<SCRIPT LANGUAGE="JavaScriptl.2">
document.tags.H1.color="blue"
</SCRIPT>

Example 2. This example sets a universal left margin for a document:

document.tags.Body.marginLeft="20pt"

Because all HTML tags inherit from BODY this example sets the left margin for
the entire document to 20 points.

document.classes , document.contextual , document.ids | Style

title

Security

Description

A string representing the title of a document.
Property of document

Read-only
Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

The title property is a reflection of the value specified between the TITLE
start and end tags. If a document does not have a title, the title property is
null.

Chapter |, Objects, Methods, and Properties 137

document.URL

Examples

In the following example, the value of the title property is assigned to a
variable called docTitle

var newWindow = window.open("http://home.netscape.com")
var docTitle = newWindow.document.title

URL

Security

Description

Examples

See also

A string specifying the complete URL of the document.
Property of document

Read-only
Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

URL s a string-valued property containing the full URL of the document. It
usually matches what window.location.href is set to when you load the
document, but redirection may change location.href

The following example displays the URL of the current document:

document.write("The current URL i s " + document.URL)

Location.href

vlinkColor

Description

A string specifying the color of visited links.
Property of document

Implemented in JavaScript 1.0

The vlinkColor property is expressed as a hexadecimal RGB triplet or as a
string literal (see the Client-Side JavaScript Guide). This property is the
JavaScript reflection of the VLINK attribute of the BODYtag. The default value of
this property is set by the user with the preferences dialog box. You cannot set
this property after the HTML source has been through layout.

If you express the color as a hexadecimal RGB triplet, you must use the format
rrggbb . For example, the hexadecimal RGB values for salmon are red=FA |
green=80 , and blue=72 , so the RGB triplet for salmon is "FA8072" .

138 Client-Side JavaScript Reference

Examples

See also

document.width

The following example sets the color of visited links to aqua using a string
literal:

document.vlinkColor="aqua"

The following example sets the color of active links to aqua using a
hexadecimal triplet:

document.vlinkColor="00FFFF"

document.alinkColor , document.bgColor |, document.fgColor |
document.linkColor

width

See also

The width of a document, in pixels.
Property of document
Implemented in JavaScript 1.2

document.height

write

Syntax

Parameters

Description

Writes one or more HTML expressions to a document in the specified window.
Method of document

Implemented in JavaScript 1.0

document.write(exprl [, ..., exprN 1)

exprl, ... expr N Any JavaScript expressions.

The write method displays any number of expressions in the document
window. You can specify any JavaScript expression with the write method,
including numeric, string, or logical expressions.

The write. method is the same as the writeln method, except the write
method does not append a newline character to the end of the output.

Chapter |, Objects, Methods, and Properties 139

document.write

Use the write. method within any SCRIPT tag or within an event handler.
Event handlers execute after the original document closes, so the write
method implicitly opens a new document of mimeType text/html if you do
not explicitly issue a document.open method in the event handler.

You can use the write method to generate HTML and JavaScript code.
However, the HTML parser reads the generated code as it is being written, so
you might have to escape some characters. For example, the following write
method generates a comment and writes it to window?2 :

window2=window.open(",'window?2")

beginComment="\<!--"

endComment="--\>"

window2.document.write(beginComment)
window2.document.write(" This some text inside a comment. ")
window2.document.write(endComment)

Printing, saving, and viewing generated HTML. In Navigator 3.0 and later,
users can print and save generated HTML using the commands on the File
menu.

If you choose Page Source from the Navigator View menu or View Frame
Source from the right-click menu, the web browser displays the content of the
HTML file with the generated HTML. (This is what would be displayed using a

wysiwyg: URLL.)

If you instead want to view the HTML source showing the scripts which
generate HTML (with the document.write and document.writeln
methods), do not use the Page Source or View Frame Source menu items. In
this situation, use the view-source: protocol.

For example, assume the file file://c|/test.html contains this text:

<HTML>

<BODY>

Hello,

<SCRIPT>document.write(" there.")</SCRIPT>
</BODY>

</HTML>

If you load this URL into the web browser, it displays the following:

Hello, there.

140 Client-Side JavaScript Reference

Examples

See also

document.write

If you choose View Document Source, the browser displays:

<HTML>
<BODY>
Hello,
there.
</BODY>
</HTML>

If you load view-source:file://c|/test.html , the browser displays:

<HTML>

<BODY>

Hello,

<SCRIPT>document.write(" there.")</SCRIPT>
</BODY>

</HTML>

For information on specifying the view-source: protocol in the location
object, see the Location object.

In the following example, the write method takes several arguments, including
strings, a numeric, and a variable:

var mystery = "world"
/I Displays Hello world testing 123
msgWindow.document.write("Hello ", mystery, " testing ", 123)

In the following example, the write method takes two arguments. The first
argument is an assignment expression, and the second argument is a string
literal.

/IDisplays Hello world...
msgWindow. document.write (mystr = "Hello ", "world...")

In the following example, the write method takes a single argument that is a
conditional expression. If the value of the variable age is less than 18, the
method displays “Minor.” If the value of age is greater than or equal to 18, the
method displays “Adult.”

msgWindow.document.write(status = (age >= 18) ? "Adult" : "Minor")

document.close |, document.open , document.writeln

Chapter |, Objects, Methods, and Properties 141

document.writeln

writeln

Syntax

Parameters

Description

Examples

See also

Writes one or more HTML expressions to a document in the specified window
and follows them with a newline character.

Method of document

Implemented in JavaScript 1.0

writeln(exprl [, ... exprN])

exprl, ... expr N Any JavaScript expressions.

The writeln method displays any number of expressions in a document
window. You can specify any JavaScript expression, including numeric, string,
or logical expressions.

The writeln method is the same as the write. method, except the writeln
method appends a newline character to the end of the output. HTML ignores
the newline character, except within certain tags such as the PREtag.

Use the writeln method within any SCRIPT tag or within an event handler.
Event handlers execute after the original document closes, so the writeln
method will implicitly open a new document of mimeType text/html if you
do not explicitly issue a document.open method in the event handler.

In Navigator 3.0 and later, users can print and save generated HTML using the
commands on the File menu.

All the examples used for the write method are also valid with the writeln
method.

document.close |, document.open , document.write

142 Client-Side JavaScript Reference

event

Created by

Security

Property
Summary

event

The event object contains properties that describe a JavaScript event, and is
passed as an argument to an event handler when the event occurs.
Client-side object

Implemented in JavaScript 1.2

In the case of a mouse-down event, for example, the event object contains the
type of event (in this case MouseDown), the x and y position of the cursor at
the time of the event, a number representing the mouse button used, and a
field containing the modifier keys (Control, Alt, Meta, or Shift) that were
depressed at the time of the event. The properties used within the event object
vary from one type of event to another. This variation is provided in the
descriptions of individual event handlers.

See Chapter 3, “Event Handlers,” for complete information about event
handlers. For more information on handling events, see the Client-Side
JavaScript Guide.

event objects are created by Communicator when an event occurs. You do not
create them yourself.

Setting any property of this object requires the UniversalBrowserWrite

privilege. In addition, getting the data property of the DragDrop event requires
the UniversalBrowserRead privilege. For information on security, see the
Client-Side JavaScript Guide.

Not all of these properties are relevant to each event type. To learn which
properties are used by an event, see the “Event object properties used” section
of the individual event handler.

Property Description

data Returns an array of strings containing the URLs of the dropped
objects. Passed with the DragDrop event.

height Represents the height of the window or frame.

layerX Number specifying either the object width when passed with the
resize event, or the cursor's horizontal position in pixels relative to
the layer in which the event occurred. Note that layerX is
synonymous with x.

Chapter |, Objects, Methods, and Properties 143

event

Property

Description

layerY

modifiers

pageX

pageY

screenX

screenY

target

type

which

width

Number specifying either the object height when passed with the
resize event, or the cursor's vertical position in pixels relative to
the layer in which the event occurred. Note that layerY is
synonymous with y.

String specifying the modifier keys associated with a mouse or key
event. Modifier key values are: ALT_MASK, CONTROL_MASK,
SHIFT_MASK, and META_MASK.

Number specifying the cursor's horizontal position in pixels,
relative to the page.

Number specifying the cursor's vertical position in pixels relative
to the page.

Number specifying the cursor's horizontal position in pixels,
relative to the screen.

Number specifying the cursor's vertical position in pixels, relative
to the screen.

String representing the object to which the event was originally
sent. (All events)

String representing the event type. (All events)

Number specifying either the mouse button that was pressed or
the ASCII value of a pressed key. For a mouse, 1 is the left button,
2 is the middle button, and 3 is the right button.

Represents the width of the window or frame.
Synonym for layerX

Synonym for layerY

Method Summary This object inherits the watch and unwatch methods from Object

144 Client-Side JavaScript Reference

event.data

Examples The following example uses the event object to provide the type of event to the
alert message.
<A HREF="http://home.netscape.com" onClick="alert("Link got an event: "
+ event.type)'>Click for link event
The following example uses the event object in an explicitly called event
handler.
<SCRIPT>
function funl(evnt) {
alert ("Document got an event : "+ evnt.type);
alert ("X position i s " + evnt.layerX);
alert ("y position i s " + evntlayerY);
if (evnt.modifiers & Event.ALT_MASK)
alert ("Alt key was down for event.");
return true;
}
document.onmousedown = funi,
</SCRIPT>
data
For the DragDrop event, returns an array of strings containing the URLs of the
dropped objects.
Property of event
Implemented in JavaScript 1.2
Security Setting this property requires the UniversalBrowserWrite privilege. In
addition, getting this property for the DragDrop event requires the
UniversalBrowserRead privilege. For information on security, see the Client-
Side JavaScript Guide.
height
Represents the height of the window or frame.
Property of event
Implemented in JavaScript 1.2
Security Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.
See also event.width

Chapter |, Objects, Methods, and Properties 145

event.layerX

layerX

Security

Description

See also

Number specifying either the object width when passed with the resize event,
or the cursor’s horizontal position in pixels relative to the layer in which the
event occurred.

Property of event
Implemented in JavaScript 1.2
Setting this property requires the UniversalBrowserWrite privilege. For

information on security, see the Client-Side JavaScript Guide.
This property is synonymous with the event.x property.

event.layerY

layerY

Security

Description

See also

Number specifying either the object height when passed with the resize event,
or the cursor's vertical position in pixels relative to the layer in which the event
occurred.

Property of event

Implemented in JavaScript 1.2

Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

This property is synonymous with the event.,y property.

event.layerX

146 Client-Side JavaScript Reference

event.modifiers

modifiers

String specifying the modifier keys associated with a mouse or key event.
Modifier key values are: ALT_MASK, CONTROL_MASK, SHIFT_MASK, and
META_MASK.

Property of event
Implemented in JavaScript 1.2

Security Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

See also event.which
pageX
Number specifying the cursor's horizontal position in pixels, relative to the
page.
Property of event
Implemented in JavaScript 1.2

Security Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

See also event.pageY
pageY
Number specifying the cursor’s vertical position in pixels relative to the page.
Property of event
Implemented in JavaScript 1.2

Security Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

See also event.pageX

Chapter |, Objects, Methods, and Properties 147

event.screenX

screenX

Number specifying the cursor's horizontal position in pixels, relative to the
screen.

Property of event
Implemented in JavaScript 1.2

Security Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

Seealso event.screenY
screenY
Number specifying the cursor's vertical position in pixels, relative to the screen.
Property of event
Implemented in JavaScript 1.2

Security Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

Seealso event.screenX
target
String representing the object to which the event was originally sent.
Property of event
Implemented in JavaScript 1.2

Security Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

See also event.type

148 Client-Side JavaScript Reference

event.type

type

Security

See also

String representing the event type.
Property of event

Implemented in JavaScript 1.2

Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

event.target

which

Security

See also

Number specifying either the mouse button that was pressed or the ASCII value
of a pressed key. For a mouse, 1 is the left button, 2 is the middle button, and 3
is the right button.

Property of event

Implemented in JavaScript 1.2

Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

event.modifiers

width

Security

See also

Represents the width of the window or frame.
Property of event
Implemented in JavaScript 1.2

Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

event.height

Chapter |, Objects, Methods, and Properties 149

event.x

X

Number specifying either the object width when passed with the resize event,
or the cursor's horizontal position in pixels relative to the layer in which the
event occurred.

Property of event
Implemented in JavaScript 1.2
Security Setting this property requires the UniversalBrowserWrite privilege. For

information on security, see the Client-Side JavaScript Guide.
Description This property is synonymous with the event.layerX property.

See also event.y

Yy

Synonym for layerY
Property of event

Implemented in JavaScript 1.2

Security Setting this property requires the UniversalBrowserWrite privilege. For
information on security, see the Client-Side JavaScript Guide.

Description This property is synonymous with the event.layerY property.

See also event.x

150 Client-Side JavaScript Reference

FileUpload

FileUpload

A file upload element on an HTML form. A file upload element lets the user

supply a file as input.
Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added type property

JavaScript 1.2: added handleEvent

method.

Created by The HTML INPUT tag, with "file" as the value of the TYPEattribute. For a
given form, the JavaScript runtime engine creates appropriate FileUpload

array of the corresponding

Form object. You access a FileUpload object by indexing this array. You can

index the array either by number or, if supplied, by using the value of the NAME

objects and puts these objects in the elements

attribute.

Event handlers ¢ onBlur
e onChange
e onFocus

Description A FileUpload object on a form looks as follows:

= Metscape - [Fiction Contest] -

rs

Thanks for entering the writing contest!

First name: |Michelle Last name: |5|C'ﬂﬂ'-]|Ef |

File containing your entry:
|CATEMPSOXHTML || Browse.! |
|

Filelpload

| Submit | | Cancel |

object

A FileUpload object is a form element and must be defined within a FORMag.

Chapter |, Objects, Methods, and Properties 151

FileUpload

Property
Summary

Method Summary

Examples

See also

Property Description

form Specifies the form containing the FileUpload object.

name Reflects the NAMEttribute.

type Reflects the TYPEattribute.

value Reflects the current value of the file upload element’s field; this

corresponds to the name of the file to upload.

Method Description

blur Removes focus from the object.

focus Gives focus to the object.

handleEvent Invokes the handler for the specified event.
select Selects the input area of the file upload field.

In addition, this object inherits the watch and unwatch methods from
Object

The following example places a FileUpload object on a form and provides
two buttons that let the user display current values of the name and value
properties.

<FORM NAME="form1">
File to send: <INPUT TYPE="file" NAME="myUploadObject">
<P>Get properties

<INPUT TYPE="button" VALUE="name"
onClick="alert('name ;' + document.forml.myUploadObject.name)">
<INPUT TYPE="button" VALUE="value"
onClick="alert('value: ' +
document.form1l.myUploadObject.value)">

</[FORM>

Text

152 Client-Side JavaScript Reference

FileUpload.blur

blur
Removes focus from the object.
Method of FileUpload
Implemented in JavaScript 1.0
Syntax blur()
Parameters None
See also FileUpload.focus , FileUpload.select
focus
Navigates to the FileUpload field and give it focus.
Method of FileUpload
Implemented in JavaScript 1.0
Syntax focus()
Parameters None
See also FileUpload.blur , FileUpload.select
form

Description

An object reference specifying the form containing the object.
Property of FileUpload

Read-only

Implemented in JavaScript 1.0

Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

Chapter |, Objects, Methods, and Properties 153

FileUpload.handleEvent

handleEvent

Syntax

Parameters

Description

Invokes the handler for the specified event.

handleEvent(event)
Method of FileUpload

Implemented in JavaScript 1.2

event The name of an event for which the object has an event handler.

For information on handling events, see the Client-Side JavaScript Guide.

name

Security

Description

A string specifying the name of this object.
Property of FileUpload
Read-only

Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

The name property initially reflects the value of the NAMEattribute. The name
property is not displayed on-screen; it is used to refer to the objects
programmatically.

If multiple objects on the same form have the same NAMEattribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a FileUpload element on the same
form have their NAMEattribute set to "myField" , an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

154 Client-Side JavaScript Reference

FileUpload.select

Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {
msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")

}

select

Selects the input area of the file upload field.
Method of FileUpload

Implemented in JavaScript 1.0

Syntax select()
Parameters None

Description Use the select method to highlight the input area of a file upload field. You
can use the select method with the focus method to highlight a field and
position the cursor for a user response. This makes it easy for the user to
replace all the text in the field.

See also FileUpload.blur , FileUpload.focus

Chapter |, Objects, Methods, and Properties 155

FileUpload.type

type

For all FileUpload objects, the value of the type property is “file" . This
property specifies the form element’s type.

Property of FileUpload

Read-only

Implemented in JavaScript 1.1

Examples The following example writes the value of the type property for every element
on a form.
for (var i = 0; i < document.forml.elements.length; i++) {
document.writeln("
type i s " + document.forml.elements]i].type)
}
value
A string that reflects the VALUEattribute of the object.
Property of FileUpload
Read-only
Implemented in JavaScript 1.0
Security Setting a file upload widget requires the UniversalFileRead privilege. For

Description

information on security, see the Client-Side JavaScript Guide.

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Use the value property to obtain the file name that the user typed into a
FileUpload object.

156 Client-Side JavaScript Reference

Form

Created by

Event handlers

Description

Form

Lets users input text and make choices from Form elements such as
checkboxes, radio buttons, and selection lists. You can also use a form to post
data to a server.

Client-side object

Implemented in JavaScript 1.0
JavaScript 1.1: added reset method.

JavaScript 1.2: added handleEvent method.

The HTML FORMag. The JavaScript runtime engine creates a Form object for
each FORMag in the document. You access FORMobjects through the
document.forms property and through named properties of that object.

To define a form, use standard HTML syntax with the addition of JavaScript
event handlers. If you supply a value for the NAMEattribute, you can use that
value to index into the forms array. In addition, the associated document
object has a named property for each named form.

e onReset
e onSubmit

Each form in a document is a distinct object. You can refer to a form’s elements
in your code by using the element’s name (from the NAMEattribute) or the
Form.elements array. The elements array contains an entry for each
element (such as a Checkbox , Radio , or Text object) in a form.

If multiple objects on the same form have the same NAMEattribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Textarea element on the same
form have their NAMEattribute set to "myField" | an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Chapter |, Objects, Methods, and Properties 157

Form

Property
Summary Property Description
action Reflects the ACTION attribute.
elements An array reflecting all the elements in a form.
encoding Reflects the ENCTYPEattribute.
length Reflects the number of elements on a form.
method Reflects the METHORttribute.
name Reflects the NAMEattribute.
target Reflects the TARGETattribute.
Method Summary
Method Description
handleEvent Invokes the handler for the specified event.
reset Simulates a mouse click on a reset button for the calling form.
submit Submits a form.

In addition, this object inherits the watch and unwatch methods from
Object

Examples Example 1: Named form. The following example creates a form called
myForm that contains text fields for first name and last name. The form also
contains two buttons that change the names to all uppercase or all lowercase.
The function setCase shows how to refer to the form by its name.

<HTML>

<HEAD>

<TITLE>Form object example</TITLE>

</HEAD>

<SCRIPT>

function setCase (caseSpec){

if (caseSpec == "upper") {
document.myForm.firstName.value=document.myForm.firstName.value.toUpperCase()
document.myForm.lastName.value=document.myForm.lastName.value.toUpperCase()}

else {
document.myForm.firstName.value=document.myForm.firstName.value.toLowerCase()
document.myForm.lastName.value=document.myForm.lastName.value.toLowerCase()}

}
</SCRIPT>

158 Client-Side JavaScript Reference

Form

<BODY>

<FORM NAME="myForm">

First name:

<INPUT TYPE="text" NAME="firstName" SIZE=20>

Last name:

<INPUT TYPE="text" NAME="lastName" SIZE=20>

<P><INPUT TYPE="button" VALUE="Names to uppercase" NAME="upperButton"
onClick="setCase('upper’)">

<INPUT TYPE="button" VALUE="Names to lowercase” NAME="lowerButton"
onClick="setCase('lower')">

</[FORM>

</BODY>

</HTML>

Example 2: forms array. The onLoad event handler in the following example
displays the name of the first form in an Alert dialog box.

<BODY onLoad="alert("You are looking at the ' + document.forms[0] +
form!")">

If the form name is musicType , the alert displays the following message:

You are looking at the <object musicType> form!

Example 3: onSubmit event handler. The following example shows an
onSubmit event handler that determines whether to submit a form. The form
contains one Text object where the user enters three characters. onSubmit
calls a function, checkData , that returns true if there are 3 characters;
otherwise, it returns false. Notice that the form’s onSubmit event handler, not
the submit button’s onClick event handler, calls the checkData function. Also,
the onSubmit handler contains a return statement that returns the value
obtained with the function call; this prevents the form from being submitted if
invalid data is specified. See onSubmit for more information.

<HTML>
<HEAD>
<TITLE>Form object/onSubmit event handler example</TITLE>
<TITLE>Form object example</TITLE>
</HEAD>
<SCRIPT>
var dataOK=false
function checkData (){
if (document.myForm.threeChar.value.length == 3) {
return true}
else {
alert("Enter exactly three characters . " + document.myForm.threeChar.value +
" is not valid.")
return false}

Chapter |, Objects, Methods, and Properties 159

Form

</SCRIPT>

<BODY>

<FORM NAME="myForm" onSubmit="return checkData()">

Enter 3 characters:

<INPUT TYPE="text" NAME="threeChar" SIZE=3>

<P><INPUT TYPE="submit" VALUE="Done" NAME="submitl"
onClick="document.myForm.threeChar.value=document.myForm.threeChar.value.toUpperCase()">

</FORM>
</BODY>

</HTML>

See also

Example 4: submit method. The following example is similar to the previous
one, except it submits the form using the submit method instead of a Submit
object. The form’s onSubmit event handler does not prevent the form from
being submitted. The form uses a button’s onClick event handler to call the
checkData function. If the value is valid, the checkData function submits the
form by calling the form’s submit method.

<HTML>
<HEAD>
<TITLE>Form object/submit method example</TITLE>
</HEAD>
<SCRIPT>
var dataOK=false
function checkData (){
if (document.myForm.threeChar.value.length == 3) {

document.myForm.submit()}

else {

alert("Enter exactly three characters. " +
document.myForm.threeChar.value +
" is not valid.")
return false}

}
</SCRIPT>
<BODY>
<FORM NAME="myForm" onSubmit="alert('Form is being submitted.)">
Enter 3 characters:
<INPUT TYPE="text" NAME="threeChar" SIZE=3>
<P><INPUT TYPE="button" VALUE="Done" NAME="buttonl1"

onClick="checkData()">
</[FORM>
</BODY>
</HTML>

Button , Checkbox , FileUpload , Hidden , Password , Radio , Reset ,
Select , Submit , Text , Textarea

160 Client-Side JavaScript Reference

Form.action

action

Security

Description

Examples

See also

A string specifying a destination URL for form data that is submitted
Property of Form
Implemented in JavaScript 1.0

Submitting a form to a mailto: or news: URL requires the
UniversalSendMail privilege. For information on security, see the Client-Side
JavaScript Guide.

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

The action property is a reflection of the ACTION attribute of the FORMag.
Each section of a URL contains different information. See Location for a
description of the URL components.

The following example sets the action property of the musicForm form to the
value of the variable urlName:

document.musicForm.action=urIName

Form.encoding , Form.method , Form.target

elements

Description

An array of objects corresponding to form elements (such as checkbox , radio
and Text obijects) in source order.

Property of Form

Read-only

Implemented in JavaScript 1.0

You can refer to a form’s elements in your code by using the elements array.
This array contains an entry for each object (Button , Checkbox ,

FileUpload , Hidden , Password , Radio , Reset , Select , Submit , Text ,
or Textarea object) in a form in source order. Each radio button in a Radio
object appears as a separate element in the elements array. For example, if a
form called myForm has a text field and two checkboxes, you can refer to these
elements myForm.elements[0] , myForm.elements[1l] , and
myForm.elements[2]

Chapter |, Objects, Methods, and Properties 161

Form.encoding

Examples

Although you can also refer to a form’s elements by using the element’s name
(from the NAMEattribute), the elements array provides a way to refer to Form
objects programmatically without using their names. For example, if the first
object on the userinfo form is the userName Text object, you can evaluate it
in either of the following ways:

userinfo.userName.value
userinfo.elements[0].value

The value of each element in the elements array is the full HTML statement for
the object.

To obtain the number of elements in a form, use the length property:
myForm.elements.length

See the examples for window .

encoding

Description

Examples

See also

A string specifying the MIME encoding of the form.
Property of Form
Implemented in JavaScript 1.0

The encoding property initially reflects the ENCTYPExttribute of the FORMag;
however, setting encoding overrides the ENCTYPEattribute.

The following function returns the value of the encoding property of
musicForm :

function getEncoding() {
return document.musicForm.encoding

}

Form.action , Form.method | Form.target

162 Client-Side JavaScript Reference

Form.handleEvent

handleEvent

Syntax

Parameters

Description

Invokes the handler for the specified event.
Method of Form

Implemented in JavaScript 1.2

handleEvent(event)

event The name of an event for which the specified object has an event
handler.

For information on handling events, see the Client-Side JavaScript Guide.

Description

length

The number of elements in the form.
Property of Form

Read-only

Implemented in JavaScript 1.0

The form.length property tells you how many elements are in the form. You
can get the same information using form.elements.length

method

Description

A string specifying how form field input information is sent to the server.
Property of Form

Implemented in JavaScript 1.0

The method property is a reflection of the METHODR:ttribute of the FORMag. The
method property should evaluate to either "get" or "post"

Chapter |, Objects, Methods, and Properties 163

Form.name

The following function returns the value of the musicForm method property:

function getMethod() {
return document.musicForm.method

Form.action |, Form.encoding , Form.target

A string specifying the name of the form.
Property of Form
Implemented in JavaScript 1.0

Examples
}
See also
name
Security

Description

Examples

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

The name property initially reflects the value of the NAMEttribute. Changing the
name property overrides this setting.

In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {

var msgWindow=window.open("")

for (var i = 0; i <

newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")

}

164 Client-Side JavaScript Reference

Form.reset

reset

Syntax
Parameters

Description

Examples

See also

Simulates a mouse click on a reset button for the calling form.
Method of Form

Implemented in JavaScript 1.1

reset()
None

The reset method restores a form element’s default values. A reset button does
not need to be defined for the form.

The following example displays a Text object in which the user is to type “CA”
or “AZ”. The Text object’s onChange event handler calls a function that
executes the form’s reset method if the user provides incorrect input. When
the reset method executes, defaults are restored and the form’s onReset event
handler displays a message.

<SCRIPT>
function verifylnput(textObject) {
if (textObject.value == 'CA' || textObject.value == 'AZ’) {
alert('Nice input’)

}

else { document.myForm.reset() }
}
</SCRIPT>

<FORM NAME="myForm" onReset="alert('Please enter CA or AZ.")">

Enter CA or AZ:

<INPUT TYPE="text" NAME="state" SIZE="2" onChange=verifylnput(this)><P>
</[FORM>

onReset , Reset

Chapter |, Objects, Methods, and Properties 165

Form.submit

submit

Syntax
Parameters

Security

Description

Examples

See also

Submits a form.

Method of Form
Implemented in JavaScript 1.0
submit()

None

Submitting a form to a mailto: or news: URL requires the
UniversalSendMail privilege. For information on security, see the Client-Side
JavaScript Guide.

JavaScript 1.1: The submit method fails without notice if the form’s action is a
mailto: |, news: , or snews: URL. Users can submit forms with such URLs by
clicking a submit button, but a confirming dialog will tell them that they are
about to give away private or sensitive information.

The submit method submits the specified form. It performs the same action as
a submit button.

Use the submit method to send data back to an HTTP server. The submit
method returns the data using either “get” or “post,” as specified in
Form.method

The following example submits a form called musicChoice

document.musicChoice.submit()

If musicChoice is the first form created, you also can submit it as follows:

document.forms[0].submit()
See also the example for Form.

Submit , onSubmit

166 Client-Side JavaScript Reference

Form.target

target

Description

Examples

See also

A string specifying the name of the window that responses go to after a form
has been submitted.
Property of Form

Implemented in JavaScript 1.0

The target property initially reflects the TARGETattribute of the A, AREA and
FORMags; however, setting target overrides these attributes.

You can set target using a string, if the string represents a window name. The
target property cannot be assigned the value of a JavaScript expression or
variable.

The following example specifies that responses to the musicinfo form are
displayed in the msgWindow window:

document.musiclnfo.target="msgWindow"

Form.action |, Form.encoding , Form.method

Chapter |, Objects, Methods, and Properties 167

Frame

Frame

A window can display multiple, independently scrollable frames on a single
screen, each with its own distinct URL. These frames are created using the
FRAMEag inside a FRAMESETag. A series of frames makes up a page. Each
frame can point to different URLs and be targeted by other URLs, all within the
same page.

The Frame object is provided a convenience for referring to the objects that
constitute frames. However, JavaScript actually represents a frame using a
window object. Every Frame object is a window object, and has all the
methods and properties of a window object. However, a window that is a
frame differs slightly from a top-level window.

See window for complete information on frames.
Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added blur and focus methods; added onBlur
and onFocus event handlers

168 Client-Side JavaScript Reference

Function

Created by

Parameters

Description

Function

Specifies a string of JavaScript code to be compiled as a function.
Core object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: added arity , arguments.callee properties; added
ability to nest functions

JavaScript 1.3: added apply , call , and toSource methods;
deprecated arguments.caller property

ECMA version ECMA-262
The Function constructor:
new Function ([argl|[, arg2|, ... argN1l.] functionBody)

The function statement (see “function” on page 622 for details):

function name([param|[, param], ... param]]]) {
Sstatements
}
argl, arg2, Names to be used by the function as formal argument names. Each
.arg N must be a string that corresponds to a valid JavaScript identifier; for

example "X" or "theValue"

functionBody A string containing the JavaScript statements comprising the function
definition.

name The function name.

param The name of an argument to be passed to the function. A function can

have up to 255 arguments.

statements The statements comprising the body of the function.

Function objects created with the Function constructor are evaluated each
time they are used. This is less efficient than declaring a function and calling it
within your code, because declared functions are compiled.

To return a value, the function must have a return statement that specifies the
value to return.

Chapter |, Objects, Methods, and Properties 169

Function

All parameters are passed to functions by value; the value is passed to the
function, but if the function changes the value of the parameter, this change is
not reflected globally or in the calling function. However, if you pass an object
as a parameter to a function and the function changes the object’s properties,
that change is visible outside the function, as shown in the following example:

function myFunc(theObject) {
theObject.make="Toyota"

}

mycar = {make:"Honda", model:"Accord", year:1998}

x=mycar.make /I returns Honda

myFunc(mycar) /I pass object mycar to the function

y=mycar.make /I returns Toyota (prop was changed by the function)

The this keyword does not refer to the currently executing function, so you
must refer to Function objects by name, even within the function body.

Accessing a function’s arguments with the arguments array. You can
refer to a function’s arguments within the function by using the arguments
array. See arguments

Specifying arguments with the Function constructor. The following code
creates a Function object that takes two arguments.

var multiply = new Function("x", "y", "return x * y")

The arguments "x" and "y" are formal argument names that are used in the
function body, "retur n x * y"

The preceding code assigns a function to the variable multiply . To call the
Function object, you can specify the variable name as if it were a function, as
shown in the following examples.

var theAnswer = multiply(7,6)

var myAge = 50
if (myAge >=39) {myAge=multiply (myAge,.5)}

170 Client-Side JavaScript Reference

Function

Assigning a function to a variable with the Function constructor.

Suppose you create the variable multiply using the Function constructor, as
shown in the preceding section:

var multiply = new Function("x", "y", "return x * y")

This is similar to declaring the following function:

function multiply(x,y) {
return x*y

}

Assigning a function to a variable using the Function constructor is similar to
declaring a function with the function statement, but they have differences:

e When you assign a function to a variable using var multiply = new
Function("...") , multiply is a variable for which the current value is a
reference to the function created with new Function()

e When you create a function using function multiply() {...}
multiply is not a variable, it is the name of a function.

Nesting functions. You can nest a function within a function. The nested
(inner) function is private to its containing (outer) function:

¢ The inner function can be accessed only from statements in the outer
function.

e The inner function can use the arguments and variables of the outer
function. The outer function cannot use the arguments and variables of the
inner function.

The following example shows nested functions:

function addSquares (a,b) {

function square(x) {

return x*x

}

return square(a) + square(b)
}
a=addSquares(2,3) // returns 13
b=addSquares(3,4) // returns 25
c=addSquares(4,5) // returns 41

Chapter |, Objects, Methods, and Properties 171

Function

Backward
Compatibility

When a function contains a nested function, you can call the outer function and
specify arguments for both the outer and inner function:

function outside(x) {
function inside(y) {
return x+y

}

return inside

}

result=outside(3)(5) // returns 8

Specifying an event handler with a Function object. The following code
assigns a function to a window’s onFocus event handler (the event handler
must be spelled in all lowercase):

window.onfocus = new Function("document.bgColor="antiquewhite™)

If a function is assigned to a variable, you can assign the variable to an event
handler. The following code assigns a function to the variable setBGColor

var setBGColor = new Function("document.bgColor="antiquewhite")

You can use this variable to assign a function to an event handler in either of
the following ways:

document.forml.colorButton.onclick=setBGColor

<INPUT NAME="colorButton" TYPE="button"
VALUE="Change background color"
onClick="setBGColor()">

Once you have a reference to a Function object, you can use it like a
function and it will convert from an object to a function:

window.onfocus()

Event handlers do not take arguments, so you cannot declare any arguments in

a Function constructor for an event handler. For example, you cannot call the
function multiply by setting a button’s onclick property as follows:

document.form1.buttonl.onclick=multFun(5,10)

JavaScript 1.1 and earlier versions. You cannot nest a function statement in
another statement or in itself.

172 Client-Side JavaScript Reference

Property
Summary

Method Summary

Function

Property

Description

arguments

arguments.callee

arguments.caller

arguments.length

An array corresponding to the arguments passed to a
function.

Specifies the function body of the currently executing
function.

Specifies the name of the function that invoked the currently
executing function.

Specifies the number of arguments passed to the function.

arity Specifies the number of arguments expected by the function.

constructor Specifies the function that creates an object’s prototype.

length Specifies the number of arguments expected by the function.

prototype Allows the addition of properties to a Function object.

Method Description

apply Allows you to apply a method of another object in the
context of a different object (the calling object).

call Allows you to call (execute) a method of another object in
the context of a different object (the calling object).

toSource Returns a string representing the source code of the function.
Overrides the Object.toSource method.

toString Returns a string representing the source code of the function.
Overrides the Object.toString method.

valueOf Returns a string representing the source code of the function.

Overrides the Object.valueOf method.

Chapter |, Objects, Methods, and Properties 173

Function

Examples

Example 1. The following function returns a string containing the formatted
representation of a number padded with leading zeros.

/I This function returns a string padded with leading zeros
function padZeros(num, totalLen) {

var numsStr = num.toString() /I Initialize return value

/I as string
var numZeros = totalLen - numStr.length // Calculate no. of zeros
if (numZeros > 0) {
for (var i = 1; i <= numZeros; i++) {
numStr = "0" + numsStr

}
}

return numsStr

}

The following statements call the padZeros function.

result=padZeros(42,4) // returns "0042"
result=padZeros(42,2) // returns "42"
result=padZeros(5,4) // returns "0005"

Example 2. You can determine whether a function exists by comparing the
function name to null. In the following example, funcl is called if the function
noFunc does not exist; otherwise func2 is called. Notice that the window name
is needed when referring to the function name noFunc .

if (window.noFunc == null)
funcl()
else func2()

Example 3. The following example creates onFocus and onBlur event
handlers for a frame. This code exists in the same file that contains the
FRAMESETag. Note that this is the only way to create onFocus and onBlur
event handlers for a frame, because you cannot specify the event handlers in
the FRAMEtag.

frames[0].onfocus = new Function("document.bgColor="antiquewhite™)
frames[0].onblur = new Function("document.bgColor='lightgrey™)

174 Client-Side JavaScript Reference

Function.apply

apply

Syntax

Parameters

Description

Allows you to apply a method of another object in the context of a different
object (the calling object).
Method of Function

Implemented in JavaScript 1.3

apply(thisArg [, argArray 1)

thisArg Parameter for the calling object

argArray An argument array for the object

You can assign a different this object when calling an existing function. this
refers to the current object, the calling object. With apply , you can write a
method once and then inherit it in another object, without having to rewrite the
method for the new object.

apply is very similar to call |, except for the type of arguments it supports.
You can use an arguments array instead of a named set of parameters. With
apply , you can use an array literal, for example, apply(this, [name,
value]) , or an Array object, for example, apply(this, new

Array(name, value))

You can also use arguments for the argArray parameter. arguments is a
local variable of a function. It can be used for all unspecified arguments of the
called object. Thus, you do not have to know the arguments of the called object
when you use the apply method. You can use arguments to pass all the
arguments to the called object. The called object is then responsible for
handling the arguments.

Chapter |, Objects, Methods, and Properties 175

Function.apply

Examples

See also

You can use apply to chain constructors for an object, similar to Java. In the
following example, the constructor for the product — object is defined with two
parameters, name and value . Another object, prod_dept , initializes its
unique variable (dept) and calls the constructor for product in its constructor
to initialize the other variables. In this example, the parameter arguments is
used for all arguments of the product object’s constructor.

function product(name, value){
this.name = name;
if(value > 1000)
this.value = 999;
else
this.value = value;

}

function prod_dept(name, value, dept){
this.dept = dept;
product.apply(product, arguments);

}

prod_dept.prototype = new product();

/I since 5 is less than 100 value is set
cheese = new prod_dept(‘feta", 5, "food");

/I since 5000 is above 1000, value will be 999
car = new prod_dept("honda”, 5000, "auto");

Function.call

176 Client-Side JavaScript Reference

Function.arguments

arguments

Description

An array corresponding to the arguments passed to a function.
Local variable of All function objects

Property of Function (deprecated)
Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2: added arguments.callee property

JavaScript 1.3: deprecated arguments.caller property; removed
support for argument names and local variable names as properties
of the arguments array

ECMA version ECMA-262

You can refer to a function’s arguments within the function by using the
arguments array. This array contains an entry for each argument passed to
the function. For example, if a function is passed three arguments, you can
refer to the arguments as follows:

arguments[0]
arguments[1]
arguments[2]

The arguments array can also be preceded by the function name:

myFunc.arguments[0]
myFunc.arguments[1]
myFunc.arguments[2]

The arguments array is available only within a function body. Attempting to
access the arguments array outside a function declaration results in an error.

You can use the arguments array if you call a function with more arguments
than it is formally declared to accept. This technique is useful for functions that
can be passed a variable number of arguments. You can use

arguments.length to determine the number of arguments passed to the
function, and then process each argument by using the arguments array. (To
determine the number of arguments declared when a function was defined, use
the Function.length property.)

Chapter |, Objects, Methods, and Properties 177

Function.arguments

The arguments array has the following properties:

Property Description

arguments.callee Specifies the function body of the currently executing
function.

arguments.caller Specifies the name of the function that invoked the

currently executing function. (Deprecated)

arguments.length Specifies the number of arguments passed to the function.

Backward JavaScript 1.1 and 1.2. The following features that were available in
Compatibility javaScript 1.1 and JavaScript 1.2 have been removed:

e Each local variable of a function is a property of the arguments array. For
example, if a function myFunc has a local variable named myLocalVar |,
you can refer to the variable as arguments.myLocalVar

e FEach formal argument of a function is a property of the arguments array.
For example, if a function myFunc has two arguments named argl and
arg2 , you can refer to the arguments as arguments.argl and
arguments.arg2 . (You can also refer to them as arguments[0] and
arguments[l])

Examples Example 1. This example defines a function that concatenates several strings.
The only formal argument for the function is a string that specifies the
characters that separate the items to concatenate. The function is defined as
follows:

function myConcat(separator) {
result=""// initialize list
/I iterate through arguments
for (var i=1; i<arguments.length; i++) {
result += arguments[i] + separator

}

return result

178 Client-Side JavaScript Reference

Function.arguments

You can pass any number of arguments to this function, and it creates a list

using each argument as an item in the list.

/I returns "red, orange, blue, "
myConcat(", ","red","orange","blue")

/I returns “elephant; giraffe; lion; cheetah;"
myConcat("; ","elephant","giraffe","lion", "cheetah")

/I returns “"sage. basil. oregano. pepper. parsley. "

myConcat(". ","sage","basil

,"oregano”, “"pepper”, "parsley")

Example 2. This example defines a function that creates HTML lists. The only
formal argument for the function is a string that is "U" if the list is to be
unordered (bulleted), or "O" if the list is to be ordered (numbered). The

function is defined as follows:

function list(type) {
document.write("<" + type + "L>") // begin list
/I iterate through arguments
for (var i=1; i<arguments.length; i++) {
document.write("" + arguments]i])
}
document.write("</* + type + "L>") // end list

}

You can pass any number of arguments to this function, and it displays each
argument as an item in the type of list indicated. For example, the following

call to the function

list("U", "One", "Two", "Three")

results in this output:

One
Two
Three

Chapter |, Objects, Methods, and Properties 179

Function.arguments.callee

arguments.callee

Description

Examples

See also

Specifies the function body of the currently executing function.

Property of arguments local variable; Function (deprecated)
Implemented in JavaScript 1.2
ECMA version ECMA-262

The callee property is available only within the body of a function.

The this keyword does not refer to the currently executing function. Use the
callee property to refer to a function within the function body.

The following function returns the value of the function’s callee property.

function myFunc() {
return arguments.callee

}

The following value is returned:

function myFunc() { return arguments.callee; }

Function.arguments

arguments.caller

Description

Specifies the name of the function that invoked the currently executing
function.
Property of Function

Implemented in JavaScript 1.1, NES 2.0

Deprecated in JavaScript 1.3

caller is no longer used.
The caller property is available only within the body of a function.

If the currently executing function was invoked by the top level of a JavaScript
program, the value of caller is null.

The this keyword does not refer to the currently executing function, so you
must refer to functions and Function objects by name, even within the
function body.

180 Client-Side JavaScript Reference

Examples

See also

Function.arguments.length

The caller property is a reference to the calling function, so

e If you use it in a string context, you get the result of calling
functionName.toString . That is, the decompiled canonical source form
of the function.

e You can also call the calling function, if you know what arguments it might
want. Thus, a called function can call its caller without knowing the name
of the particular caller, provided it knows that all of its callers have the same
form and fit, and that they will not call the called function again
unconditionally (which would result in infinite recursion).

The following code checks the value of a function’s caller property.

function myFunc() {

if (arguments.caller == null) {
return ("The function was called from the top!")
} else return ("This function's caller wa s " + a rguments.caller)

}

Function.arguments

arguments.length

Description

Example

Specifies the number of arguments passed to the function.
Property of arguments local variable; Function (deprecated)

Implemented in JavaScript 1.1

ECMA version ECMA-262
arguments.length provides the number of arguments actually passed to a
function. By contrast, the Function.length property indicates how many

arguments a function expects.

The following example demonstrates the use of Function.length and
arguments.length

function addNumbers(x,y){
if (arguments.length == addNumbers.length) {
return (x+y)

}

else return 0

Chapter |, Objects, Methods, and Properties 181

Function.arity

If you pass more than two arguments to this function, the function returns 0:

result=addNumbers(3,4,5) // returns 0
result=addNumbers(3,4) /I returns 7
result=addNumbers(103,104) // returns 207

See also Function.arguments

arity

Specifies the number of arguments expected by the function.
Property of Function
Implemented in JavaScript 1.2, NES 3.0

Description arity is external to the function, and indicates how many arguments a
function expects. By contrast, arguments.length provides the number of
arguments actually passed to a function.

Example The following example demonstrates the use of arity and
arguments.length

function addNumbers(x,y){
if (arguments.length == addNumbers.length) {
return (x+y)

}

else return 0

}

If you pass more than two arguments to this function, the function returns 0:

result=addNumbers(3,4,5) // returns 0
result=addNumbers(3,4) /I returns 7
result=addNumbers(103,104) // returns 207

See also arguments.length , Function.length

182 Client-Side JavaScript Reference

Function.call

call

Syntax

Parameters

Description

Examples

Allows you to call (execute) a method of another object in the context of a
different object (the calling object).
Method of Function

Implemented in JavaScript 1.3

call(thisArg [, argl[, arg2], ..]I)

thisArg Parameter for the calling object

argl, arg2, ... Arguments for the object

You can assign a different this object when calling an existing function. this
refers to the current object, the calling object.

With call , you can write a method once and then inherit it in another object,
without having to rewrite the method for the new object.

You can use call to chain constructors for an object, similar to Java. In the
following example, the constructor for the product —object is defined with two
parameters, hame and value . Another object, prod_dept , initializes its
unique variable (dept) and calls the constructor for product in its constructor
to initialize the other variables.

function product(name, value){
this.name = name;
if(value > 1000)
this.value = 999;
else
this.value = value;

}

function prod_dept(name, value, dept){
this.dept = dept;
product.call(this, name, value);

}
prod_dept.prototype = new product();

/I since 5 is less than 100 value is set
cheese = new prod_dept(‘feta”, 5, “food");

/I since 5000 is above 1000, value will be 999
car = new prod_dept("honda", 5000, "auto");

Chapter |, Objects, Methods, and Properties 183

Function.constructor

Seealso Function.apply

constructor

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of Function

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

Description See Object.constructor

length

Specifies the number of arguments expected by the function.
Property of Function

Implemented in JavaScript 1.1

ECMA version ECMA-262

Description length is external to a function, and indicates how many arguments the
function expects. By contrast, arguments.length is local to a function and
provides the number of arguments actually passed to the function.

Example See the example for arguments.length

See also arguments.length

184 Client-Side JavaScript Reference

Function.prototype

prototype

Description

A value from which instances of a particular class are created. Every object that
can be created by calling a constructor function has an associated prototype

property.
Property of Function

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

You can add new properties or methods to an existing class by adding them to
the prototype associated with the constructor function for that class. The syntax
for adding a new property or method is:

fun .prototype. name = value

where

fun The name of the constructor function object you want to change.
name The name of the property or method to be created.

value The value initially assigned to the new property or method.

If you add a property to the prototype for an object, then all objects created
with that object’s constructor function will have that new property, even if the
objects existed before you created the new property. For example, assume you
have the following statements:

var arrayl = new Array();

var array2 = new Array(3);
Array.prototype.description=null;
arrayl.description="Contains some stuff"
array2.description="Contains other stuff"

After you set a property for the prototype, all subsequent objects created with
Array will have the property:

anotherArray=new Array()
anotherArray.description="Currently empty"

Chapter |, Objects, Methods, and Properties 185

Function.prototype

Example

The following example creates a method, str_rep , and uses the statement
String.prototype.rep = str_rep to add the method to all String objects.
All objects created with new String() then have that method, even objects
already created. The example then creates an alternate method and adds that to
one of the String objects using the statement sl.rep = fake_rep . The
str_rep method of the remaining String objects is not altered.

var sl = new String("a")

var s2 = new String("b")
var s3 = new String("c")

/I Create a repeat-string-N-times method for all String objects
function str_rep(n) {

var s = " t = this.toString()
while (--n >= 0) s +=t
return s

}
String.prototype.rep = str_rep

sla=sl.rep(3) // returns "aaa"
s2a=s2.rep(5) // returns "bbbbb"
s3a=s3.rep(2) // returns "cc"

/I Create an alternate method and assign it to only one String variable
function fake_rep(n) {

return "repea t " + this + " " + n + " times."
}
sl.rep = fake_rep
slb=sl.rep(1l) // returns "repea t al times."

s2b=s2.rep(4) // returns "bbbb"
s3b=s3.rep(6) // returns "ccccec"

The function in this example also works on String objects not created with
the String constructor. The following code returns "zzz"

"z".rep(3)

186 Client-Side JavaScript Reference

Function.toSource

toSource

Syntax
Parameters

Description

Returns a string representing the source code of the function.
Method of Function

Implemented in JavaScript 1.3

toSource()
None

The toSource method returns the following values:

e For the built-in Function object, toSource returns the following string
indicating that the source code is not available:

function Function() {
[native code]
}
e For custom functions, toSource returns the JavaScript source that defines
the object as a string.

This method is usually called internally by JavaScript and not explicitly in code.
You can call toSource while debugging to examine the contents of an object.

See also Function.toString , Object.valueOf
toString
Returns a string representing the source code of the function.
Method of Function
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262
Syntax toString()
Parameters None.

Chapter |, Objects, Methods, and Properties 187

Function.valueOf

Description

The Function object overrides the toString method of the Object object;
it does not inherit Object.toString . For Function objects, the toString
method returns a string representation of the object.

JavaScript calls the toString method automatically when a Function s to be
represented as a text value or when a Function is referred to in a string
concatenation.

For Function objects, the built-in toString method decompiles the function
back into the JavaScript source that defines the function. This string includes
the function keyword, the argument list, curly braces, and function body.

For example, assume you have the following code that defines the Dog object
type and creates theDog, an object of type Dog:

function Dog(name,breed,color,sex) {
this.name=name
this.breed=breed
this.color=color
this.sex=sex

}
theDog = new Dog("Gabby","Lab","chocolate","girl")

Any time Dog is used in a string context, JavaScript automatically calls the
toString function, which returns the following string:

function Dog(name, breed, color, sex) { this.name = name; this.breed =
breed; this.color = color; this.sex = sex; }

See also Object.toString
valueOf
Returns a string representing the source code of the function.
Method of Function
Implemented in JavaScript 1.1
ECMA version ECMA-262
Syntax valueOf()
Parameters None

188 Client-Side JavaScript Reference

Function.valueOf

Description The valueOf method returns the following values:

e For the built-in Function object, valueOf returns the following string
indicating that the source code is not available:

function Function() {
[native code]

}

For custom functions, toSource returns the JavaScript source that defines

the object as a string. The method is equivalent to the toString method
of the function.

This method is usually called internally by JavaScript and not explicitly in code.

See also Function.toString , Object.valueOf

Chapter |, Objects, Methods, and Properties 189

Hidden

Hidden

Created by

Description

Property
Summary

Method Summary

Examples

A Text object that is suppressed from form display on an HTML form. A
Hidden object is used for passing name/value pairs when a form submits.
Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added type property

The HTML INPUT tag, with "hidden" as the value of the TYPEattribute. For a
given form, the JavaScript runtime engine creates appropriate Hidden objects
and puts these objects in the elements array of the corresponding Hidden
object. You access a Hidden object by indexing this array. You can index the
array either by number or, if supplied, by using the value of the NAMEattribute.

A Hidden object is a form element and must be defined within a FORMag.

A Hidden object cannot be seen or modified by an end user, but you can
programmatically change the value of the object by changing its value
property. You can use Hidden objects for client/server communication.

Property Description

form Specifies the form containing the Hidden object.
name Reflects the NAMEattribute.

type Reflects the TYPE attribute.

value Reflects the current value of the Hidden object.

This object inherits the watch and unwatch methods from Object

The following example uses a Hidden object to store the value of the last object
the user clicked. The form contains a “Display hidden value” button that the
user can click to display the value of the Hidden object in an Alert dialog box.

<HTML>

<HEAD>

<TITLE>Hidden object example</TITLE>

</HEAD>

<BODY>

Click some of these objects, then click the "Display value" button

to see the value of the last object clicked.

190 Client-Side JavaScript Reference

See also

Hidden.form

<FORM NAME="myForm">

<INPUT TYPE="hidden" NAME="hiddenObject" VALUE="None">

<pP>

<INPUT TYPE="button" VALUE="Click me" NAME="button1"
onClick="document.myForm.hiddenObject.value=this.value">

<pP>

<INPUT TYPE="radio" NAME="musicChoice" VALUE="soul-and-r&b"
onClick="document.myForm.hiddenObject.value=this.value"> Soul and

R&B

<INPUT TYPE="radio" NAME="musicChoice" VALUE="jazz"
onClick="document.myForm.hiddenObject.value=this.value"> Jazz

<INPUT TYPE="radio" NAME="musicChoice" VALUE="classical"
onClick="document.myForm.hiddenObject.value=this.value"> Classical

<pP>

<SELECT NAME="music_type_single"

onFocus="document.myForm.hiddenObject.value=this.options[this.selected|
ndex].text">
<OPTION SELECTED> Red <OPTION> Orange <OPTION> Yellow
</SELECT>
<P><INPUT TYPE="button" VALUE="Display hidden value" NAME="button2"
onClick="alert('Last object clicked: ' +
document.myForm.hiddenObject.value)">
</[FORM>
</BODY>
</HTML>

document.cookie

form

Description

An object reference specifying the form containing this object.
Property of Hidden
Read-only

Implemented in JavaScript 1.0

Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

Chapter |, Objects, Methods, and Properties 191

Hidden.name

Examples Example 1. In the following example, the form myForm contains a Hidden
object and a button. When the user clicks the button, the value of the Hidden
object is set to the form’s name. The button’s onClick event handler uses
this.form to refer to the parent form, myForm.
<FORM NAME="myForm">
Form name:<INPUT TYPE="hidden" NAME="h1" VALUE="Beluga">
<pP>
<INPUT NAME="button1l" TYPE="button" VALUE="Store Form Name"

onClick="this.form.h1.value=this.form.name">
</FORM>
Example 2. The following example uses an object reference, rather than the
this keyword, to refer to a form. The code returns a reference to myForm,
which is a form containing myHiddenObject
document.myForm.myHiddenObject.form
See also Hidden
name
A string specifying the name of this object.
Property of Hidden
Implemented in JavaScript 1.0
Security JavaScript 1.1. This property is tainted by default. For information on data

tainting, see the Client-Side JavaScript Guide.

type

For all Hidden objects, the value of the type property is "hidden” . This
property specifies the form element’s type.

Property of Hidden

Read-only

Implemented in JavaScript 1.1

192 Client-Side JavaScript Reference

Examples

Hidden.value

The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.myForm.elements.length; i++) {
document.writeln("
type i s " + document.myForm.elements[i].type)

}

value

Security

Examples

A string that reflects the VALUEattribute of the object.
Property of Hidden

Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

The following function evaluates the value property of a group of buttons and
displays it in the msgWindow window:

function valueGetter() {

var msgWindow=window.open("")

msgWindow.document.write("The submit button says " +
document.valueTest.submitButton.value + "
")

msgWindow.document.write("The reset button says " +
document.valueTest.resetButton.value + "
")

msgWindow.document.write("The hidden field says " +
document.valueTest.hiddenField.value + "
")

msgWindow.document.close()

}

This example displays the following values:

The submit button says Query Submit
The reset button says Reset
The hidden field says pipefish are cute.

The previous example assumes the buttons have been defined as follows:

<INPUT TYPE="submit" NAME="submitButton">
<INPUT TYPE="reset" NAME="resetButton">
<INPUT TYPE="hidden" NAME="hiddenField" VALUE="pipefish are cute.">

Chapter |, Objects, Methods, and Properties 193

History

History

Created by

Description

Property
Summary

Contains an array of information on the URLs that the client has visited within a
window. This information is stored in a history list and is accessible through the
browser’s Go menu.

Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added current, next, and previous
properties.

History objects are predefined JavaScript objects that you access through the
history property of a window object.

To change a window’s current URL without generating a history entry, you can
use the Location.replace method. This replaces the current page with a
new one without generating a history entry. See Location.replace

You can refer to the history entries by using the window.history array. This
array contains an entry for each history entry in source order. Each array entry
is a string containing a URL. For example, if the history list contains three
named entries, these entries are reflected as history[0] , history[1] , and
history[2]

If you access the history array without specifying an array element, the
browser returns a string of HTML which displays a table of URLs, each of which
is a link.

Property Description

current Specifies the URL of the current history entry.
length Reflects the number of entries in the history list.
next Specifies the URL of the next history entry.
previous Specifies the URL of the previous history entry.

194 Client-Side JavaScript Reference

Method Summary

Examples

History

Method Description

back Loads the previous URL in the history list.
forward Loads the next URL in the history list.

go Loads a URL from the history list.

In addition, this object inherits the watch and unwatch methods from
Object

Example 1. The following example goes to the URL the user visited three
clicks ago in the current window.

history.go(-3)

Example 2. You can use the history object with a specific window or frame.

The following example causes window2 to go back one item in its window (or
session) history:

window?2.history.back()
Example 3. The following example causes the second frame in a frameset to
go back one item:

parent.frames[1].history.back()

Example 4. The following example causes the frame named framel in a
frameset to go back one item:

parent.framel.history.back()

Example 5. The following example causes the frame named frame2 in
window2 to go back one item:

window2.frame2.history.back()

Example 6. The following code determines whether the first entry in the

history array contains the string "NETSCAPE". If it does, the function
myFunction is called.

if (history[0].indexOf("NETSCAPE") = -1) {
myFunction(history[0])
}

Chapter |, Objects, Methods, and Properties 195

History.back

Example 7. The following example displays the entire history list:

document.writeln("history is " + history)

This code displays output similar to the following:

history is

Welcome to Netscape http://home.netscape.com/
Sun Microsystems http://www.sun.com/

Royal Airways http://www.supernet.net/~dugbrown/

Seealso Location | Location.replace

back

Loads the previous URL in the history list.
Method of History

Implemented in JavaScript 1.0

Syntax back()
Parameters None

Description This method performs the same action as a user choosing the Back button in
the browser. The back method is the same as history.go(-1)

Examples The following custom buttons perform the same operation as the browser’s
Back button:

<P><INPUT TYPE="button" VALUE="< Go Back"
onClick="history.back()">

<P><INPUT TYPE="button" VALUE="> Go Back"
onClick="myWindow.back()">

See also History.forward , History.go

196 Client-Side JavaScript Reference

History.current

current

A string specifying the complete URL of the current history entry.
Property of History
Read-only

Implemented in JavaScript 1.1

Security Getting the value of this property requires the UniversalBrowserRead
privilege. It has no value if you do not have this privilege. For information on
security, see the Client-Side JavaScript Guide.

JavaScript 1.1. This property is tainted by default. It has no value of data
tainting is disabled. For information on data tainting, see the Client-Side
JavaScript Guide.

Examples The following example determines whether history.current contains the
string "netscape.com” . If it does, the function myFunction is called.
if (history.current.indexOf("netscape.com”) = -1) {

myFunction(history.current)

}

See also History.next , History.previous
forward
Loads the next URL in the history list.

Method of History
Implemented in JavaScript 1.0
Syntax forward()
Parameters None

Description

This method performs the same action as a user choosing the Forward button
in the browser. The forward method is the same as history.go(1)

Chapter |, Objects, Methods, and Properties 197

History.go

Examples

See also

The following custom buttons perform the same operation as the browser’s
Forward button:

<P><INPUT TYPE="button" VALUE="< Forward"
onClick="history.forward()">

<P><INPUT TYPE="button" VALUE="> Forward"
onClick="myWindow.forward()">

History.back |, History.go

go

Syntax

Parameters

Description

Loads a URL from the history list.
Method of History

Implemented in JavaScript 1.0

go(delta)
go(location)

delta An integer representing a relative position in the history list.

location A string representing all or part of a URL in the history list.

The go method navigates to the location in the history list determined by the
specified parameter.

If the delta argument is 0, the browser reloads the current page. If it is an
integer greater than 0, the go method loads the URL that is that number of
entries forward in the history list; otherwise, it loads the URL that is that number
of entries backward in the history list.

The location argument is a string. Use location to load the nearest history
entry whose URL contains location as a substring. Matching the URL to the
location parameter is case-insensitive. Each section of a URL contains
different information. See Location for a description of the URL components.

The go method creates a new entry in the history list. To load a URL without
creating an entry in the history list, use Location.replace

198 Client-Side JavaScript Reference

Examples

See also

History.length

The following button navigates to the nearest history entry that contains the
string "home.netscape.com”

<P><INPUT TYPE="button" VALUE="Go"
onClick="history.go(‘home.netscape.com’)">

The following button navigates to the URL that is three entries backward in the
history list:
<P><INPUT TYPE="button" VALUE="Go"

onClick="history.go(-3)">

History.back | History.forward , Location.reload ,
Location.replace

length

Security

The number of elements in the history array.
Property of History

Read-only

Implemented in JavaScript 1.0

Getting the value of this property requires the UniversalBrowserRead
privilege. For information on security, see the Client-Side JavaScript Guide.

next

Security

A string specifying the complete URL of the next history entry.
Property of History
Read-only

Implemented in JavaScript 1.1

Getting the value of this property requires the UniversalBrowserRead
privilege. It has no value if you do not have this privilege. For information on
security, see the Client-Side JavaScript Guide.

JavaScript 1.1. This property is tainted by default. It has no value if data
tainting is disabled. For information on data tainting, see the Client-Side
JavaScript Guide.

Chapter |, Objects, Methods, and Properties 199

History.previous

Description

Examples

See also

The next property reflects the URL that would be used if the user chose
Forward from the Go menu.

The following example determines whether history.next contains the string
"NETSCAPE.COM! If it does, the function myFunction is called.

if (history.next.indexOf("NETSCAPE.COM") != -1) {
myFunction(history.next)

}

History.current , History.previous

previous

Security

Description

Examples

See also

A string specifying the complete URL of the previous history entry.
Property of History
Read-only

Implemented in JavaScript 1.1

Getting the value of this property requires the UniversalBrowserRead
privilege. It has no value if you do not have this privilege. For information on
security, see the Client-Side JavaScript Guide.

JavaScript 1.1. This property is tainted by default. It has no value of data
tainting is disabled. For information on data tainting, see the Client-Side
JavaScript Guide.

The previous property reflects the URL that would be used if the user chose
Back from the Go menu.

The following example determines whether history.previous contains the
string "NETSCAPE.COM! If it does, the function myFunction is called.

if (history.previous.indexOf("NETSCAPE.COM") != -1) {
myFunction(history.previous)

}

History.current , History.next

200 Client-Side JavaScript Reference

Image

Created by

Parameters

Event handlers

Image

An image on an HTML form.
Client-side object

Implemented in JavaScript 1.1

JavaScript 1.2: added handleEvent method

The Image constructor or the IMG tag.

The JavaScript runtime engine creates an Image object corresponding to each
IMG tag in your document. It puts these objects in an array in the
document.images property. You access an Image object by indexing this
array.

To define an image with the IMG tag, use standard HTML syntax with the
addition of JavaScript event handlers. If specify a value for the NAMEattribute,
you can use that name when indexing the images array.

To define an image with its constructor, use the following syntax:

new Image([width || [height])

width The image width, in pixels.
height The image height, in pixels.
e onAbort
e onError

e onKeyDown
e onKeyPress
e onKeyUp

e onlLoad

Chapter |, Objects, Methods, and Properties 201

Image

Description

To define an event handler for an Image object created with the Image
constructor, set the appropriate property of the object. For example, if you have
an Image object named imageName and you want to set one of its event
handlers to a function whose name is handlerFunction , use one of the
following statements:

imageName.onabort = handlerFunction
imageName.onerror = handlerFunction
imageName.onkeydown = handlerFunction
imageName.onkeypress = handlerFunction
imageName.onkeyup = handlerFunction
imageName.onload = handlerFunction

Image objects do not have onClick , onMouseOut , and onMouseOver event
handlers. However, if you define an Area object for the image or place the IMG
tag within a Link object, you can use the Area or Link object’s event handlers.
See Link .

The position and size of an image in a document are set when the document is
displayed in the web browser and cannot be changed using JavaScript (the
width and height properties are read-only for these objects). You can change
which image is displayed by setting the src and lowsrc properties. (See the
descriptions of Image.src and Image.lowsrc)

You can use JavaScript to create an animation with an Image object by
repeatedly setting the src property, as shown in Example 4 below. JavaScript
animation is slower than GIF animation, because with GIF animation the entire
animation is in one file; with JavaScript animation, each frame is in a separate
file, and each file must be loaded across the network (host contacted and data
transferred).

The primary use for an Image object created with the Image constructor is to
load an image from the network (and decode it) before it is actually needed for
display. Then when you need to display the image within an existing image
cell, you can set the src property of the displayed image to the same value as
that used for the previously fetched image, as follows.

mylmage = new Image()
mylmage.src = "seaotter.gif"

document.images[0].src = mylmage.src

202 Client-Side JavaScript Reference

Property
Summary

Method Summary

Examples

Image

The resulting image will be obtained from cache, rather than loaded over the
network, assuming that sufficient time has elapsed to load and decode the
entire image. You can use this technique to create smooth animations, or you
could display one of several images based on form input.

Property Description
border Reflects the BORDERttribute.
complete Boolean value indicating whether the web browser has

completed its attempt to load the image.

height Reflects the HEIGHT attribute.

hspace Reflects the HSPACEttribute.

lowsrc Reflects the LOWSRGttribute.

name Reflects the NAMExttribute.

src Reflects the SRCattribute.

vspace Reflects the VSPACEattribute.

width Reflects the WIDTHattribute.

Method Description

handleEvent Invokes the handler for the specified event.

In addition, this object inherits the watch and unwatch methods from
Object

Example 1: Create an image with the IMG tag. The following code defines
an image using the IMG tag:

The following code refers to the image:

document.aircraft.src='f15e.gif'

When you refer to an image by its name, you must include the form name if the
image is on a form. The following code refers to the image if it is on a form:

document.myForm.aircraft.src="f15e.gif'

Chapter |, Objects, Methods, and Properties 203

Image

Example 2: Create an image with the Image constructor. The following
example creates an Image object, mylmage, that is 70 pixels wide and 50 pixels
high. If the source URL, seaotter.gif , does not have dimensions of 70x50
pixels, it is scaled to that size.

mylmage = new Image(70, 50)
mylmage.src = "seaotter.gif"

If you omit the width and height arguments from the Image constructor,
mylmage is created with dimensions equal to that of the image named in the
source URL.

mylmage = new Image()
mylmage.src = "seaotter.gif"

Example 3: Display an image based on form input. In the following
example, the user selects which image is displayed. The user orders a shirt by
filling out a form. The image displayed depends on the shirt color and size that
the user chooses. All possible image choices are preloaded to speed response
time. When the user clicks the button to order the shirt, the allShirts

function displays the images of all the shirts.

<SCRIPT>

shirts = new Array()
shirts[0] = "R-S"
shirts[1] = "R-M"
shirts[2] = "R-L"
shirts[3] = "W-S"
shirts[4] = "W-M"
shirts[5] = "W-L"
shirts[6] = "B-S"
shirts[7] = "B-M"
shirts[8] = "B-L"
doneThis = 0

shirtimg = new Array()

/I Preload shirt images
for(idx=0; idx < 9; idx++) {
shirtimg[idx] = new Image()
shirtimg[idx].src = “shirt-" + shirts[idx] + ".gif"

204 Client-Side JavaScript Reference

function changeShirt(form)

Image

shirtColor = form.color.options[form.color.selectedindex].text
shirtSize = form.size.options[form.size.selectedindex].text

newSrc = "shirt-" + shirtColor.charAt(0) + "-" + shirtSize.charAt(0)

{

+ ".gif"
document.shirt.src

}

function allShirts()

{

document.shirt.src
doneThis++

if([doneThis != 9)setTimeout("allShirts()", 500)

else doneThis = 0

return

}
</SCRIPT>

newsSrc

shirtimg[doneThis].src

Netscape Polo Shirts!

<TABLE CELLSPACING=20 BORDER=0>

<TR>

<TD></TD>

<TD>
<FORM>
Color

<SELECT SIZE=3 NAME="color" onChange="changeShirt(this.form)">

<OPTION> Red

<OPTION SELECTED> White

<OPTION> Blue
</SELECT>

<p>
Size

<SELECT SIZE=3 NAME="size" onChange="changeShirt(this.form)">

<OPTION> Small
<OPTION> Medium

<OPTION SELECTED> Large

</SELECT>

<P><INPUT type="button" name="buy" value="Buy This Shirt!"
onClick="allShirts()">

</FORM>

</TD>
</TR>
</TABLE>

Chapter |, Objects, Methods, and Properties 205

Image

Example 4: JavaScript animation. The following example uses JavaScript to
create an animation with an Image object by repeatedly changing the value the
src property. The script begins by preloading the 10 images that make up the
animation (imagel.gif |, image2.gif ,image3.gif , and so on). When the
Image object is placed on the document with the IMG tag, imagel.gif is
displayed and the onLoad event handler starts the animation by calling the
animate function. Notice that the animate function does not call itself after
changing the src property of the Image object. This is because when the src
property changes, the image’s onLoad event handler is triggered and the
animate function is called.

<SCRIPT>

delay = 100
imageNum = 1

/I Preload animation images
thelmages = new Array()

for(= 1 ;i< 11; i++) {

thelmages[i] = new Image()

thelmages[i].src = "image "+ 0+ "gif"
}

function animate() {
document.animation.src = thelmages[imageNum].src
imageNum++
ifimageNum > 10) {
imageNum = 1

}
}
function slower() {
delay+=10
if(delay > 4000) delay = 4000
}
function faster() {
delay-=10
if(delay < 0) delay = 0
}
</SCRIPT>

<BODY BGCOLOR="white">

<IMG NAME="animation" SRC="imagel.qgif* ALT="[Animation]"
onLoad="setTimeout(‘animate(), delay)">

<FORM>
<INPUT TYPE="button" Value="Slower" onClick="slower()">
<INPUT TYPE="button" Value="Faster" onClick="faster()">
</[FORM>
</BODY>

206 Client-Side JavaScript Reference

See also

Image.border

See also the examples for the onAbort | onError |, and onLoad event
handlers.

Link , onClick , onMouseOut , onMouseOQOver

border

Description

Examples

See also

A string specifying the width, in pixels, of an image border.

Property of Image
Read-only
Implemented in JavaScript 1.1

The border property reflects the BORDERuttribute of the IMG tag. For images
created with the Image constructor, the value of the border property is 0.

The following function displays the value of an image’s border property if the
value is not 0.
function checkBorder(thelmage) {

if (thelmage.border==0) {
alert('The image has no border!’)

}

else alert('The image's border i s ' + thelmage.border)
}
Image.height |, Image.hspace , Image.vspace , Image.width
complete

A boolean value that indicates whether the web browser has completed its
attempt to load an image.

Property of Image
Read-only
Implemented in JavaScript 1.1

Chapter |, Objects, Methods, and Properties 207

Image.handleEvent

Examples The following example displays an image and three radio buttons. The user can
click the radio buttons to choose which image is displayed. Clicking another
button lets the user see the current value of the complete property.

Choose an image:

<INPUT TYPE="radio" NAME="imageChoice" VALUE="imagel" CHECKED
onClick="document.images|[0].src="f15e.gif"">F-15 Eagle

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image2"
onClick="document.images|[0].src='f15e2.gif">F-15 Eagle 2

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image3"
onClick="document.images|[0].src="ah64.gif">AH-64 Apache

<INPUT TYPE="button" VALUE="Is the image completely loaded?"
onClick="alert('The value of the complete property is '
+ document.images[0].complete)">

Seealso Image.lowsrc |, Image.src

handleEvent

Invokes the handler for the specified event.
Method of Image

Implemented in JavaScript 1.2

Syntax handleEvent(event)

Parameters

event The name of an event for which the specified object has an event
handler.

Description For information on handling events, see the Client-Side JavaScript Guide.

208 Client-Side JavaScript Reference

Image.height

Description

Examples

See also

height

A string specifying the height of an image in pixels.
Property of Image

Read-only

Implemented in JavaScript 1.1

The height property reflects the HEIGHT attribute of the IMG tag. For images
created with the Image constructor, the value of the height property is the
actual, not the displayed, height of the image.

The following function displays the values of an image’s height , width |
hspace , and vspace properties.

function showlmageSize(thelmage) {
alert('height=" + thelmage.height+
', width=" + thelmage.width +
', hspace=' + thelmage.hspace +
', vspace=' + thelmage.vspace)

}

Image.border |, Image.hspace , Image.vspace , Image.width

hspace

Description

Examples

See also

A string specifying a margin in pixels between the left and right edges of an
image and the surrounding text.

Property of Image

Read-only

Implemented in JavaScript 1.1

The hspace property reflects the HSPACEattribute of the IMG tag. For images
created with the Image constructor, the value of the hspace property is 0.

See the examples for the height property.

Image.border |, Image.height |, Image.vspace , Image.width

Chapter |, Objects, Methods, and Properties 209

Image.lowsrc

lowsrc

Description

Examples

See also

A string specifying the URL of a low-resolution version of an image to be
displayed in a document.
Property of Image

Implemented in JavaScript 1.1

The lowsrc property initially reflects the LOWSRQttribute of the IMG tag. The
web browser loads the smaller image specified by lowsrc and then replaces it
with the larger image specified by the src property. You can change the
lowsrc property at any time.

See the examples for the Src property.

Image.complete , Image.src

name

Security

Description

Examples

A string specifying the name of an object.
Property of Image
Read-only

Implemented in JavaScript 1.1

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Represents the value of the NAMEattribute. For images created with the Image
constructor, the value of the name property is null.

In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {

var msgWindow=window.open("")

for (var i = 0; i <

newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")

}

210 Client-Side JavaScript Reference

Image.src

In the following example, the first statement creates a window called
netscapeWin . The second statement displays the value "netscapeHomePage"
in the Alert dialog box, because "netscapeHomePage" is the value of the
windowName argument of netscapeWin

netscapeWin=window.open("http://home.netscape.com","netscapeHomePage")
alert(netscapeWin.name)

Src

Description

A string specifying the URL of an image to be displayed in a document.
Property of Image

Implemented in JavaScript 1.1

The src property initially reflects the SRCattribute of the IMG tag. Setting the
src property begins loading the new URL into the image area (and aborts the
transfer of any image data that is already loading into the same area).
Therefore, if you plan to alter the lowsrc property, you should do so before
setting the src property.

If the URL in the src property refers to an image that is not the same size as the
image cell it is loaded into, the source image is scaled to fit.

When you change the src property of a displayed image, the new image you
specify is displayed in the area defined for the original image. For example,
suppose an Image object originally displays the file beluga.gif

If you set mylmage.src="seaotter.gif' , the image seaotter.gif is scaled
to fit in the same space originally used by beluga.gif , even if seaotter.gif
is not the same size as beluga.gif

You can change the src property at any time.

Chapter |, Objects, Methods, and Properties 211

Image.vspace

Examples The following example displays an image and three radio buttons. The user can
click the radio buttons to choose which image is displayed. Each image also
uses the lowsrc property to display a low-resolution image.

<SCRIPT>

function displaylmage(lowRes,highRes) {
document.images[0].lowsrc=lowRes
document.images[0].src=highRes

}
</SCRIPT>

<FORM NAME="imageForm">

Choose an image:

<INPUT TYPE="radio" NAME="imageChoice" VALUE="imagel" CHECKED
onClick="displaylmage('f15el.gif','f15e.gif')">F-15 Eagle

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image2"
onClick="displaylmage('f15e2l.gif','f15e2.gif")">F-15 Eagle 2

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image3"
onClick="displaylmage(‘ah64l.gif','ah64.gif")">AH-64 Apache

</[FORM>

Seealso Image.complete | Image.lowsrc

vspace

A string specifying a margin in pixels between the top and bottom edges of an
image and the surrounding text.

Property of Image

Read-only

Implemented in JavaScript 1.1

Description The vspace property reflects the VSPACEattribute of the IMG tag. For images
created with the Image constructor, the value of the vspace property is 0.

Examples See the examples for the height property.

Seealso Image.border | Image.height | Image.hspace , Image.width

212 Client-Side JavaScript Reference

Image.width

Description

Examples

See also

width

A string specifying the width of an image in pixels.
Property of Image

Read-only

Implemented in JavaScript 1.1

The width property reflects the WIDTHattribute of the IMG tag. For images
created with the Image constructor, the value of the width property is the
actual, not the displayed, width of the image.

See the examples for the height property.

Image.border |, Image.height | Image.hspace , Image.vspace

Chapter |, Objects, Methods, and Properties 213

java

java

A top-level object used to access any Java class in the package java.*
Core object

Implemented in JavaScript 1.1, NES 2.0

Created by The java object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

Description The java object is a convenience synonym for the property Packages.java

See also Packages , Packages.java

214 Client-Side JavaScript Reference

JavaArray

JavaArray

Created by

Description

Property
Summary

A wrapped Java array accessed from within JavaScript code is a member of the
type JavaArray
Core object

Implemented in JavaScript 1.1, NES 2.0

Any Java method which returns an array. In addition, you can create a
JavaArray with an arbitrary data type using the newlnstance method of
the Array class:

public static Object newlnstance(Class componentType,
int length)
throws NegativeArraySizeException

The JavaArray object is an instance of a Java array that is created in or
passed to JavaScript. JavaArray is a wrapper for the instance; all references
to the array instance are made through the JavaArray

You must specify a class object, such as one returned by
java.lang.Object.forName , for the componentType parameter of
newlnstance when you use this method to create an array. You cannot use a
JavaClass object for the componentType parameter.

Use zero-based indexes to access the elements in a JavaArray object, just as
you do to access elements in an array in Java. For example:

var javaString = new java.lang.String("Hello world!");
var byteArray = javaString.getBytes();

byteArray[0] // returns 72

byteArray[1] // returns 101

Any Java data brought into JavaScript is converted to JavaScript data types.
When the JavaArray is passed back to Java, the array is unwrapped and can
be used by Java code. See the Client-Side JavaScript Guide for more
information about data type conversions.

Property Description
length The number of elements in the Java array represented by
JavaArray

Chapter |, Objects, Methods, and Properties 215

JavaArray.length

Method Summary

Examples

Method Description
toString Returns a string identifying the object as a
JavaArray

Example 1. Instantiating a JavaArray in JavaScript.
In this example, the JavaArray byteArray s created by the
java.lang.String.getBytes method, which returns an array.

var javaString = new java.lang.String("Hello world!");
var byteArray = javaString.getBytes();

Example 2. Instantiating a JavaArray in JavaScript with the newlnstance
method.

Use a class object returned by java.lang.Class.forName as the argument
for the newlnstance method, as shown in the following code:

var dataType = java.lang.Class.forName("java.lang.String")
var dogs = java.lang.reflect.Array.newlnstance(dataType, 5)

Description

See also

length

The number of elements in the Java array represented by the JavaArray
object.

Property of JavaArray

Implemented in JavaScript 1.1, NES 2.0

Unlike Array.length , JavaArray.length is a read-only property. You
cannot change the value of the JavaArray.length property because Java
arrays have a fixed number of elements.

Array.length

216 Client-Side JavaScript Reference

JavaArray .toString

toString

Returns a string representation of the JavaArray.
Method of JavaArray

Implemented in JavaScript 1.1, NES 2.0
Parameters None

Description The toString method is inherited from the Object object and returns the
following value:

[object JavaArray]

Chapter |, Objects, Methods, and Properties 217

JavaClass

JavaClass

Created by

Description

Property
Summary

Method Summary

Examples

See also

A JavaScript reference to a Java class.
Core object

Implemented in JavaScript 1.1, NES 2.0

A reference to the class name used with the Packages object:

Packages. JavaClass

where JavaClass is the fully-specified name of the object’s Java class. The
LiveConnect java , sun, and netscape objects provide shortcuts for
commonly used Java packages and also create JavaClass objects.

A JavaClass object is a reference to one of the classes in a Java package,
such as netscape.javascript.JSObject . A JavaPackage object is a
reference to a Java package, such as netscape.javascript . In JavaScript,
the JavaPackage and JavaClass hierarchy reflect the Java package and
class hierarchy.

You must create a wrapper around an instance of java.lang.Class before
you pass it as a parameter to a Java method—JavaClass objects are not
automatically converted to instances of java.lang.Class

The properties of a JavaClass object are the static fields of the Java class.

The methods of a JavaClass object are the static methods of the Java class.

In the following example, X is a JavaClass object referring to
java.awt.Font . Because BOLD:is a static field in the Font class, it is also a
property of the JavaClass object.

X = java.awt.Font
myFont = x("helv',x.BOLD,10) // creates a Font object

The previous example omits the Packages keyword and uses the java
synonym because the Font class is in the java package.

JavaArray , JavaObject , JavaPackage , Packages

218 Client-Side JavaScript Reference

JavaObject

JavaObject

Created by

Parameters

Description

Property
Summary

Method Summary

Examples

The type of a wrapped Java object accessed from within JavaScript code.
Core object

Implemented in JavaScript 1.1, NES 2.0

Any Java method which returns an object type. In addition, you can explicitly
construct a JavaObject using the object’s Java constructor with the
Packages keyword:

new Packages. JavaClass (parameterList)

where JavaClass is the fully-specified name of the object’s Java class.

parameterList An optional list of parameters, specified by the constructor in
the Java class.

The JavaObject object is an instance of a Java class that is created in or
passed to JavaScript. JavaObject is a wrapper for the instance; all references
to the class instance are made through the JavaObject

Any Java data brought into JavaScript is converted to JavaScript data types.
When the JavaObject is passed back to Java, it is unwrapped and can be
used by Java code. See the Client-Side JavaScript Guide for more information
about data type conversions.

Inherits public data members from the Java class of which it is an instance as
properties. It also inherits public data members from any superclass as
properties.

Inherits public methods from the Java class of which it is an instance. The
JavaObject also inherits methods from java.lang.Object and any other
superclass.

Example 1. Instantiating a Java object in JavaScript.

The following code creates the JavaObject theString |, which is an
instance of the class java.lang.String

var theString = new Packages.java.lang.String("Hello, world")

Chapter |, Objects, Methods, and Properties 219

JavaObject

See also

Because the String class is in the java package, you can also use the java
synonym and omit the Packages keyword when you instantiate the class:

var theString = new java.lang.String("Hello, world")
Example 2. Accessing methods of a Java object.

Because the JavaObject theString is an instance of

java.lang.String , it inherits all the public methods of

java.lang.String . The following example uses the startsWith method
to check whether theString begins with “Hello”.

var theString = new java.lang.String("Hello, world")
theString.startswWith("Hello") // returns true

Example 3. Accessing inherited methods.

Because getClass is a method of Object , and java.lang.String
extends Object , the String class inherits the getClass method.
Consequently, getClass is also a method of the JavaObject which
instantiates String in JavaScript.

var theString = new java.lang.String("Hello, world")

theString.getClass() // returns java.lang.String

JavaArray , JavaClass , JavaPackage , Packages

220 Client-Side JavaScript Reference

JavaPackage

JavaPackage

Created by

Description

Property
Summary

Examples

See also

A JavaScript reference to a Java package.
Core object

Implemented in JavaScript 1.1, NES 2.0

A reference to the package name used with the Packages keyword:

Packages. JavaPackage

where JavaPackage is the name of the object’s Java package. If the package is
in the java , netscape , or sun packages, the Packages keyword is
optional.

In Java, a package is a collection of Java classes or other Java packages. For
example, the netscape package contains the package

netscape.javascript ; the netscape.javascript package contains the
classes JSObject and JSException.

In JavaScript, a JavaPackage is a reference to a Java package. For example, a
reference to netscape is a JavaPackage . netscape.javascript is both
a JavaPackage and a property of the netscape JavaPackage .

A JavaClass object is a reference to one of the classes in a package, such as
netscape.javascript.JSObject . The JavaPackage and JavaClass
hierarchy reflect the Java package and class hierarchy.

Although the packages and classes contained in a JavaPackage are its
properties, you cannot use a for...in statement to enumerate them as you
can enumerate the properties of other objects.

The properties of a JavaPackage are the JavaClass objects and any other
JavaPackage objects it contains.

Suppose the Redwood corporation uses the Java redwood package to contain
various Java classes that it implements. The following code creates the
JavaPackage red :

var red = Packages.redwood

JavaArray , JavaClass , JavaObject , Packages

Chapter |, Objects, Methods, and Properties 221

Layer

Layer

Corresponds to a layer in an HTML page and provides a means for
manipulating that layer.
Client-side object

Implemented in JavaScript 1.2

Created by The HTML LAYERor ILAYER tag, or using cascading style sheet syntax. The
JavaScript runtime engine creates a Layer object corresponding to each layer in
your document. It puts these objects in an array in the document.layers
property. You access a Layer object by indexing this array.

To define a layer, use standard HTML syntax. If you specify the ID attribute,
you can use the value of that attribute to index into the layers array.

For a complete description of layers, see Dynamic HTML in Netscape
Communicator.

Some layer properties can be directly modified by assignment; for example,
"mylayer.visibility = hide ". A layer object also has methods that can
affect these properties.

Event handlers ¢ onMouseOver
e onMouseOut

e onlLoad
» onFocus
e onBlur
Property
Summary Property Description
above The layer object above this one in z-order, among all layers in
the document or the enclosing window object if this layer is
topmost.
background The image to use as the background for the layer’s canvas.
bgColor The color to use as a solid background color for the layer’s canvas.
below The layer object below this one in z-order, among all layers in
the document or null if this layer is at the bottom.
clip.bottom The bottom edge of the clipping rectangle (the part of the layer

that is visible.)

222 Client-Side JavaScript Reference

Layer

Property Description

clip.height The height of the clipping rectangle (the part of the layer that is
visible.)

clip.left The left edge of the clipping rectangle (the part of the layer that is
visible.)

clip.right The right edge of the clipping rectangle (the part of the layer that
is visible.)

clip.top The top edge of the clipping rectangle (the part of the layer that is
visible.)

clip.width The width of the clipping rectangle (the part of the layer that is
visible.)

document The layer’s associated document.

left The horizontal position of the layer's left edge, in pixels, relative
to the origin of its parent layer.

name A string specifying the name assigned to the layer through the ID
attribute in the LAYER tag.

pageX The horizontal position of the layer, in pixels, relative to the page.

pageY The vertical position of the layer, in pixels, relative to the page.

parentLayer The layer object that contains this layer, or the enclosing
window object if this layer is not nested in another layer.

siblingAbove The layer object above this one in z-order, among all layers that
share the same parent layer, or null if the layer has no sibling
above.

siblingBelow The layer object below this one in z-order, among all layers that
share the same parent layer, or null if layer is at the bottom.

src A string specifying the URL of the layer’s content.

top The vertical position of the layer's top edge, in pixels, relative to
the origin of its parent layer.

visibility Whether or not the layer is visible.

window The window or Frame object that contains the layer, regardless of
whether the layer is nested within another layer.

X A convenience synonym for Layer.left

y A convenience synonym for Layer.top

zIndex The relative z-order of this layer with respect to its siblings.

Chapter |, Objects, Methods, and Properties 223

Layer

Method Summary

Note

Method

Description

captureEvents

handleEvent

load

moveAbove

moveBelow

moveBy

moveTo

moveToAbsolute

releaseEvents

resizeBy

resizeTo

routeEvent

Sets the window or document to capture all events of the
specified type.

Invokes the handler for the specified event.

Changes the source of a layer to the contents of the specified
file, and simultaneously changes the width at which the
layer's HTML contents will be wrapped.

Stacks this layer above the layer specified in the argument,
without changing either layer's horizontal or vertical position.
Stacks this layer below the specified layer, without changing
either layer's horizontal or vertical position.

Changes the layer position by applying the specified deltas,
measured in pixels.

Moves the top-left corner of the window to the specified
screen coordinates.

Changes the layer position to the specified pixel coordinates
within the page (instead of the containing layer.)

Sets the layer to release captured events of the specified type,
sending the event to objects further along the event hierarchy.

Resizes the layer by the specified height and width values (in
pixels).

Resizes the layer to have the specified height and width
values (in pixels).

Passes a captured event along the normal event hierarchy.

In addition, this object inherits the watch and unwatch methods from

Object

Just as in the case of a document, if you want to define mouse click response
for a layer, you must capture onMouseDown and onMouseUp events at the
level of the layer and process them as you want.

For details about capturing events, see the Client-Side JavaScript Guide.

224 Client-Side JavaScript Reference

Layer.above

If an event occurs in a point where multiple layers overlap, the topmost layer
gets the event, even if it is transparent. However, if a layer is hidden, it does not
get events.

above

The layer object above this one in z-order, among all layers in the document
or the enclosing window object if this layer is topmost.

Property of Layer
Read-only

Implemented in JavaScript 1.2
background

Description

The image to use as the background for the layer's canvas (which is the part of
the layer within the clip rectangle).
Property of Layer

Implemented in JavaScript 1.2

Each layer has a background property, whose value is an image object, whose
src attribute is a URL that indicates the image to use to provide a tiled
backdrop. The value is null if the layer has no backdrop. For example:

layer.background.src = "fishbg.gif";

below

The layer object below this one in z-order, among all layers in the document
or null if this layer is at the bottom.

Property of Layer
Read-only
Implemented in JavaScript 1.2

Chapter |, Objects, Methods, and Properties 225

Layer.bgColor

bgColor

A string specifying the color to use as a solid background color for the layer’s
canvas (the part of the layer within the clip rectangle).
Property of Layer

Implemented in JavaScript 1.2

Description The bgColor property is expressed as a hexadecimal RGB triplet or as a string
literal (see the Client-Side JavaScript Guide). This property is the JavaScript
reflection of the BGCOLORttribute of the BODYtag.

You can set the bgColor property at any time.

If you express the color as a hexadecimal RGB triplet, you must use the format
rrggbb . For example, the hexadecimal RGB values for salmon are red=FA |
green=80 , and blue=72 | so the RGB triplet for salmon is "FA8072" .

Examples The following example sets the background color of the myLayer layer’s
canvas to aqua using a string literal:

myLayer.bgColor="aqua"

The following example sets the background color of the myLayer layer’s
canvas to aqua using a hexadecimal triplet:

myLayer.bgColor="00FFFF"

See also Layer.bgColor

captureEvents

Sets the window or document to capture all events of the specified type.
Method of Layer

Implemented in JavaScript 1.2

Syntax captureEvents(eventType)

Parameters

eventType Type of event to be captured. Available event types are listed in the
Client-Side JavaScript Guide.

226 Client-Side JavaScript Reference

Description

Layer.clip.bottom

When a window with frames wants to capture events in pages loaded from
different locations (servers), you need to use captureEvents in a signed script
and precede it with enableExternalCapture . For more information and an
example, see enableExternalCapture

captureEvents works in tandem with releaseEvents | routeEvent | and
handleEvent . For information on handling events, see the Client-Side
JavaScript Guide.

clip.bottom

The bottom edge of the clipping rectangle (the part of the layer that is visible.)
Any part of a layer that is outside the clipping rectangle is not displayed.
Property of Layer

Implemented in JavaScript 1.2

clip.height

The height of the clipping rectangle (the part of the layer that is visible.) Any
part of a layer that is outside the clipping rectangle is not displayed.
Property of Layer

Implemented in JavaScript 1.2

clip.left

The left edge of the clipping rectangle (the part of the layer that is visible.) Any
part of a layer that is outside the clipping rectangle is not displayed.

Property of Layer

Implemented in JavaScript 1.2

clip.right

The right edge of the clipping rectangle (the part of the layer that is visible.)
Any part of a layer that is outside the clipping rectangle is not displayed.
Property of Layer

Implemented in JavaScript 1.2

Chapter |, Objects, Methods, and Properties 227

Layer.clip.top

clip.top

The top edge of the clipping rectangle (the part of the layer that is visible.) Any
part of a layer that is outside the clipping rectangle is not displayed.
Property of Layer

Implemented in JavaScript 1.2

clip.width

The width of the clipping rectangle (the part of the layer that is visible.) Any
part of a layer that is outside the clipping rectangle is not displayed.

Property of Layer

Implemented in JavaScript 1.2

document

Description

The layer’s associated document.

Property of Layer
Read-only
Implemented in JavaScript 1.2

Each layer object contains its own document object. This object can be used
to access the images, applets, embeds, links, anchors and layers that are
contained within the layer. Methods of the document object can also be
invoked to change the contents of the layer.

handleEvent

Syntax

Parameters

Invokes the handler for the specified event.
Method of Layer

Implemented in JavaScript 1.2

handleEvent(event)

event Name of an event for which the specified object has an event
handler.

228 Client-Side JavaScript Reference

Description

Layer.left

handleEvent works in tandem with captureEvents | releaseEvents |, and
routeEvent . For information on handling events, see the Client-Side JavaScript
Guide.

left

The horizontal position of the layer's left edge, in pixels, relative to the origin of
its parent layer.
Property of Layer

Implemented in JavaScript 1.2

The Layer.x property is a convenience synonym for the left property.

See also Layer.top
load
Changes the source of a layer to the contents of the specified file and
simultaneously changes the width at which the layer’'s HTML contents are
wrapped.
Method of Layer
Implemented in JavaScript 1.2

Syntax load(sourcestring , width)
Parameters

sourcestring A string indicating the external file name.
width The width of the layer as a pixel value.

Chapter |, Objects, Methods, and Properties 229

Layer.moveAbove

moveAbove

Stacks this layer above the layer specified in the argument, without changing
either layer's horizontal or vertical position. After re-stacking, both layers will
share the same parent layer.

Method of Layer

Implemented in JavaScript 1.2

Syntax moveAbove(alLayer)
Parameters
aLayer The layer above which to move the current layer.
moveBelow
Stacks this layer below the specified layer, without changing either layer's
horizontal or vertical position. After re-stacking, both layers will share the same
parent layer.
Method of Layer
Implemented in JavaScript 1.2
Syntax moveBelow(alLayer)
Parameters
aLayer The layer below which to move the current layer.
moveBy
Changes the layer position by applying the specified deltas, measured in pixels.
Method of Layer
Implemented in JavaScript 1.2
Syntax moveBy(horizontal , vertical)
Parameters
horizontal The number of pixels by which to move the layer horizontally.
vertical The number of pixels by which to move the layer vertically.

230 Client-Side JavaScript Reference

Layer.moveTo

moveTo

Syntax

Parameters

Security

Description

Moves the top-left corner of the window to the specified screen coordinates.
Method of Layer

Implemented in JavaScript 1.2

moveTo(x-coordinate , y-coordinate)

x-coordinate An integer representing the top edge of the window in screen
coordinates.

y-coordinate An integer representing the left edge of the window in screen
coordinates.

To move a window offscreen, call the moveTo method in a signed script. For
information on security, see the Client-Side JavaScript Guide.

Changes the layer position to the specified pixel coordinates within the
containing layer. For ILayers, moves the layer relative to the natural inflow
position of the layer.

See also Layer.moveBy

moveToAbsolute
Changes the layer position to the specified pixel coordinates within the page
(instead of the containing layer.)
Method of Layer
Implemented in JavaScript 1.2

Syntax moveToAbsolute(X, Y)

Parameters

Description

X An integer representing the top edge of the window in pixel
coordinates.

y An integer representing the left edge of the window in pixel
coordinates.

This method is equivalent to setting both the pageX and pageY properties of
the layer object.

Chapter |, Objects, Methods, and Properties 231

Layer.name

name

A string specifying the name assigned to the layer through the ID attribute in
the LAYERtag.

Property of Layer

Read-only

Implemented in JavaScript 1.2

pageX

The horizontal position of the layer, in pixels, relative to the page.
Property of Layer

Implemented in JavaScript 1.2

pageY

The vertical position of the layer, in pixels, relative to the page.
Property of Layer

Implemented in JavaScript 1.2

parentLayer

The layer obiject that contains this layer, or the enclosing window object if this
layer is not nested in another layer.

Property of Layer

Read-only

Implemented in JavaScript 1.2

232 Client-Side JavaScript Reference

Layer.releaseEvents

releaseEvents

Syntax

Parameters

Description

Sets the window or document to release captured events of the specified type,
sending the event to objects further along the event hierarchy.
Method of Layer

Implemented in JavaScript 1.2

releaseEvents(eventType)

eventType Type of event to be captured.

If the original target of the event is a window, the window receives the event
even if it is set to release that type of event. releaseEvents works in tandem
with captureEvents | routeEvent |, and handleEvent . For more information,
see the Client-Side JavaScript Guide.

resizeBy

Syntax

Parameters

Description

Resizes the layer by the specified height and width values (in pixels).
Method of Layer

Implemented in JavaScript 1.2

resizeBy(width , height)

width The number of pixels by which to resize the layer horizontally.

height The number of pixels by which to resize the layer vertically.

This does not layout any HTML contained in the layer again. Instead, the layer
contents may be clipped by the new boundaries of the layer. This method has
the same effect as adding width and height to clip.width and

clip.height

Chapter |, Objects, Methods, and Properties 233

Layer.resizeTo

resizeTo

Description

Syntax

Parameters

Description

Resizes the layer to have the specified height and width values (in pixels).
Method of Layer

Implemented in JavaScript 1.2

This does not layout any HTML contained in the layer again. Instead, the layer
contents may be clipped by the new boundaries of the layer.

resizeTo(width , height)

width An integer representing the layer’s width in pixels.

height An integer representing the layer’s height in pixels.

This method has the same effect setting clip.width and clip.height

routeEvent

Syntax

Parameters

Description

Passes a captured event along the normal event hierarchy.
Method of Layer

Implemented in JavaScript 1.2

routeEvent(event)

event The event to route.

If a sub-object (document or layer) is also capturing the event, the event is sent
to that object. Otherwise, it is sent to its original target.

routeEvent works in tandem with captureEvents | releaseEvents |, and
handleEvent . For more information, see the Client-Side JavaScript Guide.

234 Client-Side JavaScript Reference

Layer.siblingAbove

siblingAbove

The layer object above this one in z-order, among all layers that share the same
parent layer or null if the layer has no sibling above.

Property of Layer

Read-only

Implemented in JavaScript 1.2

siblingBelow

The layer object below this one in z-order, among all layers that share the
same parent layer or null if layer is at the bottom.

Property of Layer

Read-only

Implemented in JavaScript 1.2

Src

A URL string specifying the source of the layer’s content. Corresponds to the
SRCattribute.

Property of Layer

Implemented in JavaScript 1.2

top

See also

The vertical position of the layer's left edge, in pixels, relative to the origin of its
parent layer.
Property of Layer

Implemented in JavaScript 1.2

The Layer.y property is a convenience synonym for the top property.

Layer.left

Chapter |, Objects, Methods, and Properties 235

Layer.visibility

visibility

Whether or not the layer is visible.
Property of Layer
Implemented in JavaScript 1.2

Description A value of show means show the layer; hide means hide the layer; inherit
means inherit the visibility of the parent layer.

window

The window or Frame object that contains the layer, regardless of whether the
layer is nested within another layer.

Property of Layer

Read-only

Implemented in JavaScript 1.2

X

The horizontal position of the layer's left edge, in pixels, relative to the origin of
its parent layer.

Property of Layer
Implemented in JavaScript 1.2
The X property is a convenience synonym for the Layer.left property.

Seealso Layer.y

236 Client-Side JavaScript Reference

Layer.y

Yy

See also

The vertical position of the layer's left edge, in pixels, relative to the origin of its
parent layer.
Property of Layer

Implemented in JavaScript 1.2

The y property is a convenience synonym for the Layer.top property.

Layer.x

zIndex

Description

The relative z-order of this layer with respect to its siblings.
Method of Layer

Implemented in JavaScript 1.2

Sibling layers with lower numbered z-indexes are stacked underneath this
layer. The value of zIndex must be 0 or a positive integer.

Chapter |, Objects, Methods, and Properties 237

Link

L

in

k

Created by

A piece of text, an image, or an area of an image identified as a hypertext link.
When the user clicks the link text, image, or area, the link hypertext reference
is loaded into its target window. Area objects are a type of Link object.
Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added onMouseOut event handler; added Area
objects; links array contains areas created with <AREA
HREF="...">

JavaScript 1.2: added x and y properties; added handleEvent
method

By using the HTML A or AREAtag or by a call to the String.link method.
The JavaScript runtime engine creates a Link object corresponding to each A
and AREAtag in your document that supplies the HREFattribute. It puts these
objects as an array in the document.links property. You access a Link
object by indexing this array.

To define a link with the A or AREAtag, use standard HTML syntax with the
addition of JavaScript event handlers.

To define a link with the String.link method:

theString .link(hrefAttribute)

where:
theString A String object.
hrefAttribute Any string that specifies the HREFattribute of the A tag; it should be

a valid URL (relative or absolute).

238 Client-Side JavaScript Reference

Event handlers

Description

Link

Area objects have the following event handlers:
e onDbIClick

e onMouseOut

e onMouseOver

Link objects have the following event handlers:
e onClick

e onDblClick

e onKeyDown

e onKeyPress

e onKeyUp

e onMouseDown

e onMouseOut

e onMouseUp

e onMouseOver

Each Link object is a location object and has the same properties as a
location object.

If a Link object is also an Anchor object, the object has entries in both the
anchors and links arrays.

When a user clicks a Link object and navigates to the destination document
(specified by HREF="locationOrURL"), the destination document’s referrer
property contains the URL of the source document. Evaluate the referrer
property from the destination document.

You can use a Link object to execute a JavaScript function rather than link to a
hypertext reference by specifying the javascript: URL protocol for the link’s
HREFattribute. You might want to do this if the link surrounds an Image object
and you want to execute JavaScript code when the image is clicked. Or you
might want to use a link instead of a button to execute JavaScript code.

For example, when a user clicks the following links, the slower and faster
functions execute:

Slower
Faster

Chapter |, Objects, Methods, and Properties 239

Link

You can use a Link object to do nothing rather than link to a hypertext
reference by specifying the javascript:void(0) URL protocol for the link’s
HREFattribute. You might want to do this if the link surrounds an Image object
and you want to use the link’s event handlers with the image. When a user
clicks the following link or image, nothing happens:

Click here to do nothing

Property
Summary Property Description

hash Specifies an anchor name in the URL.

host Specifies the host and domain name, or IP address, of a network
host.

hostname Specifies the host:port portion of the URL.

href Specifies the entire URL.

pathname Specifies the URL-path portion of the URL.

port Specifies the communications port that the server uses.

protocol Specifies the beginning of the URL, including the colon.

search Specifies a query string.

target Reflects the TARGETattribute.

text A string containing the content of the corresponding A tag.

X The horizontal position of the link’s left edge, in pixels, relative to
the left edge of the document.

y The vertical position of the link’s top edge, in pixels, relative to
the top edge of the document.

Method Summary
Method Description
handleEvent Invokes the handler for the specified event.

In addition, this object inherits the watch and unwatch methods from
Object

240 Client-Side JavaScript Reference

Link

Examples Example 1. The following example creates a hypertext link to an anchor
named javascript_intro

Introduction to JavaScript
Example 2. The following example creates a hypertext link to an anchor

named numbers in the file doc3.html in the window window?2 . If window2
does not exist, it is created.

Numbers

Example 3. The following example takes the user back x entries in the history

list:

Click here

Example 4. The following example creates a hypertext link to a URL. The user

can use the set of radio buttons to choose between three URLs. The link’s
onClick event handler sets the URL (the link’s href property) based on the
selected radio button. The link also has an onMouseOver event handler that
changes the window’s status property. As the example shows, you must
return true to set the window.status property in the onMouseOver event

handler.
<SCRIPT>
var destHREF="http://home.netscape.com/"
</SCRIPT>

<FORM NAME="form1">
Choose a destination from the following list, then click "Click me" below.

<INPUT TYPE="radio" NAME="destination" VALUE="netscape"
onClick="destHREF="http://home.netscape.com/"> Netscape home page

<INPUT TYPE="radio" NAME="destination" VALUE="sun"
onClick="destHREF="http://www.sun.com/"> Sun home page

<INPUT TYPE="radio" NAME="destination" VALUE="rfc1867"
onClick="destHREF="http://www.ics.uci.edu/publ/ietf/html/rfc1867.txt"> RFC 1867
<P><A HREF=""
onMouseOver="window.status='Click this if you dare!’; return true"
onClick="this.href=destHREF">
Click me
</[FORM>

Chapter |, Objects, Methods, and Properties 241

Link

Example 5: links array. In the following example, the linkGetter function
uses the links array to display the value of each link in the current document.
The example also defines several links and a button for running linkGetter.

function linkGetter() {
msgWindow=window.open("","msg","width=400,height=400")
msgWindow.document.write("links.length is " +
document.links.length + "
")
for (var i = 0; i < document.links.length; i++) {
msgWindow.document.write(document.links[i] + "
")
}
}

Netscape Home Page
China Adoptions
Bad Dog Chronicles
Lab Rescue
<pP>
<INPUT TYPE="button" VALUE="Display links"

onClick="linkGetter()">

Example 6: Refer to Area object with links array. The following code refers
to the href property of the first Area object shown in Example 1.

document.links[0].href

Example 7: Area object with onMouseOver and onMouseOut event
handlers. The following example displays an image, globe.gif . The image
uses an image map that defines areas for the top half and the bottom half of the
image. The onMouseOver and onMouseOut event handlers display different
status bar messages depending on whether the mouse passes over or leaves the
top half or bottom half of the image. The HREFattribute is required when using
the onMouseOver and onMouseOut event handlers, but in this example the
image does not need a hypertext link, so the HREFattribute executes
javascript:void(0) , which does nothing.

<MAP NAME="worldMap">
<AREA NAME="topWorld" COORDS="0,0,50,25" HREF="javascript:void(0)"
onMouseOver="self.status='You are on top of the world';return true"
onMouseOut="self.status="You have left the top of the world';return true">
<AREA NAME="bottomWorld" COORDS="0,25,50,50" HREF="javascript:void(0)"
onMouseOver="self.status='You are on the bottom of the world';return true"
onMouseOut="self.status="You have left the bottom of the world';return true">
</MAP>

242 Client-Side JavaScript Reference

Link.handleEvent

Example 8: Simulate an Area object’s onClick using the HREF attribute.
The following example uses an Area object’s HREF attribute to execute a
JavaScript function. The image displayed, colors.gif , shows two sample
colors. The top half of the image is the color antiquewhite, and the bottom half
is white. When the user clicks the top or bottom half of the image, the function
setBGColor changes the document’s background color to the color shown in
the image.

<SCRIPT>
function setBGColor(theColor) {
document.bgColor=theColor

}
</SCRIPT>

Click the color you want for this document's background color
<MAP NAME="colorMap">
<AREA NAME="topColor" COORDS="0,0,50,25" HREF="javascript:setBGColor(‘antiquewhite')">
<AREA NAME="bottomColor* COORDS="0,25,50,50" HREF="javascript:setBGColor(‘white')">
</MAP>

Seealso Anchor , Image, link

handleEvent

Invokes the handler for the specified event.
Method of Link

Implemented in JavaScript 1.2

Syntax handleEvent(event)

Parameters

event The name of an event for which the specified object has an event
handler.

Description For information on handling events, see the Client-Side JavaScript Guide.

Chapter |, Objects, Methods, and Properties 243

Link.hash

hash

A string beginning with a hash mark (#) that specifies an anchor name in the
URL.

Property of Link

Implemented in JavaScript 1.0

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The hash property specifies a portion of the URL. This property applies to
HTTP URLs only.
Be careful using this property. Assume document.links[0] contains:

http://royalairways.com/fish.htm#angel

Then document.links[0].hash returns #angel . Assume you have this code:

hash = document.links[0].hash;
document.links[0].hash = hash;

Now, document.links[0].hash returns ##angel .
This behavior may change in a future release.

You can set the hash property at any time, although it is safer to set the href
property to change a location. If the hash that you specify cannot be found in
the current location, you get an error.

Setting the hash property navigates to the named anchor without reloading the
document. This differs from the way a document is loaded when other link
properties are set.

See RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/
rfc1738.html) for complete information about the hash.

)

Seealso Link.host | Link.hosthname | Link.href | Link.pathname | Link.port
Link.protocol , Link.search

244 Client-Side JavaScript Reference

Link.host

host

Security

Description

See also

A string specifying the server name, subdomain, and domain name.
Property of Link

Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

The host property specifies a portion of a URL. The host property is a
substring of the hostname property. The hostname property is the
concatenation of the host and port properties, separated by a colon. When
the port property is null, the host property is the same as the hostname

property.

You can set the host property at any time, although it is safer to set the href
property to change a location. If the host that you specify cannot be found in
the current location, you get an error.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/
rfc1738.html) for complete information about the hostname and port.

Link.hash | Link.hostname | Link.href | Link.pathname | Link.port |
Link.protocol , Link.search

hosthame

Security

Description

A string containing the full hostname of the server, including the server name,
subdomain, domain, and port number.

Property of Link

Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

The hostname property specifies a portion of a URL. The hostname property is
the concatenation of the host and port properties, separated by a colon.
When the port property is 80 (the default), the host property is the same as
the hostname property.

Chapter |, Objects, Methods, and Properties 245

Link.href

You can set the hostname property at any time, although it is safer to set the
href property to change a location. If the hostname that you specify cannot be
found in the current location, you get an error.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/
rfc1738.html) for complete information about the hostname.

Seealso Link.host | Link.hash | Link.href | Link.pathname | Link.port |
Link.protocol , Link.search
href
A string specifying the entire URL.
Property of Link
Implemented in JavaScript 1.0
Security JavaScript 1.1. This property is tainted by default. For information on data

Description

See also

tainting, see the Client-Side JavaScript Guide.

The href property specifies the entire URL. Other link object properties are
substrings of the href property.

You can set the href property at any time.

See RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/
rfc1738.html) for complete information about the URL.

Link.hash | Link.host | Link.hosthname | Link.pathname | Link.port |
Link.protocol , Link.search

pathname

Security

A string specifying the URL-path portion of the URL.
Property of Link
Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

246 Client-Side JavaScript Reference

Description

See also

Link.port

The pathname property specifies a portion of the URL. The pathname supplies
the details of how the specified resource can be accessed.

You can set the pathname property at any time, although it is safer to set the
href property to change a location. If the pathname that you specify cannot be
found in the current location, you get an error.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/
rfc1738.html) for complete information about the pathname.

Link.host | Link.hosthname | Link.hash | Link.href | Link.port |
Link.protocol , Link.search

port

Security

Description

See also

A string specifying the communications port that the server uses.
Property of Link
Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

The port property specifies a portion of the URL. The port property is a
substring of the hostname property. The hostname property is the
concatenation of the host and port properties, separated by a colon. When
the port property is 80 (the default), the host property is the same as the
hostname property.

You can set the port property at any time, although it is safer to set the href
property to change a location. If the port that you specify cannot be found in
the current location, you will get an error. If the port property is not specified,
it defaults to 80 on the server.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/
rfc1738.html) for complete information about the port.

Link.host | Link.hostname | Link.hash | Link.href | Link.pathname
Link.protocol , Link.search

)

Chapter |, Objects, Methods, and Properties 247

Link.protocol

protocol

Security

Description

See also

A string specifying the beginning of the URL, up to and including the first
colon.
Property of Link

Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

The protocol property specifies a portion of the URL. The protocol indicates

the access method of the URL. For example, the value "http:" specifies
HyperText Transfer Protocol, and the value "javascript:" specifies JavaScript
code.

You can set the protocol — property at any time, although it is safer to set the
href property to change a location. If the protocol that you specify cannot be
found in the current location, you get an error.

The protocol property represents the scheme name of the URL. See Section
2.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/
rfc1738.html) for complete information about the protocol.

Link.host | Link.hostname | Link.hash | Link.href | Link.pathname |
Link.port | Link.search

search

Security

A string beginning with a question mark that specifies any query information in
the URL.

Property of Link

Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

248 Client-Side JavaScript Reference

Description

See also

Link.target

The search property specifies a portion of the URL. This property applies to
http URLs only.

The search property contains variable and value pairs; each pair is separated
by an ampersand. For example, two pairs in a search string could look like the
following:

?X=7&y=5
You can set the search property at any time, although it is safer to set the href

property to change a location. If the search that you specify cannot be found in
the current location, you get an error.

See Section 3.3 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/
rfc1738.html) for complete information about the search.

Link.host | Link.hostname | Link.hash | Link.href | Link.pathname
Link.port | Link.protocol

)

target

Description

Examples

See also

A string specifying the name of the window that displays the content of a
clicked hypertext link.
Property of Link

Implemented in JavaScript 1.0
The target property initially reflects the TARGETattribute of the A or AREA
tags; however, setting target overrides this attribute.

You can set target using a string, if the string represents a window name. The
target property cannot be assigned the value of a JavaScript expression or
variable.

You can set the target property at any time.

The following example specifies that responses to the musicinfo form are
displayed in the msgWindow window:

document.musiclnfo.target="msgWindow"

Form

Chapter |, Objects, Methods, and Properties 249

Link .text

text

A string containing the content of the corresponding A tag.

Property of Link
Implemented in JavaScript 1.2
X

The horizontal position of the link’s left edge, in pixels, relative to the left edge
of the document.

Property of Link
Read-only
Implemented in JavaScript 1.2

Seealso Link.y

Yy

The vertical position of the link’s top edge, in pixels, relative to the top edge of
the document.

Property of Link

Read-only

Implemented in JavaScript 1.2

See also Link.x

250 Client-Side JavaScript Reference

Location

Created by

Description

Location

Contains information on the current URL.
Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added reload | replace methods
Location objects are predefined JavaScript objects that you access through the
location property of a window object.

The location object represents the complete URL associated with a given
window object. Each property of the location object represents a different
portion of the URL.

In general, a URL has this form:

protocol /I host : port | pathname #hash ? search

For example:

http://home.netscape.com/assist/extensions.html#topic1?x=7&y=2
These parts serve the following purposes:

e protocol represents the beginning of the URL, up to and including the first
colon.

e host represents the host and domain name, or IP address, of a network
host.

e port represents the communications port that the server uses for
communications.

e pathname represents the URL-path portion of the URL.

e hash represents an anchor name fragment in the URL, including the hash
mark (#). This property applies to HITP URLs only.

e search represents any query information in the URL, including the
question mark (?). This property applies to HTTP URLs only. The search
string contains variable and value pairs; each pair is separated by an
ampersand (&).

Chapter |, Objects, Methods, and Properties 251

Location

A Location object has a property for each of these parts of the URL. See the
individual properties for more information. A Location object has two other
properties not shown here:

e href represents a complete URL.
e hostname represents the concatenation host :port .

If you assign a string to the location property of an object, JavaScript creates a
location object and assigns that string to its href property. For example, the
following two statements are equivalent and set the URL of the current window
to the Netscape home page:

window.location.href="http://home.netscape.com/"
window.location="http://home.netscape.com/"

The location object is contained by the window object and is within its scope.
If you refer to a location object without specifying a window, the location
object represents the current location. If you refer to a location object and
specify a window name, as in windowReference.location , the location
object represents the location of the specified window.

In event handlers, you must specify window.location instead of simply using
location . Due to the scoping of static objects in JavaScript, a call to location
without specifying an object name is equivalent to document.location , which
is a synonym for document.URL .

Location is not a property of the document object; its equivalent is the
document.URL property. The document.location property, which is a
synonym for document.URL , is deprecated.

How documents are loaded when location is set. When you set the
location object or any of its properties except hash, whether a new
document is loaded depends on which version of the browser you are running:

e In JavaScript 1.0, setting location does a conditional (“If-modified-since”)
HTTP GET operation, which returns no data from the server unless the
document has been modified since the last version downloaded.

e In JavaScript 1.1 and later, the effect of setting location depends on the
user’s setting for comparing a document to the original over the network.
The user interface option for setting this preference differs in browser
versions. The user decides whether to check a document in cache every

252 Client-Side JavaScript Reference

Location

time it is accessed, once per session, or never. The document is reloaded
from cache if the user sets never or once per session; the document is
reloaded from the server only if the user chooses every time.

Syntax for common URL types. When you specify a URL, you can use
standard URL formats and JavaScript statements. The following table shows the
syntax for specifying some of the most common types of URLs.

Table I.I URL syntax.

URL type Protocol Example

JavaScript code javascript: javascript:history.go(-1)

Navigator source view-source: view-source:wysiwyg://Offile:/c|/

viewer temp/genhtml.html

Navigator info about: about:cache

World Wide Web http: http://home.netscape.com/
File file:/ file://ljavascript/methods.html
FTP ftp: ftp://ftp.mine.com/home/mine
MailTo mailto: mailto:info@netscape.com
Usenet news: news://news.scruznet.com/

comp.lang.javascript

Gopher gopher: gopher.myhost.com

The following list explains some of the protocols:

The javascript: protocol evaluates the expression after the colon (o), if
there is one, and loads a page containing the string value of the expression,
unless it is undefined. If the expression evaluates to undefined (by calling a
void function, for example javascript:void(0)), no new page loads.
Note that loading a new page over your script’s page clears the page’s
variables, functions, and so on.

The view-source: protocol displays HTML code that was generated with
JavaScript document.write and document.writeln methods. For
information on printing and saving generated HTML, see

document.write

Chapter |, Objects, Methods, and Properties 253

Location

e The about:

— about:

protocol provides information on Navigator. For example:

by itself is the same as choosing About Communicator from the

Navigator Help menu.

— about:cache displays disk-cache statistics.

— about:plugins displays information about plug-ins you have
configured. This is the same as choosing About Plug-ins from the
Navigator Help menu.

Property

Summary Property

Description

hash

host

hostname
href
pathname
port
protocol

search

Specifies an anchor name in the URL.

Specifies the host and domain name, or IP address, of a network
host.

Specifies the host:port portion of the URL.

Specifies the entire URL.

Specifies the URL-path portion of the URL.

Specifies the communications port that the server uses.
Specifies the beginning of the URL, including the colon.

Specifies a query.

Method Summary

Method

Description

reload

replace

Forces a reload of the window’s current document.

Loads the specified URL over the current history entry.

In addition, this object inherits the watch and unwatch methods from

Object

Examples Example 1. The following two statements are equivalent and set the URL of
the current window to the Netscape home page:

window.location.href="http://home.netscape.com/"
window.location="http://home.netscape.com/"

254 Client-Side JavaScript Reference

See also

Location.hash

Example 2. The following statement sets the URL of a frame named frame2 to
the Sun home page:

parent.frame2.location.href="http://www.sun.com/"
See also the examples for Anchor .

History , document.URL

hash

Security

Description

A string beginning with a hash mark (#) that specifies an anchor name in the
URL.

Property of Location

Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

The hash property specifies a portion of the URL. This property applies to
HTTP URLs only.

You can set the hash property at any time, although it is safer to set the href
property to change a location. If the hash that you specify cannot be found in
the current location, you get an error.

Setting the hash property navigates to the named anchor without reloading the
document. This differs from the way a document is loaded when other
location properties are set (see “How documents are loaded when location is
set” on page 252).

See RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/
rfc1738.html) for complete information about the hash.

Chapter |, Objects, Methods, and Properties 255

Location.host

Examples In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write
statements display properties of newWindow.location in a window called
msgWindow.
newWindow=window.open
("http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object")

msgWindow.document.write("newWindow.location.hre f="4+
newWindow.location.href + "<P>")

msgWindow.document.write("newWindow.location.has h ="+
newWindow.location.hash + "<P>")

msgWindow.document.close()

The previous example displays output such as the following:

newWindow.location.href =
http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object

newWindow.location.hash = #checkbox_object

See also Location.host , Location.hostname , Location.href ,

Location.pathname | Location.port , Location.protocol ,

Location.search

host

A string specifying the server name, subdomain, and domain name.

Property of Location

Implemented in JavaScript 1.0

Security JavaScript 1.1. This property is tainted by default. For information on data

Description

tainting, see the Client-Side JavaScript Guide.

The host property specifies a portion of a URL. The host property is a
substring of the hostname property. The hostname property is the
concatenation of the host and port properties, separated by a colon. When
the port property is null, the host property is the same as the hostname

property.

You can set the host property at any time, although it is safer to set the href
property to change a location. If the host that you specify cannot be found in
the current location, you get an error.

256 Client-Side JavaScript Reference

Location.hostname

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/
rfc1738.html) for complete information about the hostname and port.

Examples In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write
statements display properties of newWindow.location in a window called
msgWindow.
newWindow=window.open
("http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object")

msgWindow.document.write("newWindow.location.hre f="+
newWindow.location.href + "<P>")

msgWindow.document.write("newWindow.location.hos t="+
newWindow.location.host + "<P>")

msgWindow.document.close()

The previous example displays output such as the following:

newWindow.location.href =
http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object

newWindow.location.host = home.netscape.com

Seealso Location.hash | Location.hosthame , Location.href ,

Location.pathname | Location.port , Location.protocol ,

Location.search

hostname

A string containing the full hostname of the server, including the server name,

subdomain, domain, and port number.

Property of Location

Implemented in JavaScript 1.0

Security JavaScript 1.1. This property is tainted by default. For information on data

Description

tainting, see the Client-Side JavaScript Guide.

The hostname property specifies a portion of a URL. The hostname property is
the concatenation of the host and port properties, separated by a colon.
When the port property is 80 (the default), the host property is the same as
the hostname property.

Chapter |, Objects, Methods, and Properties 257

Location.href

You can set the hostname property at any time, although it is safer to set the
href property to change a location. If the hostname that you specify cannot be
found in the current location, you get an error.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/
rfc1738.html) for complete information about the hostname.

Examples In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write
statements display properties of newWindow.location in a window called
msgWindow.

newWindow=window.open
("http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object")

msgWindow.document.write("newWindow.location.hre f="4+
newWindow.location.href + "<P>")

msgWindow.document.write("newWindow.location.hostNam e ="+
newWindow.location.hostName + "<P>")

msgWindow.document.close()

The previous example displays output such as the following:

newWindow.location.href =
http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object

newWindow.location.hostName = home.netscape.com

Seealso Location.hash | Location.host , Location.href ,
Location.pathname , Location.port , Location.protocol ,
Location.search

href

A string specifying the entire URL.
Property of Location

Implemented in JavaScript 1.0

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

258 Client-Side JavaScript Reference

Description

Examples

Location.href

The href property specifies the entire URL. Other location object properties
are substrings of the href property. If you want to change the URL associated
with a window, you should do so by changing the href property; this correctly
updates all of the other properties.

You can set the href property at any time.

Omitting a property name from the location object is equivalent to specifying
location.href . For example, the following two statements are equivalent and
set the URL of the current window to the Netscape home page:

window.location.href="http://home.netscape.com/"
window.location="http://home.netscape.com/"

See RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/
rfc1738.html) for complete information about the URL.

In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write

statements display all the properties of newWindow.location in a window
called msgWindow.

newWindow=window.open
("http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object")

msgWindow.document.write("newWindow.location.hre
newWindow.location.href + "<P>")
msgWindow.document.write("newWindow.location.protoco ="+
newWindow.location.protocol + "<P>")
msgWindow.document.write("newWindow.location.hos
newWindow.location.host + "<P>")
msgWindow.document.write("newWindow.location.hostNam
newWindow.location.hostName + "<P>")
msgWindow.document.write("newWindow.location.por
newWindow.location.port + "<P>")
msgWindow.document.write("newWindow.location.pathnam
newWindow.location.pathname + "<P>")
msgWindow.document.write("newWindow.location.has
newWindow.location.hash + "<P>")
msgWindow.document.write("newWindow.location.searc h ="+
newWindow.location.search + "<P>")
msgWindow.document.close()

Chapter |, Objects, Methods, and Properties 259

Location.pathname

The previous example displays output such as the following:

newWindow.location.href =
http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object
newWindow.location.protocol = http:
newWindow.location.host = home.netscape.com
newWindow.location.hostName = home.netscape.com
newWindow.location.port =
newWindow.location.pathname =
/comprod/products/navigator/version_2.0/script/
script_info/objects.html
newWindow.location.hash = #checkbox_object
newWindow.location.search =

Seealso Location.hash |, Location.host , Location.hostname ,
Location.pathname | Location.port , Location.protocol ,
Location.search

pathname

A string specifying the URL-path portion of the URL.
Property of Location

Implemented in JavaScript 1.0
Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The pathname property specifies a portion of the URL. The pathname supplies
the details of how the specified resource can be accessed.

You can set the pathname property at any time, although it is safer to set the
href property to change a location. If the pathname that you specify cannot be
found in the current location, you get an error.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/
rfc1738.html) for complete information about the pathname.

260 Client-Side JavaScript Reference

Location.port

Examples In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write
statements display properties of newWindow.location in a window called
msgWindow.
newWindow=window.open
("http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object")

msgWindow.document.write("newWindow.location.hre f="4+
newWindow.location.href + "<P>")

msgWindow.document.write("newWindow.location.pathnam e ="+
newWindow.location.pathname + "<P>")

msgWindow.document.close()

The previous example displays output such as the following:

newWindow.location.href =
http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object

newWindow.location.pathname =
/comprod/products/navigator/version_2.0/script/
script_info/objects.html

Seealso Location.hash |, Location.host , Location.hostname ,

Location.href , Location.port , Location.protocol ,

Location.search

port

A string specifying the communications port that the server uses.

Property of Location

Implemented in JavaScript 1.0

Security JavaScript 1.1. This property is tainted by default. For information on data

Description

tainting, see the Client-Side JavaScript Guide.

The port property specifies a portion of the URL. The port property is a
substring of the hostname property. The hostname property is the
concatenation of the host and port properties, separated by a colon.

You can set the port property at any time, although it is safer to set the href
property to change a location. If the port that you specify cannot be found in
the current location, you get an error. If the port property is not specified, it
defaults to 80.

Chapter |, Objects, Methods, and Properties 261

Location. protocol

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/
rfc1738.html) for complete information about the port.

Examples In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write
statements display properties of newWindow.location in a window called
msgWindow.
newWindow=window.open
("http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object")

msgWindow.document.write("newWindow.location.hre f="+
newWindow.location.href + "<P>")

msgWindow.document.write("newWindow.location.por t="+
newWindow.location.port + "<P>")

msgWindow.document.close()

The previous example displays output such as the following:

newWindow.location.href =
http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object

newWindow.location.port =

Seealso Location.hash |, Location.host , Location.hostname ,

Location.href , Location.pathname | Location.protocol ,

Location.search

protocol

A string specifying the beginning of the URL, up to and including the first

colon.

Property of Location

Implemented in JavaScript 1.0

Security JavaScript 1.1. This property is tainted by default. For information on data

Description

tainting, see the Client-Side JavaScript Guide.

The protocol property specifies a portion of the URL. The protocol indicates

the access method of the URL. For example, the value "http:" specifies
HyperText Transfer Protocol, and the value "javascript:" specifies JavaScript
code.

262 Client-Side JavaScript Reference

Examples

See also

Location.protocol

You can set the protocol — property at any time, although it is safer to set the
href property to change a location. If the protocol that you specify cannot be
found in the current location, you get an error.

The protocol property represents the scheme name of the URL. See Section
2.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/
rfc1738.html) for complete information about the protocol.

In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write

statements display properties of newWindow.location in a window called
msgWindow.

newWindow=window.open
("http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object")

msgWindow.document.write("newWindow.location.hre f="4+
newWindow.location.href + "<P>")

msgWindow.document.write("newWindow.location.protoco ="+
newWindow.location.protocol + "<P>")

msgWindow.document.close()

The previous example displays output such as the following:

newWindow.location.href =
http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object

newWindow.location.protocol = http:

Location.hash |, Location.host , Location.hostname
Location.href , Location.pathname | Location.port
Location.search

)

Chapter |, Objects, Methods, and Properties 263

Location.reload

reload

Forces a reload of the window’s current document (the document specified by

the Location.href property).
Method of Location
Implemented in JavaScript 1.1

Syntax reload([forceGet 1))

Parameters
forceGet If you supply true , forces an unconditional HTTP GET of the
document from the server. This should not be used unless you have
reason to believe that disk and memory caches are off or broken, or
the server has a new version of the document (for example, if it is
generated by a CGI on each request).

Description This method uses the same policy that the browser’s Reload button uses. The
user interface for setting the default value of this policy varies for different
browser versions.

By default, the reload method does not force a transaction with the server.
However, if the user has set the preference to check every time, the method
does a “conditional GET” request using an If-modified-since HTTP header, to
ask the server to return the document only if its last-modified time is newer
than the time the client keeps in its cache. In other words, reload reloads from
the cache, unless the user has specified to check every time and the document
has changed on the server since it was last loaded and saved in the cache.

Examples The following example displays an image and three radio buttons. The user can
click the radio buttons to choose which image is displayed. Clicking another
button lets the user reload the document.

<SCRIPT>
function displaylmage(thelmage) {
document.images[0].src=thelmage

</SCRIPT>

264 Client-Side JavaScript Reference

See also

Location.replace

<FORM NAME="imageForm">

Choose an image:

<INPUT TYPE="radio" NAME="imageChoice" VALUE="imagel" CHECKED
onClick="displaylmage('seaotter.gif)">Sea otter

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image2"
onClick="displaylmage(‘orca.gif')">Killer whale

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image3"
onClick="displaylmage('humpback.gif')">Humpback whale

<P><INPUT TYPE="button" VALUE="Click here to reload"
onClick="window.location.reload()">
</[FORM>

Location.replace

replace

Syntax

Parameters

Description

Loads the specified URL over the current history entry.
Method of Location

Implemented in JavaScript 1.1

replace(URL)

URL A string specifying the URL to load.

The replace method loads the specified URL over the current history entry.
After calling the replace method, the user cannot navigate to the previous URL
by using browser’s Back button.

If your program will be run with JavaScript 1.0, you could put the following
line in a SCRIPT tag early in your program. This emulates replace , which was
introduced in JavaScript 1.1:

if (location.replace == null)
location.replace = location.assign

The replace method does not create a new entry in the history list. To create
an entry in the history list while loading a URL, use the History.go method.

Chapter |, Objects, Methods, and Properties 265

Location.replace

Examples The following example lets the user choose among several catalogs to display.
The example displays two sets of radio buttons which let the user choose a
season and a category, for example the Spring/Summer Clothing catalog or the
Fall/Winter Home & Garden catalog. When the user clicks the Go button, the
displayCatalog function executes the replace method, replacing the current
URL with the URL appropriate for the catalog the user has chosen. After
invoking displayCatalog , the user cannot navigate to the previous URL (the
list of catalogs) by using browser’s Back button.

<SCRIPT>

function displayCatalog() {
var seaName=""
var catName=""

for (var i=0 ; i < document.catalogForm.season.length; i++) {
if (document.catalogForm.season[i].checked) {
seaName=document.catalogForm.season[i].value
i=document.catalogForm.season.length

}

for (var i in document.catalogForm.category) {
if (document.catalogForm.categoryl[i].checked) {
catName=document.catalogForm.category[i].value
i=document.catalogForm.category.length
}
}

fleName=seaName + catName + ".html"
location.replace(fileName)

</SCRIPT>

<FORM NAME="catalogForm">
Which catalog do you want to see?

<P>Season

<INPUT TYPE="radio" NAME="season" VALUE="ql" CHECKED>Spring/Summer

<INPUT TYPE="radio" NAME="season" VALUE="q3">Fall/Winter

<P>Category

<INPUT TYPE="radio" NAME="category" VALUE="clo" CHECKED>Clothing

<INPUT TYPE="radio" NAME="category" VALUE="lin">Linens

<INPUT TYPE="radio" NAME="category" VALUE="hom">Home & Garden

<P><INPUT TYPE="button" VALUE="Go" onClick="displayCatalog()">
</[FORM>

Seealso History |, window.open | History.go , Location.reload

266 Client-Side JavaScript Reference

Location.search

search

Security

Description

Examples

A string beginning with a question mark that specifies any query information in
the URL.
Property of Location

Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

The search property specifies a portion of the URL. This property applies to
HTTP URLs only.

The search property contains variable and value pairs; each pair is separated
by an ampersand. For example, two pairs in a search string could look as
follows:

?2X=7&y=5

You can set the search property at any time, although it is safer to set the href
property to change a location. If the search that you specify cannot be found in
the current location, you get an error.

See Section 3.3 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/
rfc1738.html) for complete information about the search.

In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write

statements display properties of newWindow.location in a window called
msgWindow.

newWindow=window.open
("http://guide-p.infoseek.com/WW/NS/Titles?qt=RFC+1738+&col=WW")

msgWindow.document.write("newWindow.location.hre f="+
newWindow.location.href + "<P>")

msgWindow.document.close()

msgWindow.document.write("newWindow.location.searc h ="+
newWindow.location.search + "<P>")

msgWindow.document.close()

The previous example displays the following output:

newWindow.location.href =
http://guide-p.infoseek.com/WW/NS/Titles?qt=RFC+1738+&col=WW
newWindow.location.search = ?qt=RFC+1738+&col=WW

Chapter |, Objects, Methods, and Properties 267

Location.search

Seealso Location.hash | Location.host , Location.hostname ,
Location.href , Location.pathname | Location.port ,
Location.protocol

268 Client-Side JavaScript Reference

Math

Created by

Description

Property
Summary

Math

A built-in object that has properties and methods for mathematical constants
and functions. For example, the Math object’s Pl property has the value of pi.
Core object

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

The Math object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

All properties and methods of Math are static. You refer to the constant PI as
Math.Pl and you call the sine function as Math.sin(x) , where x is the
method’s argument. Constants are defined with the full precision of real
numbers in JavaScript.

It is often convenient to use the with statement when a section of code uses
several Math constants and methods, so you don'’t have to type “Math”
repeatedly. For example,

with (Math) {
a =Pl *rr

y = r*sin(theta)
X = r*cos(theta)
}
Property Description
E Euler’s constant and the base of natural logarithms, approximately
2.718.
LN10 Natural logarithm of 10, approximately 2.302.
LN2 Natural logarithm of 2, approximately 0.693.
LOG10E Base 10 logarithm of E (approximately 0.434).
LOG2E Base 2 logarithm of E (approximately 1.442).
Pl Ratio of the circumference of a circle to its diameter, approximately
3.14159.

SQRT1_2 Square root of 1/2; equivalently, 1 over the square root of 2,
approximately 0.707.

SQRT2 Square root of 2, approximately 1.414.

Chapter |, Objects, Methods, and Properties 269

Math

Method Summary

Method Description

abs Returns the absolute value of a number.

acos Returns the arccosine (in radians) of a number.

asin Returns the arcsine (in radians) of a number.

atan Returns the arctangent (in radians) of a number.

atan2 Returns the arctangent of the quotient of its arguments.

ceil Returns the smallest integer greater than or equal to a number.
cos Returns the cosine of a number.

exp Returns E™™ where number is the argument, and E is Euler’s

constant, the base of the natural logarithms.

floor Returns the largest integer less than or equal to a number.

log Returns the natural logarithm (base E) of a number.

max Returns the greater of two numbers.

min Returns the lesser of two numbers.

pow Returns base to the exponent power, that is, base e®erent |
random Returns a pseudo-random number between 0 and 1.

round Returns the value of a number rounded to the nearest integer.
sin Returns the sine of a number.

sqrt Returns the square root of a number.

tan Returns the tangent of a number.

In addition, this object inherits the watch and unwatch methods from
Object

270 Client-Side JavaScript Reference

Math.abs

abs

Returns the absolute value of a number.
Method of Math

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax abs(x)

Parameters
X A number

Examples The following function returns the absolute value of the variable x:

function getAbs(x) {
return Math.abs(x)

}

Description Because abs is a static method of Math, you always use it as Math.abs()
rather than as a method of a Math object you created.

acos

Returns the arccosine (in radians) of a number.
Method of Math

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax acos(x)
Parameters

X A number

Description The acos method returns a numeric value between 0 and pi radians. If the
value of number is outside this range, it returns NaN

Because acos is a static method of Math, you always use it as Math.acos()
rather than as a method of a Math object you created.

Chapter |, Objects, Methods, and Properties 271

Math.asin

Examples

See also

The following function returns the arccosine of the variable x:

function getAcos(x) {
return Math.acos(x)

}

If you pass -1 to getAcos , it returns 3.141592653589793; if you pass 2, it returns
NaN because 2 is out of range.

Math.asin |, Math.atan |, Math.atan2 , Math.cos , Math.sin | Math.tan

asin

Syntax

Parameters

Description

Examples

See also

Returns the arcsine (in radians) of a number.
Method of Math

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

asin(x)

X A number

The asin method returns a numeric value between -pi/2 and pi/2 radians. If
the value of number is outside this range, it returns NaN

Because asin is a static method of Math, you always use it as Math.asin()
rather than as a method of a Math object you created.

The following function returns the arcsine of the variable x:

function getAsin(x) {
return Math.asin(x)

}

If you pass getAsin the value 1, it returns 1.570796326794897 (pi/2); if you
pass it the value 2, it returns NaNbecause 2 is out of range.

Math.acos , Math.atan |, Math.atan2 , Math.cos , Math.sin , Math.tan

272 Client-Side JavaScript Reference

Math.atan

atan

Syntax

Parameters

Description

Examples

See also

Returns the arctangent (in radians) of a number.
Method of Math

Static
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
atan(x)
X A number

The atan method returns a numeric value between -pi/2 and pi/2 radians.

Because atan is a static method of Math, you always use it as Math.atan()
rather than as a method of a Math object you created.

The following function returns the arctangent of the variable x:

function getAtan(x) {
return Math.atan(x)

}

If you pass getAtan the value 1, it returns 0.7853981633974483; if you pass it
the value .5, it returns 0.46364760900080061.

Math.acos , Math.asin |, Math.atan2 , Math.cos , Math.sin , Math.tan

Chapter |, Objects, Methods, and Properties 273

Math.atan2

atan2

Syntax

Parameters

Description

Examples

See also

Returns the arctangent of the quotient of its arguments.
Method of Math

Static
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
atan2(y, x)
Y, X Number

The atan2 method returns a numeric value between -pi and pi representing the
angle theta of an (x,y) point. This is the counterclockwise angle, measured in
radians, between the positive X axis, and the point (x,y). Note that the
arguments to this function pass the y-coordinate first and the x-coordinate
second.

atan2 is passed separate x and y arguments, and atan is passed the ratio of
those two arguments.

Because atan2 is a static method of Math | you always use it as Math.atan2()
rather than as a method of a Math object you created.

The following function returns the angle of the polar coordinate:

function getAtan2(x,y) {
return Math.atan2(x,y)
}

If you pass getAtan2 the values (90,15), it returns 1.4056476493802699; if you
pass it the values (15,90), it returns 0.16514867741462683.

Math.acos , Math.asin , Math.atan , Math.cos , Math.sin , Math.tan

274 Client-Side JavaScript Reference

ceil

Syntax

Parameters

Description

Math.ceil

Returns the smallest integer greater than or equal to a number.

Method of Math
Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
ceil(x)

X A number
Because ceil

is a static method of Math, you always use it as Math.ceil() ,

rather than as a method of a Math object you created.

The following function returns the ceil value of the variable x:

Examples
function getCeil(x) {
return Math.ceil(x)
}
If you pass 45.95 to getCeil
See also Math.floor
(of0 1Y
Returns the cosine of a number.
Method of Math
Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262
Syntax cos(x)

Parameters

X A number

, it returns 46; if you pass -45.95, it returns -45.

Chapter |, Objects, Methods, and Properties 275

Math.E

Description

Examples

See also

The cos method returns a numeric value between -1 and 1, which represents
the cosine of the angle.

Because cos is a static method of Math, you always use it as Math.cos()
rather than as a method of a Math object you created.

The following function returns the cosine of the variable x:

function getCos(x) {
return Math.cos(x)

}

If x equals 2*Math.Pl | getCos returns 1; if x equals Math.PI | the getCos
method returns -1.

Math.acos , Math.asin |, Math.atan , Math.atan2 , Math.sin
Math.tan

E

Description

Examples

Euler’s constant and the base of natural logarithms, approximately 2.718.
Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

Because E is a static property of Math , you always use it as Math.E | rather than
as a property of a Math object you created.

The following function returns Euler’s constant:

function getEuler() {
return Math.E

}

276 Client-Side JavaScript Reference

exp

Syntax

Parameters

Description

Examples

See also

Math.exp

Returns Ex, where x is the argument, and E is Euler’s constant, the base of the

natural logarithms.
Method of Math

Static
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
exp(x)
X A number

Because exp is a static method of Math, you always use it as Math.exp()

rather than as a method of a Math object you created.

The following function returns the exponential value of the variable x:

function getExp(x) {
return Math.exp(x)

}

If you pass getExp the value 1, it returns 2.718281828459045.

Math.E , Math.log , Math.pow

floor

Syntax

Parameters

Returns the largest integer less than or equal to a number.
Method of Math

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

floor(x)

X A number

Chapter |, Objects, Methods, and Properties 277

Math.LN10

Description

Examples

See also

Because floor is a static method of Math, you always use it as Math.floor()
rather than as a method of a Math object you created.

The following function returns the floor value of the variable x:

function getFloor(x) {
return Math.floor(x)

}
If you pass 45.95 to getFloor |, it returns 45; if you pass -45.95, it returns -46.

Math.ceil

LNIO

Examples

Description

The natural logarithm of 10, approximately 2.302.
Property of Math

Static, Read-only
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

The following function returns the natural log of 10:

function getNatLogl10() {
return Math.LN10

}

Because LN10 is a static property of Math, you always use it as Math.LN10 ,
rather than as a property of a Math object you created.

LN2

The natural logarithm of 2, approximately 0.693.
Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

278 Client-Side JavaScript Reference

)

Examples

Description

Math.log

The following function returns the natural log of 2:

function getNatLog2() {
return Math.LN2

}

Because LN2 is a static property of Math , you always use it as Math.LN2 | rather
than as a property of a Math object you created.

Syntax

Parameters

Description

Examples

See also

log

Returns the natural logarithm (base E) of a number.
Method of Math

Static

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
log(x)
X A number

If the value of number is negative, the return value is always NaN

Because log is a static method of Math, you always use it as Math.log()
rather than as a method of a Math object you created.
The following function returns the natural log of the variable x:

function getLog(x) {
return Math.log(x)
}

If you pass getLog the value 10, it returns 2.302585092994046; if you pass it the
value 0, it returns -Infinity ; if you pass it the value -1, it returns NaN
because -1 is out of range.

Math.exp , Math.pow

Chapter |, Objects, Methods, and Properties 279

Math.LOG10E

LOGIOE

The base 10 logarithm of E (approximately 0.434).
Property of Math

Static, Read-only
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Examples The following function returns the base 10 logarithm of E:

function getLogl0e() {
return Math.LOG10E

}

Description Because LOG10Eis a static property of Math, you always use it as
Math.LOG10E, rather than as a property of a Math object you created.

LOG2E

The base 2 logarithm of E (approximately 1.442).
Property of Math

Static, Read-only
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Examples The following function returns the base 2 logarithm of E:

function getLog2e() {
return Math.LOG2E

}

Description Because LOG2Eis a static property of Math, you always use it as Math.LOG2E,
rather than as a property of a Math object you created.

280 Client-Side JavaScript Reference

Math.max

max

Syntax

Parameters

Description

Examples

See also

Returns the larger of two numbers.
Method of Math

Static
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
max(Xx,)
X,y Numbers.

Because max is a static method of Math, you always use it as Math.max()
rather than as a method of a Math object you created.

The following function evaluates the variables x and y:

function getMax(x,y) {
return Math.max(x,y)

}

If you pass getMax the values 10 and 20, it returns 20; if you pass it the values
-10 and -20, it returns -10.

Math.min

min

Syntax

Parameters

Returns the smaller of two numbers.
Method of Math

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

min(x, y¥)

X,y Numbers.

Chapter |, Objects, Methods, and Properties 281

Math.PI

Description

Because min is a static method of Math, you always use it as Math.min()
rather than as a method of a Math object you created.

The following function evaluates the variables x and y:

function getMin(x,y) {
return Math.min(x,y)

If you pass getMin the values 10 and 20, it returns 10; if you pass it the values
-10 and -20, it returns -20.

Math.max

The ratio of the circumference of a circle to its diameter, approximately

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Examples
}
See also
Pl
3.14159.
Examples

Description

The following function returns the value of pi:

function getPi() {
return Math.PI

}

Because PI is a static property of Math, you always use it as Math.PI | rather
than as a property of a Math object you created.

pow

Syntax

Returns base to the exponent power, that is, base eworen,
Method of Math

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

pow(X, ¥)

282 Client-Side JavaScript Reference

Math.random

Parameters
base The base number

exponent The exponent to which to raise base

Description Because pow is a static method of Math, you always use it as Math.pow() ,
rather than as a method of a Math object you created.
Examples function raisePower(x,y) {

return Math.pow(x,y)

}

If x is 7 and y is 2, raisePower returns 49 (7 to the power of 2).

Seealso Math.exp , Math.log

random

Returns a pseudo-random number between 0 and 1. The random number
generator is seeded from the current time, as in Java.
Method of Math

Static
Implemented in JavaScript 1.0, NES 2.0: Unix only

JavaScript 1.1, NES 2.0: all platforms
ECMA version ECMA-262
Syntax random()
Parameters None.

Description Because random is a static method of Math, you always use it as
Math.random() , rather than as a method of a Math object you created.

Examples //Returns a random number between 0 and 1
function getRandom() {
return Math.random()

}

Chapter |, Objects, Methods, and Properties 283

Math.round

round

Returns the value of a number rounded to the nearest integer.
Method of Math

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax round(Xx)

Parameters
X A number

Description If the fractional portion of number is .5 or greater, the argument is rounded to
the next higher integer. If the fractional portion of number is less than .5, the
argument is rounded to the next lower integer.

Because round is a static method of Math, you always use it as Math.round()
rather than as a method of a Math object you created.

Examples //Returns the value 20
x=Math.round(20.49)

/IReturns the value 21
x=Math.round(20.5)

/IReturns the value -20
x=Math.round(-20.5)

/IReturns the value -21
x=Math.round(-20.51)

Ssin

Returns the sine of a number.
Method of Math

Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax sin(Xx)

284 Client-Side JavaScript Reference

Parameters

Description

Math.sqrt

X A number

The sin method returns a numeric value between -1 and 1, which represents
the sine of the argument.

Because sin is a static method of Math, you always use it as Math.sin()
rather than as a method of a Math object you created.

Examples The following function returns the sine of the variable x:
function getSine(x) {
return Math.sin(x)
}
If you pass getSine the value Math.PI/2 | it returns 1.
Seealso Math.acos , Math.asin , Math.atan , Math.atan2 , Math.cos

Math.tan
sqrt
Returns the square root of a number.
Method of Math
Static
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

Syntax sqrt(x)

Parameters

X A number

Description

If the value of number is negative, sqrt returns NaN

Because sqrt is a static method of Math, you always use it as Math.sgrt()
rather than as a method of a Math object you created.

Chapter |, Objects, Methods, and Properties 285

Math.SQRT1_2

Examples

The following function returns the square root of the variable x:

function getRoot(x) {
return Math.sqrt(x)

}

If you pass getRoot the value 9, it returns 3; if you pass it the value 2, it returns
1.414213562373095.

SQRTI_2

Examples

Description

The square root of 1/2; equivalently, 1 over the square root of 2, approximately
0.707.

Property of Math

Static, Read-only

Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262

The following function returns 1 over the square root of 2:

function getRootl_2() {
return Math.SQRT1_2
}

Because SQRT1_2is a static property of Math, you always use it as
Math.SQRT1_2, rather than as a property of a Math object you created.

SQRT2

Examples

The square root of 2, approximately 1.414.
Property of Math

Static, Read-only
Implemented in JavaScript 1.0, NES 2.0
ECMA version ECMA-262

The following function returns the square root of 2:

function getRoot2() {
return Math.SQRT2
}

286 Client-Side JavaScript Reference

Description

Math.tan

Because SQRT2is a static property of Math, you always use it as Math.SQRT2,
rather than as a property of a Math object you created.

tan

Syntax

Parameters

Description

Examples

See also

Returns the tangent of a number.
Method of Math

Static
Implemented in JavaScript 1.0, NES 2.0

ECMA version ECMA-262
tan(x)
X A number

The tan method returns a numeric value that represents the tangent of the
angle.

Because tan is a static method of Math, you always use it as Math.tan()
rather than as a method of a Math object you created.
The following function returns the tangent of the variable x:

function getTan(x) {
return Math.tan(x)

}

Math.acos , Math.asin |, Math.atan , Math.atan2 , Math.cos ,
Math.sin

Chapter |, Objects, Methods, and Properties 287

MimeType

MimeType

A MIME type (Multipart Internet Mail Extension) supported by the client.
Client-side object

Implemented in JavaScript 1.1

Created by You do not create MimeType objects yourself. These objects are predefined
JavaScript objects that you access through the mimeTypes array of the
navigator or Plugin object:

navigator.mimeTypes[index]

where index is either an integer representing a MIME type supported by the
client or a string containing the type of a MimeType object (from the
MimeType.type property).

Description Each MimeType object is an element in a mimeTypes array. The mimeTypes
array is a property of both navigator and Plugin objects. For example, the
following table summarizes the values for displaying JPEG images:

Expression Value
navigator.mimeTypes['image/jpeg"].type image/jpeg
navigator.mimeTypes['image/jpeg"].description JPEG Image
navigator.mimeTypes['image/jpeg"].suffixes ipeg, jpg, jpe, ffif,
PIP€g, pip

navigator.mimeTypes[‘image/jpeg"].enabledPlugins null

Property
Summary Property Description

description A description of the MIME type.

enabledPlugin Reference to the Plugin object configured for the MIME
type.

suffixes A string listing possible filename extensions for the MIME
type, for example "mpeg, mpg, mpe, mpv, vbs,
mpegv" .

type The name of the MIME type, for example "video/mpeg" or
"audio/x-wav"

288 Client-Side JavaScript Reference

MimeType

Method Summary This object inherits the watch and unwatch methods from Object

Examples The following code displays the type , description | suffixes , and
enabledPlugin properties for each MimeType object on a client:

document.writeln("<TABLE BORDER=1><TR VALIGN=TOP>",
"<TH ALIGN=left>i",
"<TH ALIGN=left>type",
"<TH ALIGN=left>description",
"<TH ALIGN=left>suffixes",
"<TH ALIGN=left>enabledPlugin.name</TR>")
for (=0 ; i < navigator.mimeTypes.length; i++) {
document.writeIn("<TR VALIGN=TOP><TD>",i,
"<TD>",navigator.mimeTypes]i].type,
"<TD>",navigator.mimeTypes]i].description,
"<TD>",navigator.mimeTypes]i].suffixes)
if (navigator.mimeTypes[i].enabledPlugin==null) {
document.writeln(
"<TD>None",
"</TR>")

} else {
document.writeln(
"<TD>",navigator.mimeTypes]i].enabledPlugin.name,
"</TR>")

}

}

document.writeln("</TABLE>")

The preceding example displays output similar to the following:

i type description suffixes enabledPlugin.name

0 audio/aiff AIFF aif, aiff LiveAudio

1 audio/wav WAV wav LiveAudio

2 audio/x-midi MIDI mid, midi LiveAudio

3 audio/midi MIDI mid, midi LiveAudio

4 video/msvideo Video for Windows avi NPAVI32 Dynamic
Link Library

5 * Netscape Default Plugin Netscape Default
Plugin

6 zz-application/zz-winassoc-TGZ TGZ None

Seealso navigator , navigator.mimeTypes , Plugin

Chapter |, Objects, Methods, and Properties 289

MimeType.description

description

A human-readable description of the data type described by the MIME type
object.

Property of MimeType

Read-only

Implemented in JavaScript 1.1

enabledPlugin

Description

The Plugin object for the plug-in that is configured for the specified MIME
type If the MIME type does not have a plug-in configured, enabledPlugin is
null.

Property of MimeType

Read-only

Implemented in JavaScript 1.1

Use the enabledPlugin property to determine which plug-in is configured for
a specific MIME type. Each plug-in may support multiple MIME types, and each
MIME type could potentially be supported by multiple plug-ins. However, only
one plug-in can be configured for a MIME type. (On Macintosh and Unix, the
user can configure the handler for each MIME type; on Windows, the handler is
determined at browser start-up time.)

The enabledPlugin property is a reference to a Plugin object that represents
the plug-in that is configured for the specified MIME type.

You might need to know which plug-in is configured for a MIME type, for
example, to dynamically emit an EMBEDag on the page if the user has a plug-
in configured for the MIME type.

290 Client-Side JavaScript Reference

Examples

MimeType.suffixes

The following example determines whether the Shockwave plug-in is installed.
If it is, a movie is displayed.

/I Can we display Shockwave movies?
mimetype = navigator.mimeTypes['application/x-director"]

if (mimetype) {

/I Yes, so can we display with a plug-in?
plugin = mimetype.enabledPlugin

if (plugin)

/I Yes, so show the data in-line
document.writeIn("Here\'s a movie: <EMBED SRC=mymovie.dir HEIGHT=100 WIDTH=100>")

else

/I No, so provide a link to the data
document.writeIn("Click here to see a movie.")

} else {

/I No, so tell them so
document.writeln("Sorry, can't show you this cool movie.")

suffixes

Description

A string listing possible file suffixes (also known as filename extensions) for the
MIME type.

Property of MimeType

Read-only

Implemented in JavaScript 1.1

The suffixes property is a string consisting of each valid suffix (typically three
letters long) separated by commas. For example, the suffixes for the "audio/
x-midi* MIME type are "mid, midi"

type

Property of

A string specifying the name of the MIME type. This string distinguishes the
MIME type from all others; for example "video/mpeg” or "audio/x-wav"
Property of MimeType

Read-only

Implemented in JavaScript 1.1

MimeType

Chapter |, Objects, Methods, and Properties 291

navigator

navigator

Contains information about the version of Navigator in use.

Client-side object

Implemented in

JavaScript 1.0

JavaScript 1.1: added mimeTypes and plugins properties; added
javaEnabled and taintEnabled methods.

JavaScript 1.2: added language and platform properties; added
preference and savePreferences methods.

Created by The JavaScript runtime engine on the client automatically creates the
navigator object.

Description Use the navigator

object to determine which version of the Navigator your

users have, what MIME types the user’s Navigator can handle, and what plug-
ins the user has installed. All of the properties of the navigator object are

read-only.

Property

Summary Property

Description

appCodeName
appName
appVersion
language
mimeTypes

platform

plugins

userAgent

Specifies the code name of the browser.

Specifies the name of the browser.

Specifies version information for the Navigator.
Indicates the translation of the Navigator being used.
An array of all MIME types supported by the client.

Indicates the machine type for which the Navigator was
compiled.

An array of all plug-ins currently installed on the client.

Specifies the user-agent header.

292 Client-Side JavaScript Reference

navigator.appCodeName

Method Summary

Method Description
javaEnabled Tests whether Java is enabled.
plugins.refresh Makes newly installed plug-ins available and optionally

reloads open documents that contain plug-ins.

preference Allows a signed script to get and set certain Navigator
preferences.

savePreferences Saves the Navigator preferences to the local file
prefs.js

taintEnabled Specifies whether data tainting is enabled.

In addition, this object inherits the watch and unwatch methods from
Object

appCodeName

A string specifying the code name of the browser.
Property of navigator

Read-only

Implemented in JavaScript 1.0

Examples The following example displays the value of the appCodeName property:

document.write("The value of navigator.appCodeName is " +
navigator.appCodeName)

For Navigator 2.0 and later, this displays the following:

The value of navigator.appCodeName is Mozilla

Chapter |, Objects, Methods, and Properties 293

navigator.appName

appName

A string specifying the name of the browser.
Property of navigator

Read-only

Implemented in JavaScript 1.0

Examples The following example displays the value of the appName property:

document.write("The value of navigator.appName is " +
navigator.appName)

For Navigator 2.0 and 3.0, this displays the following:

The value of navigator.appName is Netscape

appVersion

A string specifying version information for the Navigator.
Property of navigator

Read-only

Implemented in JavaScript 1.0

Description The appVersion property specifies version information in the following
format:

releaseNumber (platform ; country)
The values contained in this format are the following:

e releaseNumber is the version number of the Navigator. For example,
"2.0b4" specifies Navigator 2.0, beta 4.

e platform s the platform upon which the Navigator is running. For
example, "Winl16" specifies a 16-bit version of Windows such as Windows

3.1

e country is either "I" for the international release, or "U" for the domestic
U.S. release. The domestic release has a stronger encryption feature than
the international release.

294 Client-Side JavaScript Reference

Examples

Note

navigator.appVersion

Example 1. The following example displays version information for the
Navigator:

document.write("The value of navigator.appVersion is " +
navigator.appVersion)

For Navigator 2.0 on Windows 95, this displays the following:

The value of navigator.appVersion is 2.0 (Win95, I)

For Navigator 3.0 on Windows NT, this displays the following:

The value of navigator.appVersion is 3.0 (WinNT, I)

Example 2. The following example populates a Textarea object with newline
characters separating each line. Because the newline character varies from
platform to platform, the example tests the appVersion property to determine
whether the user is running Windows (appVersion contains "Win" for all
versions of Windows). If the user is running Windows, the newline character is
set to \r\n; otherwise, it’s set to \n, which is the newline character for Unix and
Macintosh.

This code is needed only for JavaScript 1.0. JavaScript versions 1.1 and later
check for all newline characters before setting a string-valued property and
translate them as needed for the user’s platform.

<SCRIPT>
var newline=null
function populate(textareaObject){
if (navigator.appVersion.lastindexOf('Win') = -1)
newline="\r\n"
else newline="\n"
textareaObject.value="line 1" + newline + "line 2" + newline
+ "line 3"
}
</SCRIPT>
<FORM NAME="form1">

<TEXTAREA NAME="testLines" ROWS=8 COLS=55></TEXTAREA>
<P><INPUT TYPE="button" VALUE="Populate the Textarea object"
onClick="populate(document.form1.testLines)">
</ITEXTAREA>
</[FORM>

Chapter |, Objects, Methods, and Properties 295

navigator.javaEnabled

javaEnabled

Syntax
Parameters

Description

Examples

See also

Tests whether Java is enabled.
Method of navigator

Static

Implemented in JavaScript 1.1

javaEnabled()
None.

javaEnabled returns true if Java is enabled; otherwise, false. The user can
enable or disable Java by through user preferences.

The following code executes functionl if Java is enabled; otherwise, it
executes function2

if (navigator.javaEnabled()) {
functionl()

}

else function2()

navigator.appCodeName | navigator.appName |
navigator.userAgent

language

Description

Indicates the translation of the Navigator being used.

Property of navigator
Read-only
Implemented in JavaScript 1.2

The value for language is usually a 2-letter code, such as "en" and occasionally
a five-character code to indicate a language subtype, such as "zh_CN".

Use this property to determine the language of the Navigator client software
being used. For example you might want to display translated text for the user.

296 Client-Side JavaScript Reference

navigator.mimeTypes

mimeTypes

See also

An array of all MIME types supported by the client.

Property of navigator
Read-only
Implemented in JavaScript 1.1

The mimeTypes array contains an entry for each MIME type supported by the
client (either internally, via helper applications, or by plug-ins). For example, if
a client supports three MIME types, these MIME types are reflected as
navigator.mimeTypes[0] , havigator.mimeTypes[1] , and
navigator.mimeTypes[2]

Each element of the mimeTypes array is a MimeType object.

To obtain the number of supported mime types, use the length property:
navigator.mimeTypes.length

MimeType

platform

Description

Indicates the machine type for which the Navigator was compiled.
Property of navigator
Read-only

Implemented in JavaScript 1.2

Platform values are Win32, Win16, Mac68k, MacPPC and various Unix.

The machine type the Navigator was compiled for may differ from the actual
machine type due to version differences, emulators, or other reasons.

If you use SmartUpdate to download software to a user’s machine, you can use
this property to ensure that the trigger downloads the appropriate JAR files. The
triggering page checks the Navigator version before checking the platform
property. For information on using SmartUpdate, see Using JAR Installation
Manager for SmartUpdate.

Chapter |, Objects, Methods, and Properties 297

navigator.plugins

plugins

An array of all plug-ins currently installed on the client.
Property of navigator

Read-only

Implemented in JavaScript 1.1

You can refer to the Plugin objects installed on the client by using this array.
Each element of the plugins array is a Plugin object. For example, if three
plug-ins are installed on the client, these plug-ins are reflected as
navigator.plugins[0] , havigator.plugins[1] , and

navigator.plugins[2]

To use the plugins array:

1. navigator.plugins[index]
2. navigator.plugins[index][mimeTypelndex]

index is an integer representing a plug-in installed on the client or a string
containing the name of a Plugin object (from the name property). The first
form returns the Plugin object stored at the specified location in the plugins
array. The second form returns the MimeType object at the specified index in
that Plugin object.

To obtain the number of plug-ins installed on the client, use the length
property: navigator.plugins.length

plugins.refresh. The plugins array has its own method, refresh . This
method makes newly installed plug-ins available, updates related arrays such as
the plugins array, and optionally reloads open documents that contain plug-
ins. You call this method with one of the following statements:

navigator.plugins.refresh(true)
navigator.plugins.refresh(false)

If you supply true, refresh refreshes the plugins array to make newly
installed plug-ins available and reloads all open documents that contain
embedded objects (EMBEDag). If you supply false, it refreshes the plugins
array, but does not reload open documents.

When the user installs a plug-in, that plug-in is not available until refresh is
called or the user closes and restarts Navigator.

298 Client-Side JavaScript Reference

Examples

navigator.preference

The following code refreshes arrays and reloads open documents containing
embedded objects:

navigator.plugins.refresh(true)

See also the examples for the Plugin object.

preference

Syntax

Parameters

Description

Allows a signed script to get and set certain Navigator preferences.
Method of navigator

Static

Implemented in JavaScript 1.2

preference(prefName [, setValue 1)

prefName A string representing the name of the preference you want to get or
set. Allowed preferences are listed below.

setValue The value you want to assign to the preference. This can be a
string, number, or Boolean.

This method returns the value of the preference. If you use the method to set
the value, it returns the new value.

With permission, you can get and set the preferences shown in the following
table.

Table 1.2 Preferences.

To do this... Set this preference... To this value...
Automatically load images general.always_load_images true or false
Enable Java security.enable_java true or false
Enable JavaScript javascript.enabled true or false
Enable style sheets browser.enable_style_sheets true or false
Enable SmartUpdate autoupdate.enabled true or false
Accept all cookies network.cookie.cookieBehavior 0

Chapter |, Objects, Methods, and Properties 299

navigator.savePreferences

Table 1.2 Preferences. (Continued)

To do this... Set this preference... To this value...

Accept only cookies that network.cookie.cookieBehavior 1
get sent back to the
originating server

Disable cookies network.cookie.cookieBehavior 2
Warn before accepting network.cookie.warnAboutCookies true or false
cookie

Security Reading a preference with the preference method requires the
UniversalPreferencesRead privilege. Setting a preference with this method
requires the UniversalPreferencesWrite privilege. For information on
security, see the Client-Side JavaScript Guide.

Seealso savePreferences
savePreferences
Saves the Navigator preferences to the local file prefs.js
Method of navigator
Static
Implemented in JavaScript 1.2

Security Saving user preferences requires the UniversalPreferencesWrite privilege.
For information on security, see the Client-Side JavaScript Guide.

Syntax SavePreferences()

Description

See also

This method immediately saves the current Navigator preferences to the user’s
prefs.js settings file. Navigator also saves preferences automatically when it
exits.

preference

300 Client-Side JavaScript Reference

navigator.taintEnabled

taintEnabled

Syntax

Description

Examples

See also

Specifies whether data tainting is enabled.
Method of navigator

Static

Implemented in JavaScript 1.1

JavaScript 1.2: removed

navigator.taintEnabled()

Tainting prevents other scripts from passing information that should be secure
and private, such as directory structures or user session history. JavaScript
cannot pass tainted values on to any server without the end user's permission.

Use taintEnabled to determine if data tainting is enabled. taintEnabled
returns true if data tainting is enabled, false otherwise. The user enables or
disables data tainting by using the environment variable NS_ENABLE_TAINT

The following code executes functionl if data tainting is enabled; otherwise it
executes function2.

if (navigator.taintEnabled()) {
functionl()
}

else function2()

taint | untaint

Chapter |, Objects, Methods, and Properties 301

navigator.userAgent

userAgent

A string representing the value of the user-agent header sent in the HTTP
protocol from client to server.
Property of navigator

Read-only

Implemented in JavaScript 1.0

Description Servers use the value sent in the user-agent header to identify the client.

Examples The following example displays userAgent information for the Navigator:

document.write("The value of navigator.userAgent is " +
navigator.userAgent)

For Navigator 2.0, this displays the following:

The value of navigator.userAgent is Mozilla/2.0 (Winl6; I)

302 Client-Side JavaScript Reference

netscape

Created by
Description

See also

netscape

A top-level object used to access any Java class in the package netscape.*
Core object

Implemented in JavaScript 1.1, NES 2.0
The netscape object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

The netscape object is a convenience synonym for the property
Packages.netscape

Packages , Packages.netscape

Chapter |, Objects, Methods, and Properties 303

Number

Number

Created by

Parameters

Description

Lets you work with numeric values. The Number object is an object wrapper for
primitive numeric values.
Core object

Implemented in JavaScript 1.1, NES 2.0
JavaScript 1.2: modified behavior of Number constructor
JavaScript 1.3: added toSource method

ECMA version ECMA-262

The Number constructor:

new Number(value)

value The numeric value of the object being created.

The primary uses for the Number object are:

e To access its constant properties, which represent the largest and smallest
representable numbers, positive and negative infinity, and the Not-a-
Number value.

e To create numeric objects that you can add properties to. Most likely, you
will rarely need to create a Number object.

The properties of Number are properties of the class itself, not of individual
Number objects.

JavaScript 1.2: Number(x) now produces NaNrather than an error if x is a string
that does not contain a well-formed numeric literal. For example,

x=Number("three");

document.write(x + "
");
prints NaN

You can convert any object to a number using the top-level Number function.

304 Client-Side JavaScript Reference

Property
Summary

Method Summary

Examples

Number

Property Description

constructor Specifies the function that creates an object’s prototype.

MAX_VALUE The largest representable number.

MIN_VALUE The smallest representable number.

NaN Special “not a number” value.

NEGATIVE_INFINITY Special value representing negative infinity; returned on
overflow.

POSITIVE_INFINITY Special value representing infinity; returned on overflow.

prototype Allows the addition of properties to a Number object.

Method Description

toSource Returns an object literal representing the specified Number object;

you can use this value to create a new object. Overrides the

Object.toSource method.

toString Returns a string representing the specified object. Overrides the
Object.toString method.
valueOf Returns the primitive value of the specified object. Overrides the

Object.valueOf method.

In addition, this object inherits the watch and unwatch methods from

Object

Example 1. The following example uses the Number object’s properties to

assign values to several numeric variables:

biggestNum = Number.MAX_VALUE
smallestNum = Number.MIN_VALUE
infiniteNum = Number.POSITIVE_INFINITY
neglinfiniteNum = Number.NEGATIVE_INFINITY
notANum = Number.NaN

Chapter |, Objects, Methods, and Properties 305

Number.constructor

Example 2. The following example creates a Number object, myNum then adds
a description property to all Number objects. Then a value is assigned to the
myNumobiject’s description property.

myNum = new Number(65)

Number.prototype.description=null
myNum.description="wind speed"

constructor

Description

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of Number

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

See Object.constructor

MAX_VALUE

Description

Examples

The maximum numeric value representable in JavaScript.
Property of Number

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

The MAX_VALUBproperty has a value of approximately 1.79E+308. Values larger
than MAX_VALUEre represented as "Infinity"

Because MAX_VALUEs a static property of Number, you always use it as
Number.MAX_VALUE rather than as a property of a Number object you created.

The following code multiplies two numeric values. If the result is less than or
equal to MAX_VALUEthe funcl function is called; otherwise, the func2
function is called.

if (numl * num2 <= Number.MAX_VALUE)
funcl1()

else
func2()

306 Client-Side JavaScript Reference

Number.MIN_VALUE

MIN_VALUE

Description

Examples

The smallest positive numeric value representable in JavaScript.
Property of Number

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

The MIN_VALUE property is the number closest to 0, not the most negative
number, that JavaScript can represent.

MIN_VALUEhas a value of approximately 5e-324. Values smaller than
MIN_VALUE (“underflow values”) are converted to 0.

Because MIN_VALUE s a static property of Number, you always use it as
Number.MIN_VALUE, rather than as a property of a Number object you created.

The following code divides two numeric values. If the result is greater than or
equal to MIN_VALUE the funcl function is called; otherwise, the func2
function is called.

if (numl / num2 >= Number.MIN_VALUE)
funcl1()

else
func2()

NaN

A special value representing Not-A-Number. This value is represented as the
unquoted literal NaN.
Property of Number

Read-only
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262

Chapter |, Objects, Methods, and Properties 307

Number.NEGATIVE_INFINITY

Description JavaScript prints the value Number.NaN as NaN

NaNis always unequal to any other number, including NaN itself; you cannot
check for the not-a-number value by comparing to Number.NaN . Use the
isNaN function instead.

You might use the NaN property to indicate an error condition for a function
that should return a valid number.

Examples In the following example, if month has a value greater than 12, it is assigned
NaN, and a message is displayed indicating valid values.

var month = 13
if (mont h < 1| month > 12) {
month = Number.NaN
alert("Month must be between 1 and 12.")

}

Seealso NaN isNaN , parseFloat |, parselnt

NEGATIVE_INFINITY

A special numeric value representing negative infinity. This value is represented
as the unquoted literal "-Infinity"

Property of Number

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Description This value behaves slightly differently than mathematical infinity:

e Any positive value, including POSITIVE_INFINITY | multiplied by
NEGATIVE_INFINITY is NEGATIVE_INFINITY .

e Any negative value, including NEGATIVE_INFINITY | multiplied by
NEGATIVE_INFINITY is POSITIVE_INFINITY

e Zero multiplied by NEGATIVE_INFINITY is NaN
e NaNmultiplied by NEGATIVE_INFINITY is NaN

e NEGATIVE_INFINITY , divided by any negative value except
NEGATIVE_INFINITY | is POSITIVE_INFINITY

e NEGATIVE_INFINITY , divided by any positive value except
POSITIVE_INFINITY | is NEGATIVE_INFINITY .

308 Client-Side JavaScript Reference

Examples

See also

Number.POSITIVE_INFINITY

e NEGATIVE_INFINITY , divided by either NEGATIVE_INFINITY or
POSITIVE_INFINITY | is NaN

e Any number divided by NEGATIVE_INFINITY is Zero.

Because NEGATIVE_INFINITY is a static property of Number, you always use it
as Number.NEGATIVE_INFINITY | rather than as a property of a Number object
you created.

In the following example, the variable smallNumber is assigned a value that is
smaller than the minimum value. When the if statement executes,
smallNumber has the value "-Infinity" , so the funcl function is called.

var smallNumber = -Number.MAX_VALUE*10

if (smallNumber == Number.NEGATIVE_INFINITY)
funcl()

else
func2()

Infinity , isFinite

POSITIVE_INFINITY

Description

A special numeric value representing infinity. This value is represented as the
unquoted literal "Infinity"

Property of Number

Static, Read-only

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

This value behaves slightly differently than mathematical infinity:

e Any positive value, including POSITIVE_INFINITY | multiplied by
POSITIVE_INFINITY is POSITIVE_INFINITY

e Any negative value, including NEGATIVE_INFINITY |, multiplied by
POSITIVE_INFINITY is NEGATIVE_INFINITY .

e Zero multiplied by POSITIVE_INFINITY is NaN
e NaNmultiplied by POSITIVE_INFINITY is NaN

e POSITIVE_INFINITY | divided by any negative value except
NEGATIVE_INFINITY | is NEGATIVE_INFINITY .

e POSITIVE_INFINITY | divided by any positive value except
POSITIVE_INFINITY | is POSITIVE_INFINITY

Chapter |, Objects, Methods, and Properties 309

Number.prototype

e POSITIVE_INFINITY | divided by either NEGATIVE_INFINITY or
POSITIVE_INFINITY | is NaN
e Any number divided by POSITIVE_INFINITY is Zero.

Because POSITIVE_INFINITY s a static property of Number, you always use it
as Number.POSITIVE_INFINITY | rather than as a property of a Number object
you created.

Examples In the following example, the variable bigNumber is assigned a value that is
larger than the maximum value. When the if statement executes, bigNumber
has the value "Infinity" , so the funcl function is called.
var bigNumber = Number.MAX_VALUE * 10
if (bigNumber == Number.POSITIVE_INFINITY)

funcl()
else
func2()
See also Infinity , isFinite
prototype
Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype
Property of Number
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262
toSource
Returns a string representing the source code of the object.
Method of Number
Implemented in JavaScript 1.3
Syntax toSource()
Parameters None

310 Client-Side JavaScript Reference

Description

Number.toString

The toSource method returns the following values:

e For the built-in Number object, toSource returns the following string
indicating that the source code is not available:

function Number() {
[native code]
}
e For instances of Number, toSource returns a string representing the
source code.

This method is usually called internally by JavaScript and not explicitly in code.

Seealso Object.toSource
toString
Returns a string representing the specified Number object.
Method of Number
Implemented in JavaScript 1.1
ECMA version ECMA-262
Syntax toString()
toString([radix)
Parameters

Description

radix An integer between 2 and 36 specifying the base to use for representing
numeric values.

The Number object overrides the toString method of the Object object; it
does not inherit Object.toString . For Number objects, the toString
method returns a string representation of the object.

JavaScript calls the toString method automatically when a number is to be
represented as a text value or when a number is referred to in a string
concatenation.

For Number objects and values, the built-in toString method returns the string
representing the value of the number.

Chapter |, Objects, Methods, and Properties 311

Number.valueOf

You can use toString on numeric values, but not on numeric literals:

/I The next two lines are valid
var howMany=10

alert("howMany.toString() i s " + howMany.toString())
/I The next line causes an error

alert("45.toString() i s " + 45.toString())
valueOf

Returns the primitive value of a Number object.

Method of Number
Implemented in JavaScript 1.1
ECMA version ECMA-262

Syntax valueOf()
Parameters None

Description The valueOf method of Number returns the primitive value of a Number
object as a number data type.

This method is usually called internally by JavaScript and not explicitly in code.

Examples x = new Number();
alert(x.valueOf()) /ldisplays 0

See also Object.valueOf

312 Client-Side JavaScript Reference

Object

Created by

Parameters

Property
Summary

Method Summary

Object

Object is the primitive JavaScript object type. All JavaScript objects are
descended from Object . That is, all JavaScript objects have the methods
defined for Object

Core object

Implemented in JavaScript 1.0: toString method

JavaScript 1.1, NES 2.0: added eval and valueOf methods;
constructor property

JavaScript 1.2: deprecated eval method

JavaScript 1.3: added toSource method

ECMA version ECMA-262

The Object constructor:

new Object()

None

Property Description

constructor Specifies the function that creates an object’s prototype.

prototype Allows the addition of properties to all objects.

Method Description

eval Deprecated. Evaluates a string of JavaScript code in the context of
the specified object.

toSource Returns an object literal representing the specified object; you can
use this value to create a new object.

toString Returns a string representing the specified object.

unwatch Removes a watchpoint from a property of the object.

valueOf Returns the primitive value of the specified object.

watch Adds a watchpoint to a property of the object.

Chapter |, Objects, Methods, and Properties 313

Object.constructor

constructor

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of Object

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

Description All objects inherit a constructor property from their prototype

0 = new Object // o ro={in JavaScript 1.2
o.constructor == Object

a=new Array [/l o ra=1]in JavaScript 1.2
a.constructor == Array

n = new Number(3)

n.constructor == Number

Even though you cannot construct most HTML objects, you can do
comparisons. For example,

document.constructor == Document
document.form3.constructor == Form

Examples The following example creates a prototype, Tree , and an object of that type,
theTree . The example then displays the constructor property for the object
theTree

function Tree(name) {
this.name=name

}

theTree = new Tree("Redwood")

document.writeln("theTree.constructor is " +
theTree.constructor + "<P>")

This example displays the following output:

theTree.constructor is function Tree(name) { this.name = name; }

314 Client-Side JavaScript Reference

Object.eval

eval

Syntax

Parameters

Description

Backward
Compatibility

See also

Deprecated. Evaluates a string of JavaScript code in the context of an object.
Method of Object

Implemented in JavaScript 1.1, NES 2.0

JavaScript 1.2, NES 3.0: deprecated as method of objects; retained as
top-level function

eval(string)

string Any string representing a JavaScript expression, statement, or
sequence of statements. The expression can include variables and
properties of existing objects.

eval as a method of Object and every object derived from Object is
deprecated. Use the top-level eval function.

JavaScript 1.1. eval is a method of Object and every object derived from
Object.

eval

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For more information, see
Function.prototype

Property of Object

Implemented in JavaScript 1.1

ECMA version ECMA-262

Chapter |, Objects, Methods, and Properties 315

Object.toSource

toSource

Syntax
Parameters

Description

Examples

See also

Returns a string representing the source code of the object.

Method of Object
Implemented in JavaScript 1.3
toSource()

None

The toSource method returns the following values:

e For the built-in Object object, toSource returns the following string
indicating that the source code is not available:

function Object() {
[native code]

}

e For instances of Object , toSource returns a string representing the
source code.

e For custom objects, toSource returns the JavaScript source that defines
the object as a string.

This method is usually called internally by JavaScript and not explicitly in code.
You can call toSource while debugging to examine the contents of an object.

The following code defines the Dog object type and creates theDog, an object
of type Dog:

function Dog(name,breed,color,sex) {
this.name=name
this.breed=breed
this.color=color
this.sex=sex

}
theDog = new Dog("Gabby","Lab","chocolate","qgirl")

Calling the toSource method of theDog displays the JavaScript source that
defines the object:

theDog.toSource()
llreturns "{name:"Gabby", breed:"Lab", color:"chocolate", sex:"girl"}

Object.toString

316 Client-Side JavaScript Reference

Object.toString

Syntax

Security

Description

toString

Returns a string representing the specified object.
Method of Object

Implemented in JavaScript 1.0

ECMA version ECMA-262

toString()

JavaScript 1.1: This method is tainted by default for the following objects:
Button , Checkbox , FileUpload , Hidden , History , Link , Location
Password , Radio , Reset , Select , Submit |, Text , and Textarea . For
information on data tainting, see the Client-Side JavaScript Guide.

Every object has a toString method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation. For example, the following examples require theDog to be
represented as a string:

document.write(theDog)
document.write("The dog i s " + theDog)

By default, the toString method is inherited by every object descended from
Object . You can override this method for custom objects that you create. If
you do not override toString in a custom object, toString returns

[object type], where type is the object type or the name of the constructor
function that created the object.

For example:

var o = new Obiject()
o.toString // returns [object Object]

Built-in toString methods. Every built-in core JavaScript object overrides the
toString method of Object to return an appropriate value. JavaScript calls
this method whenever it needs to convert an object to a string.

Some built-in client-side and server-side JavaScript objects do not override the
toString method of Object. For example, for an Image object named sealife
defined as shown below, sealife.toString() returns [object Image]

Chapter |, Objects, Methods, and Properties 317

Object.toString

Overriding the default toString method. You can create a function to be
called in place of the default toString method. The toString method takes
no arguments and should return a string. The toString method you create can
be any value you want, but it will be most useful if it carries information about
the object.

The following code defines the Dog object type and creates theDog, an object
of type Dog:
function Dog(name,breed,color,sex) {

this.name=name

this.breed=breed

this.color=color
this.sex=sex

}
theDog = new Dog("Gabby","Lab","chocolate”,"qgirl")

If you call the toString method on this custom object, it returns the default
value inherited from Object

theDog.toString() //returns [object Object]

The following code creates dogToString, the function that will be used to

override the default toString method. This function generates a string
containing each property, of the form "property = value;"

function dogToString() {

var ret = "Dog " + this.nam e+ "is [\n"
for (var prop in this)
ret += " " + prop + " is " + this[prop] + "\n"

return ret + "]"

}

The following code assigns the user-defined function to the object’s toString
method:

Dog.prototype.toString = dogToString

With the preceding code in place, any time theDog is used in a string context,
JavaScript automatically calls the dogToString function, which returns the
following string:

Dog Gabby is [
name is Gabby;
breed is Lab;
color is chocolate;
sex is girl;

318 Client-Side JavaScript Reference

Backward
Compatibility

Examples

Object.toString

An object’s toString method is usually invoked by JavaScript, but you can
invoke it yourself as follows:

var dogString = theDog.toString()

JavaScript 1.2. The behavior of the toString method depends on whether
you specify LANGUAGE="JavaScriptl.2" in the <SCRIPT> tag:

e If you specify LANGUAGE="JavaScript1.2" in the <SCRIPT> tag, the
toString method returns an object literal.

e If you do not specify LANGUAGE="JavaScript1.2" in the <SCRIPT>
tag, the toString method returns [object type], as with other
JavaScript versions.

Example 1: The location object. The following example prints the string
equivalent of the current location.

document.write("location.toString() is " + location.toString() + "
")

The output is as follows:

location.toString() is file:///C|/TEMP/myprog.html

Example 2: Object with no string value. Assume you have an Image object
named sealife defined as follows:

Because the Image object itself has no special toString method,
sealife.toString() returns the following:

[object Image]

Example 3: The radix parameter. The following example prints the string
equivalents of the numbers 0 through 9 in decimal and binary.

for (x = 0; x < 10; x++) {
document.write("Decimal: ", x.toString(10), " Binary: "
x.toString(2), "
")

Chapter |, Objects, Methods, and Properties 319

Object.unwatch

The preceding example produces the following output:

Decimal: 0 Binary: 0
Decimal: 1 Binary: 1
Decimal: 2 Binary: 10
Decimal: 3 Binary: 11
Decimal: 4 Binary: 100
Decimal: 5 Binary: 101
Decimal: 6 Binary: 110
Decimal: 7 Binary: 111
Decimal: 8 Binary: 1000
Decimal: 9 Binary: 1001
See also Object.toSource , Object.valueOf
unwatch
Removes a watchpoint set with the watch method.
Method of Object
Implemented in JavaScript 1.2, NES 3.0
Syntax unwatch(prop)
Parameters

Description

Example

prop The name of a property of the object.

The JavaScript debugger has functionality similar to that provided by this
method, as well as other debugging options. For information on the debugger,
see Getting Started with Netscape JavaScript Debugger.

By default, this method is inherited by every object descended from Object

See watch .

320 Client-Side JavaScript Reference

Object.valueOf

valueOf

Syntax
Parameters

Description

Returns the primitive value of the specified object.

Method of Object
Implemented in JavaScript 1.1
ECMA version ECMA-262
valueOf()

None

JavaScript calls the valueOf method to convert an object to a primitive value.
You rarely need to invoke the valueOf method yourself; JavaScript
automatically invokes it when encountering an object where a primitive value is
expected.

By default, the valueOf method is inherited by every object descended from
Object . Every built-in core object overrides this method to return an
appropriate value. If an object has no primitive value, valueOf returns the
object itself, which is displayed as:

[object Object]

You can use valueOf within your own code to convert a built-in object into a
primitive value. When you create a custom object, you can override
Object.valueOf to call a custom method instead of the default Object
method.

Overriding valueOf for custom objects. You can create a function to be
called in place of the default valueOf method. Your function must take no
arguments.

Suppose you have an object type myNumberType and you want to create a
valueOf method for it. The following code assigns a user-defined function to
the object’s valueOf method:

myNumberType.prototype.valueOf = new Function(functionText)

With the preceding code in place, any time an object of type myNumberType is
used in a context where it is to be represented as a primitive value, JavaScript
automatically calls the function defined in the preceding code.

Chapter |, Objects, Methods, and Properties 321

Object.watch

Note

See also

An object’s valueOf method is usually invoked by JavaScript, but you can
invoke it yourself as follows:

myNumber.valueOf()

Objects in string contexts convert via the toString method, which is different
from String objects converting to string primitives using valueOf . All string
objects have a string conversion, if only "[object type 1" . But many objects
do not convert to number, boolean, or function.

parselnt , Object.toString

watch

Syntax

Parameters

Description

Watches for a property to be assigned a value and runs a function when that
occurs.
Method of Object

Implemented in JavaScript 1.2, NES 3.0

watch(prop, handler)

prop The name of a property of the object.
handler A function to call.

Watches for assignment to a property named prop in this object, calling
handler(prop, oldval, newval) whenever prop is set and storing the
return value in that property. A watchpoint can filter (or nullify) the value
assignment, by returning a modified newval (or oldval).

If you delete a property for which a watchpoint has been set, that watchpoint
does not disappear. If you later recreate the property, the watchpoint is still in
effect.

To remove a watchpoint, use the unwatch method. By default, the watch
method is inherited by every object descended from Object

The JavaScript debugger has functionality similar to that provided by this
method, as well as other debugging options. For information on the debugger,
see Getting Started with Netscape JavaScript Debugger.

322 Client-Side JavaScript Reference

Example

<script language="JavaScriptl.2">
o = {p:1}
o.watch("p",
function (id,oldval,newval) {
document.writeln("o." + i
+ oldva | + " to " +
return newval

b
op =2
op =3
delete o.p
op =4

o.unwatch('p')
op =5

</script>

d+ "

newval)

This script displays the following:

0.p changed from 1 to 2
0.p changed from 2 to 3
0.p changed from 3 to 4

Object.watch

changed from "

Chapter |, Objects, Methods, and Properties 323

Option

Option

An option in a selection list.
Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added defaultSelected property; text property
can be changed to change the text of an option

Created by The Option constructor or the HTML OPTIONtag. To create an Option object
with its constructor:

new Option([text [, value [, defaultSelected [, selected 1))

Once you've created an Option object, you can add it to a selection list using

the Select.options array.
Parameters
text Specifies the text to display in the select list.
value Specifies a value that is returned to the server when the option is
selected and the form is submitted.
defaultSelected Specifies whether the option is initially selected (true or false).
selected Specifies the current selection state of the option (true or false).
Property
Summary Property Description
defaultSelected Specifies the initial selection state of the option
index The zero-based index of an element in the
Select.options array.
length The number of elements in the Select.options array.
selected Specifies the current selection state of the option
text Specifies the text for the option
value Specifies the value that is returned to the server when the

option is selected and the form is submitted

Method Summary This object inherits the watch and unwatch methods from Object

324 Client-Side JavaScript Reference

Description

Option

Usually you work with Option objects in the context of a selection list (a
Select object). When JavaScript creates a Select object for each SELECTtag
in the document, it creates Option objects for the OPTIONtags inside the
SELECTtag and puts those objects in the options array of the Select object.

In addition, you can create new options using the Option constructor and add
those to a selection list. After you create an option and add it to the Select
object, you must refresh the document by using history.go(0) . This
statement must be last. When the document reloads, variables are lost if not
saved in cookies or form element values.

You can use the Option.selected and Select.selectedindex
properties to change the selection state of an option.

e The Select.selectedindex property is an integer specifying the index
of the selected option. This is most useful for Select objects that are
created without the MULTIPLE attribute. The following statement sets a
Select object’s selectedindex property:

document.myForm.musicTypes.selectedindex = i

e The Option.selected property is a Boolean value specifying the current
selection state of the option in a Select object. If an option is selected, its
selected property is true; otherwise it is false. This is more useful for
Select objects that are created with the MULTIPLE attribute. The following
statement sets an option’s selected property to true:

document.myForm.musicTypes.options[i].selected = true
To change an option’s text, use is Option.text property. For example,

suppose a form has the following Select object:

<SELECT name="userChoice">
<OPTION>Choice 1
<OPTION>Choice 2
<OPTION>Choice 3
</SELECT>

You can set the text of the i * item in the selection based on text entered in a
text field named whatsNew as follows:

myform.userChoice.options[i].text = myform.whatsNew.value

You do not need to reload or refresh after changing an option’s text.

Chapter |, Objects, Methods, and Properties 325

Option

Examples The following example creates two Select objects, one with and one without
the MULTIPLE attribute. No options are initially defined for either object. When
the user clicks a button associated with the Select object, the populate
function creates four options for the Select object and selects the first option.

<SCRIPT>
function populate(inForm) {
colorArray = new Array("Red", "Blue", "Yellow", "Green")

var option0 = new Option("Red", “color_red")
var optionl = new Option("Blue", "color_blue")
var option2 = new Option("Yellow", "color_yellow")
var option3 = new Option("Green", "color_green")

for (var i=0; i < 4; i++) {
eval("inForm.selectTest.options[i]=option" + i)
if (i==0) {
inForm.selectTest.options[i].selected=true
}
}

history.go(0)

</SCRIPT>

<H3>Select Option() constructor</H3>

<FORM>

<SELECT NAME="selectTest"></SELECT><P>

<INPUT TYPE="button" VALUE="Populate Select List" onClick="populate(this.form)">
<pP>

</[FORM>

<HR>

<H3>Select-Multiple Option() constructor</H3>

<FORM>

<SELECT NAME="selectTest" multiple></SELECT><P>

<INPUT TYPE="button" VALUE="Populate Select List" onClick="populate(this.form)">
</[FORM>

326 Client-Side JavaScript Reference

Option.defaultSelected

defaultSelected

A Boolean value indicating the default selection state of an option in a selection
list.
Property of Option

Implemented in JavaScript 1.1

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description If an option is selected by default, the value of the defaultSelected property
is true; otherwise, it is false. defaultSelected initially reflects whether the
SELECTEDattribute is used within an OPTIONtag; however, setting
defaultSelected overrides the SELECTEDattribute.

You can set the defaultSelected property at any time. The display of the
corresponding Select object does not update when you set the
defaultSelected property of an option, only when you set the
Option.selected or Select.selectedIndex properties.

A Select object created without the MULTIPLE attribute can have only one
option selected by default. When you set defaultSelected in such an object,
any previous default selections, including defaults set with the SELECTED
attribute, are cleared. If you set defaultSelected in a Select object created
with the MULTIPLE attribute, previous default selections are not affected.

Examples In the following example, the restoreDefault function returns the
musicType Select object to its default state. The for loop uses the options
array to evaluate every option in the Select object. The if statement sets the

selected property if defaultSelected is true.
function restoreDefault() {
for (var i = 0; i < document.musicForm.musicType.length; i++) {
if (document.musicForm.musicType.options[i].defaultSelected == true) {

document.musicForm.musicType.options[i].selected=true

}

Chapter |, Objects, Methods, and Properties 327

Option.index

See also

The previous example assumes that the Select object is similar to the
following:

<SELECT NAME="musicType">
<OPTION SELECTED> R&B
<OPTION> Jazz
<OPTION> Blues
<OPTION> New Age

Description

Examples

</SELECT>

Option.selected , Select.selectedIndex

index

The zero-based index of an element in the Select.options array.
Property of Option

Implemented in JavaScript 1.0

The index property specifies the position of an element in the
Select.options array, starting with 0.

In the following example, the getChoice function returns the value of the
index property for the selected option. The for loop evaluates every option in
the musicType Select object. The if statement finds the option that is
selected.

function getChoice() {

for (var i = 0; i < document.musicForm.musicType.length; i++) {
if (document.musicForm.musicType.options][i].selected == true) {
return document.musicForm.musicType.options[i].index
}
}
return null

}

The previous example assumes that the Select object is similar to the
following:

<SELECT NAME="musicType">
<OPTION SELECTED> R&B
<OPTION> Jazz
<OPTION> Blues
<OPTION> New Age
</SELECT>

328 Client-Side JavaScript Reference

Option.length

Note that you can also determine the index of the selected option in this
example by using document.musicForm.musicType.selectedIindex.

Description

Examples

length

The number of elements in the Select.options array.
Property of Option

Read-only

Implemented in JavaScript 1.0

This value of this property is the same as the value of Select.length

See Option.index for an example of the length property.

selected

Security

Description

Examples

See also

A Boolean value indicating whether an option in a Select object is selected.
Property of Option

Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

If an option in a Select object is selected, the value of its selected property
is true; otherwise, it is false. You can set the selected property at any time.
The display of the associated Select object updates immediately when you
set the selected property for one of its options.

In general, the Option.selected property is more useful than the
Select.selectedIndex property for Select objects that are created with
the MULTIPLE attribute. With the Option.selected property, you can
evaluate every option in the Select.options array to determine multiple
selections, and you can select individual options without clearing the selection
of other options.

See the examples for defaultSelected

Option.defaultSelected , Select.selectedIndex

Chapter |, Objects, Methods, and Properties 329

Option.text

text

Security

Description

Examples

A string specifying the text of an option in a selection list.
Property of Option

Implemented in JavaScript 1.0

JavaScript 1.1: The text property can be changed to updated the
selection option. In previous releases, you could set the text
property but the new value was not reflected in the Select object.

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

The text property initially reflects the text that follows an OPTIONtag of a
SELECTtag. You can set the text property at any time and the text displayed
by the option in the selection list changes.

Example 1. In the following example, the getChoice function returns the
value of the text property for the selected option. The for loop evaluates
every option in the musicType Select object. The if statement finds the
option that is selected.

function getChoice() {

for (var i = 0; i < document.musicForm.musicType.length; i++) {
if (document.musicForm.musicType.options[i].selected == true) {
return document.musicForm.musicType.options[i].text
}
}
return null

}

The previous example assumes that the Select object is similar to the
following:

<SELECT NAME="musicType">
<OPTION SELECTED> R&B
<OPTION> Jazz
<OPTION> Blues
<OPTION> New Age
</SELECT>

330 Client-Side JavaScript Reference

Option.text

Example 2. In the following form, the user can enter some text in the first text
field and then enter a number between 0 and 2 (inclusive) in the second text
field. When the user clicks the button, the text is substituted for the indicated
option number and that option is selected.

i Netscape - [ﬁIe:.-'.-'.-'C|.-'DATA.-'CLIENT.-'...APHICS.-'SOUIH o

crace 1 [3

Mew text for the option: | |

Crption to change (0, 1, or 22 | |
| Change Selection I

The code for this example looks as follows:

<SCRIPT>
function updateList(theForm, i) {
theForm.userChoice.options[i].text = theForm.whatsNew.value
theForm.userChoice.optionsJi].selected = true
}
</SCRIPT>
<FORM>
<SELECT name="userChoice">
<OPTION>Choice 1
<OPTION>Choice 2
<OPTION>Choice 3
</SELECT>

New text for the option: <INPUT TYPE="text® NAME="whatsNew">

Option to change (0, 1, or 2): <INPUT TYPE="text" NAME="idx">

<INPUT TYPE="button" VALUE="Change Selection"
onClick="updateList(this.form, this.form.idx.value)">
</FORM>

Chapter |, Objects, Methods, and Properties 331

Option.value

value

A string that reflects the VALUEattribute of the option.
Property of Option
Read-only

Implemented in JavaScript 1.0

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description When a VALUEattribute is specified in HTML, the value property is a string that
reflects it. When a VALUEattribute is not specified in HTML, the value property
is the empty string. The value property is not displayed on the screen but is
returned to the server if the option is selected.

Do not confuse the property with the selection state of the option or the text
that is displayed next to it. The selected property determines the selection
state of the object, and the defaultSelected property determines the
default selection state. The text that is displayed is specified following the
OPTIONtag and corresponds to the text property.

332 Client-Side JavaScript Reference

Packages

Created by

Description

Property
Summary

Packages

A top-level object used to access Java classes from within JavaScript code.
Core object

Implemented in JavaScript 1.1, NES 2.0

The Packages object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

The Packages object lets you access the public methods and fields of an
arbitrary Java class from within JavaScript. The java , netscape , and sun
properties represent the packages java.*; netscape.*, and sun.* respectively. Use
standard Java dot notation to access the classes, methods, and fields in these
packages. For example, you can access a constructor of the Frame class as
follows:

var theFrame = new Packages.java.awt.Frame();

For convenience, JavaScript provides the top-level netscape , sun, and java
objects that are synonyms for the Packages properties with the same names.
Consequently, you can access Java classes in these packages without the
Packages keyword, as follows:

var theFrame = new java.awt.Frame();
The className property represents the fully qualified path name of any other

Java class that is available to JavaScript. You must use the Packages object to
access classes outside the netscape , sun, and java packages.

Property Description

className The fully qualified name of a Java class in a package other than
netscape, java, or sun that is available to JavaScript.

java Any class in the Java package java.*.
netscape Any class in the Java package netscape.*.
sun Any class in the Java package sun.*.

Chapter |, Objects, Methods, and Properties 333

Packages.className

Examples The following JavaScript function creates a Java dialog box:

function createWindow() {
var theOwner = new Packages.java.awt.Frame();
var theWindow = new Packages.java.awt.Dialog(theOwner);
theWindow.setSize(350,200);
theWindow.setTitle("Hello, World");
theWindow.setVisible(true);

}

In the previous example, the function instantiates theWindow as a new
Packages object. The setSize |, setTitle | and setVisible methods are
all available to JavaScript as public methods of java.awt.Dialog

className

The fully qualified name of a Java class in a package other than netscape
java , or sun that is available to JavaScript.
Property of Packages

Implemented in JavaScript 1.1, NES 2.0
Syntax Packages. className
where classname is the fully qualified name of a Java class.

Description You must use the className property of the Packages object to access
classes outside the netscape , sun, and java packages.

Examples The following code accesses the constructor of the CorbaObject class in the
myCompany package from JavaScript:

var theObject = new Packages.myCompany.CorbaObject()

In the previous example, the value of the className property is
myCompany.CorbaObject, the fully qualified path name of the
CorbaObject class.

334 Client-Side JavaScript Reference

Packages.java

java

Syntax

Description

Examples

Any class in the Java package java.*
Property of Packages
Implemented in JavaScript 1.1, NES 2.0

Packages.java

Use the java property to access any class in the java package from within
JavaScript. Note that the top-level object java is a synonym for
Packages.java

The following code accesses the constructor of the java.awt.Frame class:

var theOwner = new Packages.java.awt.Frame();

You can simplify this code by using the top-level java object to access the
constructor as follows:

var theOwner = new java.awt.Frame();

netscape

Syntax

Description

Examples

Any class in the Java package netscape.*
Property of Packages
Implemented in JavaScript 1.1, NES 2.0

Packages.netscape

Use the netscape property to access any class in the netscape package
from within JavaScript. Note that the top-level object netscape is a synonym
for Packages.netscape

See the example for .Packages.java

Chapter |, Objects, Methods, and Properties 335

Packages.sun

sun

Any class in the Java package sun.*
Property of Packages
Implemented in JavaScript 1.1, NES 2.0

Syntax Packages.sun

Description Use the Sun property to access any class in the sun package from within
JavaScript. Note that the top-level object sun is a synonym for

Packages.sun

Examples See the example for .Packages.java

336 Client-Side JavaScript Reference

Password

Password

Created by

Event handlers

Description

Security

A text field on an HTML form that conceals its value by displaying asterisks (*).
When the user enters text into the field, asterisks (*) hide entries from view.
Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added type property; added onBlur and onFocus
event handlers

JavaScript 1.2: added handleEvent method.

The HTML INPUT tag, with "password" as the value of the TYPE attribute. For
a given form, the JavaScript runtime engine creates appropriate Password
objects and puts these objects in the elements array of the corresponding
Form object. You access a Password object by indexing this array. You can
index the array either by number or, if supplied, by using the value of the NAME
attribute.

e onBlur
e onFocus

A Password object on a form looks as follows:

i Metscape - [Login] [| ¥
User name: |kkelley

Pas N PT—— Fassword object

‘ Log in | | Cancel ‘

A Password object is a form element and must be defined within a FORMag.

JavaScript versions 1.2 and later. The value property is returned in plain
text and has no security associated with it. Take care when using this property,
and avoid storing its value in a cookie.

Chapter |, Objects, Methods, and Properties 337

Password

JavaScript 1.1. If a user interactively modifies the value in a password field,
you cannot evaluate it accurately unless data tainting is enabled. For
information on data tainting, see the Client-Side JavaScript Guide.

Property
Summary Property Description
defaultvalue Reflects the VALUEattribute.
form Specifies the form containing the Password object.
name Reflects the NAMEattribute.
type Reflects the TYPE attribute.
value Reflects the current value of the Password object’s field.
Method Summary
Method Description
blur Removes focus from the object.
focus Gives focus to the object.
handleEvent Invokes the handler for the specified event.
select Selects the input area of the object.

In addition, this object inherits the watch and unwatch methods from
Object

Examples The following example creates a Password object with no default value:

Password:
<INPUT TYPE="password" NAME="password" VALUE="" SIZE=25>

Seealso Form, Text

338 Client-Side JavaScript Reference

Password.blur

blur

Syntax
Parameters

Examples

See also

Removes focus from the object.
Method of Password

Implemented in JavaScript 1.0
blur()
None

The following example removes focus from the password element userPass:

userPass.blur()

This example assumes that the password is defined as

<INPUT TYPE="password" NAME="userPass">

Password.focus , Password.select

defaultValue

Security

Description

See also

A string indicating the default value of a Password object.
Property of Password

Implemented in JavaScript 1.0
JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

The initial value of defaultValue is null (for security reasons), regardless of
the value of the VALUEattribute.

Setting defaultValue programmatically overrides the initial setting. If you
programmatically set defaultValue for the Password object and then evaluate
it, JavaScript returns the current value.

You can set the defaultValue property at any time. The display of the related
object does not update when you set the defaultValue property, only when
you set the value property.

Password.value

Chapter |, Objects, Methods, and Properties 339

Password.focus

focus

Syntax
Parameters

Description

Examples

See also

Gives focus to the password object.

Method of Password
Implemented in JavaScript 1.0
focus()

None

Use the focus method to navigate to the password field and give it focus. You
can then either programmatically enter a value in the field or let the user enter
a value.

In the following example, the checkPassword function confirms that a user has
entered a valid password. If the password is not valid, the focus method
returns focus to the Password object and the select method highlights it so
the user can reenter the password.

function checkPassword(userPass) {
if (badPassword) {
alert("Please enter your password again.")
userPass.focus()
userPass.select()

}

This example assumes that the Password object is defined as

<INPUT TYPE="password" NAME="userPass">

Password.blur |, Password.select

form

Description

An object reference specifying the form containing this object.
Property of Password

Read-only

Implemented in JavaScript 1.0

Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

340 Client-Side JavaScript Reference

Password.handleEvent

handleEvent

Syntax

Parameters

Description

Invokes the handler for the specified event.
Method of Password

Implemented in JavaScript 1.2

handleEvent(event)

event The name of an event for which the object has an event handler.

For information on handling events, see the Client-Side JavaScript Guide.

name

Security

Description

A string specifying the name of this object.
Property of Password

Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

The name property initially reflects the value of the NAMEttribute. Changing the
name property overrides this setting. The name property is not displayed on-
screen; it is used to refer to the objects programmatically.

If multiple objects on the same form have the same NAMEattribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Password element on the same
form have their NAMEattribute set to "myField" | an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Chapter |, Objects, Methods, and Properties 341

Password.select

Examples In the following example, the valueGetter ~ function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {
msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")

}

select

Selects the input area of the password field.
Method of Password

Implemented in JavaScript 1.0

Syntax select()
Parameters None

Description Use the select method to highlight the input area of the password field. You
can use the select method with the focus method to highlight a field and
position the cursor for a user response.

Examples In the following example, the checkPassword function confirms that a user has
entered a valid password. If the password is not valid, the select method
highlights the password field and the focus method returns focus to it so the
user can reenter the password.

function checkPassword(userPass) {
if (badPassword) {
alert("Please enter your password again.")
userPass.focus()
userPass.select()

}

This example assumes that the password is defined as

<INPUT TYPE="password" NAME="userPass">

Seealso Password.blur | Password.focus

342 Client-Side JavaScript Reference

Password.type

type

For all Password objects, the value of the type property is "password” . This
property specifies the form element’s type.
Property of Password

Read-only

Implemented in JavaScript 1.1

Examples The following example writes the value of the type property for every element
on a form.
for (var i = 0; i < document.forml.elements.length; i++) {

document.writeln("
type i s " + document.forml.elements]i].type)
}
value
A string that initially reflects the VALUEattribute.
Property of Password
Implemented in JavaScript 1.0
Security JavaScript versions 1.2 and later. This property is returned in plain text and

Description

See also

has no security associated with it. Take care when using this property, and
avoid storing its value in a cookie.

JavaScript 1.1. This property is tainted by default. If you programmatically set
the value property and then evaluate it, JavaScript returns the current value. If
a user interactively modifies the value in the password field, you cannot
evaluate it accurately unless data tainting is enabled. For information on data
tainting, see the Client-Side JavaScript Guide.

This string is represented by asterisks in the Password object field. The value of
this property changes when a user or a program modifies the field, but the
value is always displayed as asterisks.

Password.defaultValue

Chapter |, Objects, Methods, and Properties 343

Plugin

Plugin

Created by

Description

A plug-in module installed on the client.
Client-side object

Implemented in JavaScript 1.1

Plugin objects are predefined JavaScript objects that you access through the
navigator.plugins array.

A Plugin object is a plug-in installed on the client. A plug-in is a software
module that the browser can invoke to display specialized types of embedded
data within the browser. The user can obtain a list of installed plug-ins by
choosing About Plug-ins from the Help menu.

Each Plugin object is itself array containing one element for each MIME type
supported by the plug-in. Each element of the array is a MimeType object. For
example, the following code displays the type and description properties of
the first Plugin object’s first MimeType object.

myPlugin=navigator.plugins[0]

myMimeType=myPlugin[0]

document.writeln('(myMimeType.type is ', myMimeType.type,"
")
document.writeln('myMimeType.description is ',myMimeType.description)

The preceding code displays output similar to the following:

myMimeType.type is video/quicktime
myMimeType.description is QuickTime for Windows

The Plugin object lets you dynamically determine which plug-ins are installed
on the client. You can write scripts to display embedded plug-in data if the
appropriate plug-in is installed, or display some alternative information such as
images or text if not.

Plug-ins can be platform dependent and configurable, so a Plugin object’s
array of MimeType objects can vary from platform to platform, and from user to
user.

Each Plugin object is an element in the plugins array.

When you use the EMBEDag to generate output from a plug-in application, you
are not creating a Plugin object. Use the document.embeds array to refer to
plug-in instances created with EMBEDags. See the document.embeds array.

344 Client-Side JavaScript Reference

Property
Summary

Method Summary

Examples

Plugin

Property Description

description A description of the plug-in.

filename Name of the plug-in file on disk.

length Number of elements in the plug-in’s array of MimeType objects.
name Name of the plug-in.

This object inherits the watch and unwatch methods from Object

Example 1. The user can obtain a list of installed plug-ins by choosing About
Plug-ins from the Help menu. To see the code the browser uses for this report,
choose About Plug-ins from the Help menu, then choose Page Source from the
View menu.

Example 2. The following code assigns shorthand variables for the predefined
LiveAudio properties.

var myPluginName = navigator.plugins[‘LiveAudio"].name
var myPluginFile = navigator.plugins['LiveAudio"].flename
var myPluginDesc = navigator.plugins[‘LiveAudio"].description

Example 3. The following code displays the message “LiveAudio is configured
for audio/wav” if the LiveAudio plug-in is installed and is enabled for the
"audio/wav" MIME type:
var myPlugin = navigator.plugins["LiveAudio"]
var myType = myPlugin["audio/wav"]
if (myType && myType.enabledPlugin == myPlugin)

document.writeln("LiveAudio is configured for audio/wav")

Example 4. The following expression represents the number of MIME types
that Shockwave can display:

navigator.plugins['Shockwave"].length

Chapter |, Objects, Methods, and Properties 345

Plugin

Example 5. The following code displays the name, filename | description |

and length properties for each Plugin object on a client:

document.writeln("<TABLE BORDER=1><TR VALIGN=TOP>",
"<TH ALIGN=left>i",
"<TH ALIGN=left>name",
"<TH ALIGN=left>filename",
"<TH ALIGN=left>description",
"<TH ALIGN=left># of types</TR>")
for (i=0 ; i < navigator.plugins.length; i++) {
document.writeln("<TR VALIGN=TOP><TD>",i,
"<TD>",navigator.pluginsli].name,
"<TD>",navigator.pluginsJi].filename,
"<TD>",navigator.pluginsJi].description,
"<TD>",navigator.pluginsli].length,
"</TR>")
}
document.writeln("</TABLE>")

The preceding example displays output similar to the following:

i name filename description # of types
0 QuickTime d:\nettools\netscape\nav30\Program\ QuickTime Plug-In for 1
Plug-In plugins\NPQTW32.DLL Win32 v.1.0.0
1 LiveAudio d:\nettools\netscape\nav30\Program\ LiveAudio—Netscape 7
plugins\NPAUDIO.DLL Navigator sound playing
component
2 NPAVI32 d:\nettools\netscape\nav30\Program\ NPAVI32, avi plugin DLL 2
Dynamic plugins\npavi32.dll
Link Library
3 Netscape d:\nettools\netscape\nav30\Program\ Null Plugin 1
Default plugins\npnul32.dll
Plugin
Seealso MimeType, document.embeds

346 Client-Side JavaScript Reference

Plugin.description

description

A human-readable description of the plug-in. The text is provided by the plug-
in developers.

Property of Plugin

Read-only

Implemented in JavaScript 1.1

filename

Description

Examples

The name of a plug-in file on disk.
Property of Plugin
Read-only

Implemented in JavaScript 1.1

The filename property is the plug-in program’s file name and is supplied by
the plug-in itself. This name may vary from platform to platform.

See the examples for Plugin

length

The number of elements in the plug-in’s array of MimeType objects.
Property of Plugin
Read-only

Implemented in JavaScript 1.1

Chapter |, Objects, Methods, and Properties 347

Plugin.name

name

A string specifying the plug-in’s name.
Property of Plugin
Read-only

Implemented in JavaScript 1.1

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description The plug-in’s name, supplied by the plug-in itself. Each plug-in should have a
name that uniquely identifies it.

348 Client-Side JavaScript Reference

Radio

Created by

Event handlers

Radio

An individual radio button in a set of radio buttons on an HTML form. The user
can use a set of radio buttons to choose one item from a list.
Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added type property; added blur and focus
methods.

JavaScript 1.2: added handleEvent method.

The HTML INPUT tag, with "radio" as the value of the TYPEattribute. All the
radio buttons in a single group must have the same value for the NAMEattribute.
This allows them to be accessed as a single group.

For a given form, the JavaScript runtime engine creates an individual Radio
object for each radio button in that form. It puts in a single array all the Radio
objects that have the same value for the NAMEattribute. It puts that array in the
elements array of the corresponding Form object. If a single form has
multiple sets of radio buttons, the elements array has multiple Radio objects.

You access a set of buttons by accessing the Form.elements array (either by
number or by using the value of the NAMEattribute). To access the individual
radio buttons in that set, you use the returned object array. For example, if your
document has a form called emp with a set of radio buttons whose NAME
attribute is "dept" , you would access the individual buttons as

document.emp.dept[0] , document.emp.dept[1] , and so on.
e onBlur

e onClick

e onFocus

Chapter |, Objects, Methods, and Properties 349

Radio

Description A Radio object on a form looks as follows:

Jur storage ottoman provides an attractive way to
store lots of CDs and videos--and itc's wersatile
enough to store cother things as well.

It can hold up to 72 CDs under the lid and 20 wvide
in the drawer helow.

«] +

| Reset Yalues | ‘Dune| |Cance||

= Metscape - [Update Product Information] ¥
Product numher: Name: |0tt0man |
Category: @ Living > Bath —|
C Dining O Garden Radio
> Bedroom O Shop J object
Description:

A Radio object is a form element and must be defined within a FORMag.

Property
Summary Property Description

checked Lets you programmatically select a radio button (property of the
individual button).

defaultChecked Reflects the CHECKEDttribute (property of the individual
button).

form Specifies the form containing the Radio object (property of the
array of buttons).

name Reflects the NAMEattribute (property of the array of buttons).

type Reflects the TYPEattribute (property of the array of buttons).

value Reflects the VALUEAattribute (property of the array of buttons).

350 Client-Side JavaScript Reference

Method Summary

Examples

Radio

Method Description

blur Removes focus from the radio button.

click Simulates a mouse-click on the radio button.
focus Gives focus to the radio button.

handleEvent Invokes the handler for the specified event.

In addition, this object inherits the watch and unwatch methods from
Object

Example 1. The following example defines a radio button group to choose
among three music catalogs. Each radio button is given the same name,
NAME="musicChoice" , forming a group of buttons for which only one choice
can be selected. The example also defines a text field that defaults to what was
chosen via the radio buttons but that allows the user to type a nonstandard
catalog name as well. The onClick event handler sets the catalog name input
field when the user clicks a radio button.

<INPUT TYPE="text" NAME="catalog" SIZE="20">

<INPUT TYPE="radio" NAME="musicChoice" VALUE="soul-and-r&b"
onClick="musicForm.catalog.value = 'soul-and-r&b™> Soul and R&B

<INPUT TYPE="radio" NAME="musicChoice" VALUE="jazz"
onClick="musicForm.catalog.value = ‘jazz"> Jazz

<INPUT TYPE="radio" NAME="musicChoice" VALUE="classical"
onClick="musicForm.catalog.value = ‘classical”> Classical

Example 2. The following example contains a form with three text boxes and
three radio buttons. The radio buttons let the user choose whether the text
fields are converted to uppercase or lowercase, or not converted at all. Each
text field has an onChange event handler that converts the field value
depending on which radio button is checked. The radio buttons for uppercase
and lowercase have onClick event handlers that convert all fields when the
user clicks the radio button.

Chapter |, Objects, Methods, and Properties 351

Radio

<HTML>
<HEAD>
<TITLE>Radio object example</TITLE>
</HEAD>
<SCRIPT>
function convertField(field) {
if (document.forml.conversion[0].checked) {
field.value = field.value.toUpperCase()}
else {
if (document.forml.conversion[1].checked) {
field.value = field.value.toLowerCase()}

}
}

function convertAllFields(caseChange) {

if (caseChange=="upper") {

document.forml.lastName.value = document.forml.lastName.value.toUpperCase()
document.form1l.firstName.value = document.forml.firstName.value.toUpperCase()
document.form1.cityName.value = document.forml.cityName.value.toUpperCase()}
else {

document.forml.lastName.value = document.forml.lastName.value.toLowerCase()
document.forml.firstName.value = document.forml.firstName.value.toLowerCase()
document.forml.cityName.value = document.forml.cityName.value.toLowerCase()

}

}
</SCRIPT>
<BODY>
<FORM NAME="form1">
Last name:
<INPUT TYPE="text" NAME="lastName" SIZE=20 onChange="convertField(this)">

First name:
<INPUT TYPE="text" NAME="firstName" SIZE=20 onChange="convertField(this)">

City:
<INPUT TYPE="text" NAME="cityName" SIZE=20 onChange="convertField(this)">
<P>Convert values to:

<INPUT TYPE="radio" NAME="conversion" VALUE="upper"

onClick="if (this.checked) {convertAllFields('upper)}"> Upper case

<INPUT TYPE="radio" NAME="conversion" VALUE="lower"

onClick="if (this.checked) {convertAllFields(lower')}'> Lower case

<INPUT TYPE="radio" NAME="conversion" VALUE="noChange"> No conversion
</[FORM>
</BODY>
</HTML>

See also the example for Link .

Seealso Checkbox , Form, Select

352 Client-Side JavaScript Reference

Radio.blur

blur

Removes focus from the radio button.
Method of Radio

Implemented in JavaScript 1.0

Syntax blur()
Parameters None
Seealso Radio.focus
checked
A Boolean value specifying the selection state of a radio button.
Property of Radio
Implemented in JavaScript 1.0
Security JavaScript 1.1. This property is tainted by default. For information on data

Description

Examples

See also

tainting, see the Client-Side JavaScript Guide.

If a radio button is selected, the value of its checked property is true;
otherwise, it is false. You can set the checked property at any time. The display
of the radio button updates immediately when you set the checked property.

At any given time, only one button in a set of radio buttons can be checked.
When you set the checked property for one radio button in a group to true,
that property for all other buttons in the group becomes false.

The following example examines an array of radio buttons called musicType
on the musicForm form to determine which button is selected. The VALUE
attribute of the selected button is assigned to the checkedButton variable.

function stateChecker() {
var checkedButton =
for (var i in document.musicForm.musicType) {
if (document.musicForm.musicTypeli].checked=="1") {
checkedButton=document.musicForm.musicTypel[i].value

}

}
Radio.defaultChecked

Chapter |, Objects, Methods, and Properties 353

Radio.click

click

Syntax
Parameters

Examples

Simulates a mouse-click on the radio button, but does not trigger the button’s
onClick event handler.
Method of Radio

Implemented in JavaScript 1.0
click()

None

The following example toggles the selection status of the first radio button in
the musicType Radio object on the musicForm form:

document.musicForm.musicType[0].click()

The following example toggles the selection status of the newAge checkbox on
the musicForm form:

document.musicForm.newAge.click()

defaultChecked

Security

Description

A Boolean value indicating the default selection state of a radio button.
Property of Radio

Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

If a radio button is selected by default, the value of the defaultChecked
property is true; otherwise, it is false. defaultChecked initially reflects whether
the CHECKEDittribute is used within an INPUT tag; however, setting
defaultChecked overrides the CHECKEDittribute.

Unlike for the checked property, changing the value of defaultChecked for
one button in a radio group does not change its value for the other buttons in
the group.

You can set the defaultChecked ~ property at any time. The display of the radio
button does not update when you set the defaultChecked property, only
when you set the checked property.

354 Client-Side JavaScript Reference

Radio.focus

Examples The following example resets an array of radio buttons called musicType on
the musicForm form to the default selection state:

function radioResetter() {
var i="
for (i in document.musicForm.musicType) {
if (document.musicForm.musicTypeli].defaultChecked==true) {
document.musicForm.musicType[i].checked=true

}
}

See also Radio.checked

focus

Gives focus to the radio button.
Method of Radio

Implemented in JavaScript 1.0
Syntax focus()
Parameters None

Description Use the focus method to navigate to the radio button and give it focus. The
user can then easily toggle that button.

See also Radio.blur

form

An object reference specifying the form containing the radio button.
Property of Radio
Read-only

Implemented in JavaScript 1.0

Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

Chapter |, Objects, Methods, and Properties 355

Radio.handleEvent

handleEvent

Invokes the handler for the specified event.
Method of Radio

Implemented in JavaScript 1.2

Syntax handleEvent(event)
Parameters
event The name of an event for which the specified object has an event
handler.
name
A string specifying the name of the set of radio buttons with which this button
is associated.
Property of Radio
Implemented in JavaScript 1.0
Security JavaScript 1.1. This property is tainted by default. For information on data

Description

tainting, see the Client-Side JavaScript Guide.

The name property initially reflects the value of the NAMEattribute. Changing the
name property overrides this setting.

All radio buttons that have the same value for their name property are in the
same group and are treated together. If you change the name of a single radio
button, you change which group of buttons it belongs to.

Do not confuse the name property with the label displayed on a Button. The
value property specifies the label for the button. The name property is not
displayed onscreen; it is used to refer programmatically to the button.

356 Client-Side JavaScript Reference

Examples

Radio.type

In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {

var msgWindow=window.open("")

for (var i = 0; i <

newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")

}

type

For all Radio objects, the value of the type property is "radio” . This property
specifies the form element’s type.

Property of Radio
Read-only
Implemented in JavaScript 1.1

Examples The following example writes the value of the type property for every element
on a form.
for (var i = 0; i < document.forml.elements.length; i++) {
document.writeIn("
type i s " + document.forml.elements]i].type)
}
value
A string that reflects the VALUEattribute of the radio button.
Property of Radio
Read-only
Implemented in JavaScript 1.0
Security JavaScript 1.1. This property is tainted by default. For information on data

tainting, see the Client-Side JavaScript Guide.

Chapter |, Objects, Methods, and Properties 357

Radio.value

Description When a VALUEattribute is specified in HTML, the value property is a string that
reflects it. When a VALUEattribute is not specified in HTML, the value property
is a string that evaluates to "on" . The value property is not displayed on the
screen but is returned to the server if the radio button or checkbox is selected.

Do not confuse the property with the selection state of the radio button or the
text that is displayed next to the button. The checked property determines the
selection state of the object, and the defaultChecked property determines the
default selection state. The text that is displayed is specified following the
INPUT tag.

Examples The following function evaluates the value property of a group of radio
buttons and displays it in the msgWindow window:

function valueGetter() {
var msgWindow=window.open("")

for (var i = 0; i < document.valueTest.radioObj.length; i++) {
msgWindow.document.write
("The value of radioObj["+ i+ s "+

document.valueTest.radioObj[i].value +"
")

}

msgWindow.document.close()

}

This example displays the following values:

on
on
on
on

The previous example assumes the buttons have been defined as follows:

<INPUT TYPE="radio" NAME="radioObj">R&B

<INPUT TYPE="radio" NAME="radioObj" CHECKED>Soul

<INPUT TYPE="radio" NAME="radioObj">Rock and Roll

<INPUT TYPE="radio" NAME="radioObj">Blues

Seealso Radio.checked , Radio.defaultChecked

358 Client-Side JavaScript Reference

RegExp

Created by

Parameters

RegExp

A regular expression object contains the pattern of a regular expression. It has
properties and methods for using that regular expression to find and replace
matches in strings.

In addition to the properties of an individual regular expression object that you
create using the RegExp constructor function, the predefined RegExp object has
static properties that are set whenever any regular expression is used.

Core object

Implemented in JavaScript 1.2, NES 3.0

JavaScript 1.3: added toSource method

A literal text format or the RegExp constructor function.
The literal format is used as follows:

| pattern [flags

The constructor function is used as follows:

new RegExp(" pattern "[, " flags "))

pattern The text of the regular expression.

flags If specified, flags can have one of the following values:
e Q: global match
e i:ignore case

e @i : both global match and ignore case

Notice that the parameters to the literal format do not use quotation marks to
indicate strings, while the parameters to the constructor function do use
quotation marks. So the following expressions create the same regular
expression:

lab+cli
new RegExp("ab+c", "i")

Chapter |, Objects, Methods, and Properties 359

RegExp

Description When using the constructor function, the normal string escape rules (preceding
special characters with \ when included in a string) are necessary. For example,
the following are equivalent:

re = new RegExp("\\w+")
re = \w+/

The following table provides a complete list and description of the special
characters that can be used in regular expressions.

Table 1.3 Special characters in regular expressions.

Character Meaning

\ For characters that are usually treated literally, indicates that the next
character is special and not to be interpreted literally.
For example, /b/ matches the character 'b'. By placing a backslash in
front of b, that is by using A\b/ | the character becomes special to
mean match a word boundary.
-o1-
For characters that are usually treated specially, indicates that the next
character is not special and should be interpreted literally.
For example, * is a special character that means 0 or more occurrences
of the preceding character should be matched; for example, /a*/
means match 0 or more a's. To match * literally, precede the it with a
backslash; for example, /a*/ matches 'a*".

Matches beginning of input or line.
For example, /*A/ does not match the 'A' in "an A," but does match it

in "An A."

$ Matches end of input or line.
For example, /t$/ does not match the 't' in "eater", but does match it
in "eat"

Matches the preceding character O or more times.
For example, /bo*/ matches 'boooo' in "A ghost booooed" and 'b' in
"A bird warbled", but nothing in "A goat grunted".

+ Matches the preceding character 1 or more times. Equivalent to {1,}
For example, /a+/ matches the 'a' in "candy" and all the a's in
"caaaaaaandy."

? Matches the preceding character 0 or 1 time.
For example, /e?le?/ matches the 'el' in "angel" and the 'le' in
”angle.”

360 Client-Side JavaScript Reference

RegExp

Table 1.3 Special characters in regular expressions. (Continued)

Character

Meaning

]

Xly

{n}

{n}

{n.m}

[xyz]

["xyz]

[\b]

(The decimal point) matches any single character except the newline
character.

For example, /.n/ matches 'an' and 'on' in "nay, an apple is on the
tree", but not 'nay’.

Matches 'x' and remembers the match.

For example, /(foo)/ matches and remembers 'foo' in "foo bar." The
matched substring can be recalled from the resulting array’s elements
[1] , ..., [n] , or from the predefined RegEXp object’s properties $1,
.., $9.

Matches either 'x' or 'y".
For example, /green|red/ matches 'green' in "green apple" and 'red’
in "red apple."

Where n is a positive integer. Matches exactly n occurrences of the
preceding character.

For example, /a{2}/ doesn't match the 'a' in "candy," but it matches
all of the a's in "caandy," and the first two a's in "caaandy."

Where n is a positive integer. Matches at least n occurrences of the
preceding character.

For example, /a{2,} doesn't match the 'a' in "candy", but matches all
of the a's in "caandy" and in "caaaaaaandy."

Where n and mare positive integers. Matches at least n and at most m
occurrences of the preceding character.

For example, /a{1,3}/ matches nothing in "cndy", the 'a' in "candy,"
the first two a's in "caandy," and the first three a's in "caaaaaaandy"
Notice that when matching "caaaaaaandy”, the match is "aaa", even
though the original string had more a’s in it.

A character set. Matches any one of the enclosed characters. You can
specify a range of characters by using a hyphen.

For example, [abcd] is the same as [a-C] . They match the 'b' in
"brisket" and the 'c' in "ache".

A negated or complemented character set. That is, it matches anything
that is not enclosed in the brackets. You can specify a range of
characters by using a hyphen.

For example, [*abc] is the same as [*a-c] . They initially match 't’
in "brisket" and 'h' in "chop."

Matches a backspace. (Not to be confused with \b .)

Chapter |, Objects, Methods, and Properties 361

RegExp

Table 1.3 Special characters in regular expressions. (Continued)

Character

Meaning

\b

\B

\c X

\d

\D

\f
\n
\r

\s

\S

\t
\v

\w

\wW

Matches a word boundary, such as a space. (Not to be confused with
No]

For example, Abn\w/ matches the 'no' in "noonday";\wy\b/
matches the 'ly' in "possibly yesterday."

Matches a non-word boundary.

For example, A\W\Bn/ matches 'on' in "noonday", and /y\B\w/
matches 'ye' in "possibly yesterday."

Where X is a control character. Matches a control character in a string.
For example, \cM/ matches control-M in a string.

Matches a digit character. Equivalent to [0-9]

For example, \d/ or /[0-9)/ matches '2' in "B2 is the suite
number."

Matches any non-digit character. Equivalent to [*0-9]
For example, \D/ or /[*0-9]/ matches 'B' in "B2 is the suite
number."

Matches a form-feed.
Matches a linefeed.
Matches a carriage return.

Matches a single white space character, including space, tab, form feed,
line feed. Equivalent to [W\n\r\t\v]
for example, As\wW*/ matches ' bar' in "foo bar."

Matches a single character other than white space. Equivalent to [*
\An\rit\v]

For example, ASAW* matches 'foo' in "foo bar."

Matches a tab

Matches a vertical tab.

Matches any alphanumeric character including the underscore.
Equivalent to [A-Za-z0-9_]

For example, Aw/ matches 'a' in "apple," '5' in "$5.28," and '3' in "3D."

Matches any non-word character. Equivalent to [*A-Za-z0-9_]
For example, A\W/ or [["$A-Za-z0-9_]/ matches '%' in "50%."

362 Client-Side JavaScript Reference

RegExp

Table 1.3 Special characters in regular expressions. (Continued)

Character Meaning

\'n Where 7 is a positive integer. A back reference to the last substring
matching the » parenthetical in the regular expression (counting left
parentheses).
For example, /apple(,)\sorange\1/ matches 'apple, orange', in
"apple, orange, cherry, peach." A more complete example follows this
table.

Note: If the number of left parentheses is less than the number
specified in \7, the \n is taken as an octal escape as described in the

next row.
\o octal Where \o octal is an octal escape value or \x hex is a hexadecimal
\x hex escape value. Allows you to embed ASCII codes into regular
expressions.

The literal notation provides compilation of the regular expression when the
expression is evaluated. Use literal notation when the regular expression will
remain constant. For example, if you use literal notation to construct a regular
expression used in a loop, the regular expression won't be recompiled on each
iteration.

The constructor of the regular expression object, for example,

new RegExp(‘ab+c") , provides runtime compilation of the regular expression.
Use the constructor function when you know the regular expression pattern
will be changing, or you don't know the pattern and are getting it from another
source, such as user input. Once you have a defined regular expression, and if
the regular expression is used throughout the script and may change, you can
use the compile method to compile a new regular expression for efficient
reuse.

A separate predefined RegExp object is available in each window; that is, each
separate thread of JavaScript execution gets its own RegExp object. Because
each script runs to completion without interruption in a thread, this assures that
different scripts do not overwrite values of the RegExp object.

The predefined RegExp object contains the static properties input |

multiline , lastMatch | lastParen |, leftContext , rightContext ,
and $1 through $9. The input and multiline properties can be preset. The
values for the other static properties are set after execution of the exec and
test methods of an individual regular expression object, and after execution
of the match and replace methods of String

Chapter |, Objects, Methods, and Properties 363

RegExp

Property Note that several of the RegExp properties have both long and short (Perl-like)
Summary names. Both names always refer to the same value. Perl is the programming
language from which JavaScript modeled its regular expressions.

Property Description

$1, ..., $9 Parenthesized substring matches, if any.

$_ See input.

$* See multiline.

$& See lastMatch.

$+ See lastParen.

$ See leftContext.

$ See rightContext.

constructor Specifies the function that creates an object’s prototype.

global Whether or not to test the regular expression against all possible

matches in a string, or only against the first.

ignoreCase Whether or not to ignore case while attempting a match in a
string.

input The string against which a regular expression is matched.

lastindex The index at which to start the next match.

lastMatch The last matched characters.

lastParen The last parenthesized substring match, if any.

leftContext The substring preceding the most recent match.

multiline Whether or not to search in strings across multiple lines.

prototype Allows the addition of properties to all objects.

rightContext The substring following the most recent match.

source The text of the pattern.

Method Summary

Method Description

compile Compiles a regular expression object.

exec Executes a search for a match in its string parameter.

364 Client-Side JavaScript Reference

Examples

RegExp

Method Description
test Tests for a match in its string parameter.
toSource Returns an object literal representing the specified object; you

can use this value to create a new object. Overrides the
Object.toSource method.

toString Returns a string representing the specified object. Overrides the
Object.toString method.
valueOf Returns the primitive value of the specified object. Overrides

the Object.valueOf method.

In addition, this object inherits the watch and unwatch methods from
Object

Example 1. The following script uses the replace method to switch the words
in the string. For the replacement text, the script uses the values of the $1 and
$2 properties of the global RegExp object. Note that the RegExp object name is
not be prepended to the $ properties when they are passed as the second
argument to the replace method.

<SCRIPT LANGUAGE="JavaScriptl.2">
re = /(\w+)\s(\w+)/;

str = "John Smith";
newstr=str.replace(re, "$2, $1");
document.write(newstr)

</SCRIPT>

This displays "Smith, John".

Example 2. In the following example, RegExp.input is set by the Change
event. In the getinfo function, the exec method uses the value of
RegExp.input as its argument. Note that RegExp is prepended to the $
properties.

<HTML>

<SCRIPT LANGUAGE="JavaScriptl1.2">
function getinfo() {
re = /(\w+)\s(\d+)/;

re.exec();

window.alert(RegExp.$1 + ", your age i s " + RegExp.$2);
}
</SCRIPT>

Enter your first name and your age, and then press Enter.

Chapter |, Objects, Methods, and Properties 365

RegExp.$1, ..., $9

<FORM>
<INPUT TYPE:"TEXT" NAME="NameAge" onChange="getInfo(this);">
</FORM>

</HTML>

$1, ..., $9

Description

Examples

Properties that contain parenthesized substring matches, if any.
Property of RegExp

Static, Read-only

Implemented in JavaScript 1.2, NES 3.0

Because input s static, it is not a property of an individual regular expression
object. Instead, you always use it as RegExp.input

The number of possible parenthesized substrings is unlimited, but the
predefined RegExp object can only hold the last nine. You can access all
parenthesized substrings through the returned array's indexes.

These properties can be used in the replacement text for the

String.replace method. When used this way, do not prepend them with
RegExp. The example below illustrates this. When parentheses are not included
in the regular expression, the script interprets $n's literally (where n is a
positive integer).

The following script uses the replace method to switch the words in the
string. For the replacement text, the script uses the values of the $1 and $2
properties of the global RegExp object. Note that the RegExp object name is not
be prepended to the $ properties when they are passed as the second
argument to the replace method.

<SCRIPT LANGUAGE="JavaScriptl.2">
re = /(\w+)\s(\w+)/;

str = "John Smith";
newstr=str.replace(re, "$2, $1");
document.write(newstr)

</SCRIPT>

This displays "Smith, John".

366 Client-Side JavaScript Reference

RegExp.$_

$_

See input

$*

See multiline.

$&

See lastMatch.

$+

See lastParen.

$¢

See leftContext.

$’

See rightContext.

compile

Compiles a regular expression object during execution of a script.
Method of RegEXxp
Implemented in JavaScript 1.2, NES 3.0

Syntax regexp.compile(pattern [, flags])

Chapter |, Objects, Methods, and Properties 367

RegExp.constructor

Parameters

Description

regexp The name of the regular expression. It can be a variable name or a
literal.

pattern A string containing the text of the regular expression.

flags If specified, flags can have one of the following values:

e "g" : global match

e "i" :ignore case

e "gi" :both global match and ignore case

Use the compile method to compile a regular expression created with the
RegExp constructor function. This forces compilation of the regular expression
once only which means the regular expression isn't compiled each time it is
encountered. Use the compile method when you know the regular expression
will remain constant (after getting its pattern) and will be used repeatedly
throughout the script.

You can also use the compile method to change the regular expression during
execution. For example, if the regular expression changes, you can use the
compile method to recompile the object for more efficient repeated use.

Calling this method changes the value of the regular expression’s source |
global |, and ignoreCase properties.

constructor

Description

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Property of RegExp

Implemented in JavaScript 1.1, NES 2.0

ECMA version ECMA-262

See Object.constructor

368 Client-Side JavaScript Reference

RegExp.exec

exec

Syntax

Parameters

Description

Executes the search for a match in a specified string. Returns a result array.
Method of RegEXxp

Implemented in JavaScript 1.2, NES 3.0

regexp .exec([str])
regexp ([str])

regexp The name of the regular expression. It can be a variable name or a
literal.
str The string against which to match the regular expression. If

omitted, the value of RegExp.input is used.

As shown in the syntax description, a regular expression’s exec method can be
called either directly, (with regexp.exec(str)) or indirectly (with
regexp(str)).

If you are executing a match simply to find true or false , use the test
method or the String search method.

If the match succeeds, the exec method returns an array and updates
properties of the regular expression object and the predefined regular
expression object, RegExp. If the match fails, the exec method returns null

Consider the following example:

<SCRIPT LANGUAGE="JavaScriptl.2">

/IMatch one d followed by one or more b's followed by one d
//IRemember matched b's and the following d

/ignore case

myRe=/d(b+)(d)/ig;

myArray = myRe.exec("cdbBdbsbz");

</SCRIPT>

Chapter |, Objects, Methods, and Properties 369

RegExp.exec

The following table shows the results for this script:

Object Property/Index Description Example
myArray The contents of myArray ['dbBd", "bB", "d"]
index The 0-based index of the match in the 1
string
input The original string cdbBdbsbz
[0] The last matched characters dbBd
a5, .. nj The parenthesized substring matches, if [1] = bB
any. The number of possible [2] = d
parenthesized substrings is unlimited.
myRe lastindex The index at which to start the next 5
match.
ignoreCase Indicates if the "i* flag was used to true
ignore case
global Indicates if the "g" flag was used for a true
global match
source The text of the pattern d(b+)(d)
RegExp lastMatch The last matched characters dbBd
$&
leftContext The substring preceding the most recent c
$ match
rightContext The substring following the most recent bsbz
$ match
$1, ..$9 The parenthesized substring matches, if $1 = bB
any. The number of possible $2 = d
parenthesized substrings is unlimited, but
RegEXxp can only hold the last nine.
lastParen The last parenthesized substring match, if d
$+

any.

370 Client-Side JavaScript Reference

Examples

RegExp.exec

If your regular expression uses the "g" flag, you can use the exec method
multiple times to find successive matches in the same string. When you do so,
the search starts at the substring of str specified by the regular expression’s
lastindex property. For example, assume you have this script:

<SCRIPT LANGUAGE="JavaScriptl.2">
myRe=/ab*/g;

str = "abbcdefabh"”

myArray = myRe.exec(str);

document.writeln("Foun d " + myArray[0] +
". Next match starts a t " + myRe.lastindex)
mySecondArray = myRe.exec(str);
document.writeln("Foun d " + mySecondArray[0] +
". Next match starts a t " + myRe.lastindex)
</SCRIPT>

This script displays the following text:

Found abb . Next match starts at 3
Found ab. Next match starts at 9

In the following example, the user enters a name and the script executes a
match against the input. It then cycles through the array to see if other names
match the user's name.

This script assumes that first names of registered party attendees are preloaded
into the array A, perhaps by gathering them from a party database.

<HTML>

<SCRIPT LANGUAGE="JavaScriptl.2">

A = ['Frank", "Emily", "Jane", "Harry", "Nick", "Beth", "Rick",
"Terrence", "Carol", "Ann", "Terry", "Frank", "Alice", "Rick",
"Bill", "Tom", "Fiona", "Jane", "William", "Joan", "Beth"]

Chapter |, Objects, Methods, and Properties 371

RegExp.global

function lookup() {
firstName = Aw+/i();
if (!firstName)

window.alert (RegExp.inpu t + " isnt a name!");
else {
count = O;
for (i=0; i<A.length; i++)
if (firstName[O].toLowerCase() == A[i].toLowerCase()) count++;
if (count ==1)
midstrin g = " other has "
else
midstrin g = " others have *;
window.alert ("Thanks , " + count + midstring + "the same name!")
}
}
</SCRIPT>

Enter your first name and then press Enter.

<FORM> <INPUT TYPE:"TEXT" NAME="FirstName" onChange="lookup(this);"> </
FORM>

</HTML>

global

Whether or not the "g" flag is used with the regular expression.
Property of RegEXxp

Read-only

Implemented in JavaScript 1.2, NES 3.0

Description global is a property of an individual regular expression object.

The value of global is true if the "g" flag was used; otherwise, false . The
"g" flag indicates that the regular expression should be tested against all
possible matches in a string.

You cannot change this property directly. However, calling the compile
method changes the value of this property.

372 Client-Side JavaScript Reference

RegExp.ignoreCase

Description

ignoreCase

Whether or not the "i* flag is used with the regular expression.
Property of RegExp

Read-only

Implemented in JavaScript 1.2, NES 3.0

ignoreCase is a property of an individual regular expression object.

The value of ignoreCase is true if the "i* flag was used; otherwise, false
The "i* flag indicates that case should be ignored while attempting a match in
a string.

You cannot change this property directly. However, calling the compile
method changes the value of this property.

input

Description

The string against which a regular expression is matched. $_ is another name
for the same property.

Property of RegExp

Static

Implemented in JavaScript 1.2, NES 3.0

Because input s static, it is not a property of an individual regular expression
object. Instead, you always use it as RegExp.input

If no string argument is provided to a regular expression's exec or test
methods, and if RegExp.input has a value, its value is used as the argument to
that method.

Chapter |, Objects, Methods, and Properties 373

RegExp.lastIndex

The script or the browser can preset the input property. If preset and if no
string argument is explicitly provided, the value of input is used as the string
argument to the exec or test methods of the regular expression object. input
is set by the browser in the following cases:

e When an event handler is called for a TEXT form element, input is set to
the value of the contained text.

¢ When an event handler is called for a TEXTAREAform element, input is set
to the value of the contained text. Note that multiline is also set to true
so that the match can be executed over the multiple lines of text.

e When an event handler is called for a SELECTform element, input is set to
the value of the selected text.

e When an event handler is called for a Link object, input is set to the value
of the text between and .

The value of the input property is cleared after the event handler completes.

lastindex

A read/write integer property that specifies the index at which to start the next
match.

Property of RegEXxp

Implemented in JavaScript 1.2, NES 3.0

Description lastindex is a property of an individual regular expression object.

This property is set only if the regular expression used the "g" flag to indicate
a global search. The following rules apply:

e [Iflastindex is greater than the length of the string, regexp.test and
regexp.exec fail, and lastindex is set to 0.

e [Iflastindex is equal to the length of the string and if the regular
expression matches the empty string, then the regular expression matches
input starting at lastindex

e [Iflastindex is equal to the length of the string and if the regular
expression does not match the empty string, then the regular expression
mismatches input, and lastindex is reset to 0.

374 Client-Side JavaScript Reference

RegExp.lastMatch

e Otherwise, lastindex is set to the next position following the most recent
match.

For example, consider the following sequence of statements:

re = /(hi)?/g Matches the empty string.
re("hi") Returns ["hi", "hi"] with lastindex equal to 2.
re("hi") Returns ["] , an empty array whose zeroth element is the

match string. In this case, the empty string because lastindex
was 2 (and still is 2) and "hi" has length 2.

lastMatch

Description

The last matched characters. $& is another name for the same property.
Property of RegExp

Static, Read-only

Implemented in JavaScript 1.2, NES 3.0

Because lastMatch is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.lastMatch

lastParen

Description

The last parenthesized substring match, if any. $+ is another name for the same

property.
Property of RegExp

Static, Read-only
Implemented in JavaScript 1.2, NES 3.0

Because lastParen s static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.lastParen

Chapter |, Objects, Methods, and Properties 375

RegExp.leftContext

leftContext

Description

The substring preceding the most recent match. $ is another name for the
same property.

Property of RegExp

Static, Read-only

Implemented in JavaScript 1.2, NES 3.0

Because leftContext is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.leftContext

multiline

Description

Reflects whether or not to search in strings across multiple lines. $* is another
name for the same property.

Property of RegExp

Static

Implemented in JavaScript 1.2, NES 3.0

Because multiline is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.multiline

The value of multiline is true if multiple lines are searched, false if
searches must stop at line breaks.

The script or the browser can preset the multiline property. When an event
handler is called for a TEXTAREAform element, the browser sets multiline to
true . multiline is cleared after the event handler completes. This means that,
if you've preset multiline to true , it is reset to false after the execution of any
event handler.

376 Client-Side JavaScript Reference

RegExp.prototype

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype

Property of RegEXxp

Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262
rightContext

Description

The substring following the most recent match. $' is another name for the
same property.

Property of RegExp

Static, Read-only

Implemented in JavaScript 1.2, NES 3.0

Because rightContext is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.rightContext

source

Description

A read-only property that contains the text of the pattern, excluding the forward

slashes and "g" or "i* flags.
Property of RegExp
Read-only

Implemented in JavaScript 1.2, NES 3.0

source is a property of an individual regular expression object.

You cannot change this property directly. However, calling the compile
method changes the value of this property.

Chapter |, Objects, Methods, and Properties 377

RegExp.test

test

Syntax

Parameters

Description

Example

Executes the search for a match between a regular expression and a specified
string. Returns true or false
Method of RegEXxp

Implemented in JavaScript 1.2, NES 3.0

regexp .test([str])

regexp The name of the regular expression. It can be a variable name or a literal.

str The string against which to match the regular expression. If omitted, the
value of RegEXp.input is used.

When you want to know whether a pattern is found in a string use the test
method (similar to the String.search method); for more information (but
slower execution) use the exec method (similar to the String.match
method).

The following example prints a message which depends on the success of the
test:

function testinput(re, str){
if (re.test(str))
midstrin g = " contains ",
else
midstrin g = " does not contain ";
document.write (str + midstring + re.source);

toSource

Syntax

Parameters

Returns a string representing the source code of the object.
Method of RegEXxp

Implemented in JavaScript 1.3

toSource()

None

378 Client-Side JavaScript Reference

Description

RegExp.toString

The toSource method returns the following values:

e For the built-in RegEXp object, toSource returns the following string
indicating that the source code is not available:

function Boolean() {
[native code]
}
e TFor instances of RegEXp, toSource returns a string representing the
source code.

This method is usually called internally by JavaScript and not explicitly in code.

Seealso Object.toSource
toString
Returns a string representing the specified object.
Method of RegEXxp
Implemented in JavaScript 1.1, NES 2.0
ECMA version ECMA-262
Syntax toString()
Parameters None.

Description

Examples

See also

The RegEXp object overrides the toString method of the Object object; it
does not inherit Object.toString . For RegEXp objects, the toString
method returns a string representation of the object.

The following example displays the string value of a RegExp object:

myExp = new RegExp("at+b+c");
alert(myExp.toString()) displays "/a+b+c/"

Object.toString

Chapter |, Objects, Methods, and Properties 379

RegExp.valueOf

valueOf

Syntax
Parameters

Description

Examples

See also

Returns the primitive value of a RegExp object.

Method of RegEXxp
Implemented in JavaScript 1.1
ECMA version ECMA-262
valueOf()

None

The valueOf method of RegEXp returns the primitive value of a RegExp
object as a string data type. This value is equivalent to RegExp.toString

This method is usually called internally by JavaScript and not explicitly in code.

myExp = new RegExp("a+b+c");
alert(myExp.valueOf()) displays "/a+b+c/"

RegExp.toString , Object.valueOf

380 Client-Side JavaScript Reference

Reset

Created by

Event handlers

Reset

A reset button on an HTML form. A reset button resets all elements in a form to
their defaults.

Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added type property; added onBlur and onFocus
event handlers; added blur and focus methods

JavaScript 1.2: added handleEvent method

The HTML INPUT tag, with "reset" as the value of the TYPEattribute. For a
given form, the JavaScript runtime engine creates an appropriate Reset object
and puts it in the elements array of the corresponding Form object. You
access a Reset object by indexing this array. You can index the array either by
number or, if supplied, by using the value of the NAMEattribute.

e onBlur
e onClick
e onFocus

Chapter |, Objects, Methods, and Properties 381

Reset

Description

Property
Summary

A Reset object on a form looks as follows:

= Netscape - [Update Product Information] - |

i
-

Product numhber: (E250| MName: |OttDman ‘

Category: @ Living i} Bath
) Dining 2 Garden
) Bedroom & Shop

Description:

Dur storage ottomah provides an attractive way Lo +
store lots of CDs and videos—--and it's wversatile
enough to store other things as well.

It can hold up to 72 CDs under the lid and 20 wide
in the drawer below.

«] +

| Reset Yalues | ‘Dune| |Can-::f:l|

L PReset object

A Reset object is a form element and must be defined within a FORMag.

The reset button’s onClick event handler cannot prevent a form from being

reset; once the button is clicked, the reset cannot be canceled.

Property Description

form Specifies the form containing the Reset object.
name Reflects the NAMEattribute.

type Reflects the TYPEattribute.

value Reflects the VALUEattribute.

382 Client-Side JavaScript Reference

Method Summary

<HTML>

<HEAD>

Examples

Reset

Method Description

blur Removes focus from the reset button.

click Simulates a mouse-click on the reset button.
focus Gives focus to the reset button.

handleEvent Invokes the handler for the specified event.

In addition, this object inherits the watch and unwatch methods from
Object

Example 1. The following example displays a Text object with the default
value “CA” and a reset button with the text “Clear Form” displayed on its face.
If the user types a state abbreviation in the Text object and then clicks the
Clear Form button, the original value of “CA” is restored.

State: <INPUT TYPE="text" NAME="state" VALUE="CA" SIZE="2">
<P><INPUT TYPE="reset" VALUE="Clear Form">

Example 2. The following example displays two Text objects, a Select
object, and three radio buttons; all of these objects have default values. The
form also has a reset button with the text “Defaults” on its face. If the user
changes the value of any of the objects and then clicks the Defaults button, the
original values are restored.

<TITLE>Reset object example</TITLE>

</HEAD>
<BODY>

<FORM NAME="form1">

City: <INPUT TYPE="text" NAME="city" VALUE="Santa Cruz" SIZE="20">
State: <INPUT TYPE="text" NAME="state" VALUE="CA" SIZE="2">
<P><SELECT NAME="colorChoice">

<OPTION SELECTED> Blue

<OPTION> Yellow
<OPTION> Green

<OPTION> Red
</SELECT>

Chapter |, Objects, Methods, and Properties 383

Reset.blur

<P><INPUT TYPE="radio" NAME="musicChoice" VALUE="soul-and-r&b"
CHECKED> Soul and R&B

<INPUT TYPE="radio" NAME="musicChoice" VALUE="jazz">
Jazz

<INPUT TYPE="radio" NAME="musicChoice" VALUE="classical">
Classical

<P><INPUT TYPE="reset" VALUE="Defaults" NAME="resetl">

</FORM>

</BODY>

</HTML>

Seealso Button , Form, onReset , Form.reset |, Submit

blur

Removes focus from the reset button.
Method of Reset

Implemented in JavaScript 1.0
Syntax blur()
Parameters None

Examples The following example removes focus from the reset button userReset:

userReset.blur()

This example assumes that the button is defined as

<INPUT TYPE="reset" NAME="userReset">

See also Reset.focus

click

Simulates a mouse-click on the reset button, but does not trigger an object’s
onClick event handler.
Method of Reset

Implemented in JavaScript 1.0

Syntax click()

Parameters None

384 Client-Side JavaScript Reference

Reset.focus

focus

Syntax
Parameters

See also

Navigates to the reset button and gives it focus.
Method of Reset

Implemented in JavaScript 1.0

focus()
None

Reset.blur

form

Description

An object reference specifying the form containing the reset button.
Property of Reset

Read-only

Implemented in JavaScript 1.0

Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

Seealso Form
handleEvent
Invokes the handler for the specified event.
Method of Reset
Implemented in JavaScript 1.2
Syntax handleEvent(event)
Parameters

event The name of an event for which the specified object has an event
handler.

Chapter |, Objects, Methods, and Properties 385

Reset.name

name

Security

Description

Examples

A string specifying the name of the reset button.
Property of Reset

Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

The value of the name property initially reflects the value of the NAMEattribute.
Changing the name property overrides this setting.

Do not confuse the name property with the label displayed on the reset button.
The value property specifies the label for this button. The name property is not
displayed on the screen; it is used to refer programmatically to the button.

If multiple objects on the same form have the same NAMEattribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Reset element on the same form
have their NAMEattribute set to "myField" | an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {

var msgWindow=window.open("")
for (var i = 0; i <
msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")

}

See also

newWindow.document.valueTest.elements.length; i++) {

Reset.value

386 Client-Side JavaScript Reference

Reset.type

type

For all Reset objects, the value of the type property is "reset” . This property
specifies the form element’s type.

Property of Reset

Read-only

Implemented in JavaScript 1.1

Examples The following example writes the value of the type property for every element
on a form.
for (var i = 0; i < document.forml.elements.length; i++) {
document.writeln("
type i s " + document.forml.elements]i].type)
}
value
A string that reflects the reset button’s VALUEattribute.
Property of Reset
Read-only
Implemented in JavaScript 1.0
Security JavaScript 1.1. This property is tainted by default. For information on data

Description

tainting, see the Client-Side JavaScript Guide.

This string is displayed on the face of the button. When a VALUEattribute is not
specified in HTML, the value property is the string "Reset”

Do not confuse the value property with the name property. The name property
is not displayed on the screen; it is used to refer programmatically to the
button.

Chapter |, Objects, Methods, and Properties 387

Reset.value

Examples The following function evaluates the value property of a group of buttons and
displays it in the msgWindow window:

function valueGetter() {

var msgWindow=window.open("")

msgWindow.document.write("submitButton.value is " +
document.valueTest.submitButton.value + "
")

msgWindow.document.write("resetButton.value is " +
document.valueTest.resetButton.value + "
")

msgWindow.document.write("helpButton.value is " +
document.valueTest.helpButton.value + "
")

msgWindow.document.close()

}

This example displays the following values:

Query Submit

Reset

Help

The previous example assumes the buttons have been defined as follows:

<INPUT TYPE="submit" NAME="submitButton">
<INPUT TYPE="reset" NAME="resetButton">
<INPUT TYPE="button" NAME="helpButton" VALUE="Help">

See also Reset.name

388 Client-Side JavaScript Reference

screen

screen

Contains properties describing the display screen and colors.

Client-side object

Implemented in

JavaScript 1.2

Created by The JavaScript runtime engine creates the screen object for you. You can
access its properties automatically.

Description This object contains read-only properties that allow you to get information
about the user’s display.

Property

Summary \ohod

Description

availHeight

availLeft

availTop

availwidth

colorDepth

height
pixelDepth
width

Specifies the height of the screen, in pixels, minus permanent or
semipermanent user interface features displayed by the
operating system, such as the Taskbar on Windows.

Specifies the x-coordinate of the first pixel that is not allocated
to permanent or semipermanent user interface features.

Specifies the y-coordinate of the first pixel that is not allocated
to permanent or semipermanent user interface features.

Specifies the width of the screen, in pixels, minus permanent or
semipermanent user interface features displayed by the
operating system, such as the Taskbar on Windows.

The bit depth of the color palette, if one is in use; otherwise, the
value is derived from screen.pixelDepth

Display screen height.
Display screen color resolution (bits per pixel).

Display screen width.

Method Summary This object inherits the watch and unwatch methods from Object

Chapter |, Objects, Methods, and Properties 389

screen.availHeight

Examples The following function creates a string containing the current display
properties:

function screen_properties() {
document.examples.results.value = "("+screen.width+" x
"+screen.height+") pixels, "+
screen.pixelDepth +" bit depth, "+
screen.colorDepth +" bit color palette depth.";
} /I end function screen_properties

availHeight

Specifies the height of the screen, in pixels, minus permanent or
semipermanent user interface features displayed by the operating system, such
as the Taskbar on Windows.

Property of screen

Implemented in JavaScript 1.2

See also screen.availTop

availLeft

Specifies the x-coordinate of the first pixel that is not allocated to permanent or
semipermanent user interface features.
Property of screen

Implemented in JavaScript 1.2

See also screen.availWidth

availTop

Specifies the y-coordinate of the first pixel that is not allocated to permanent or
semipermanent user interface features.
Property of screen

Implemented in JavaScript 1.2

Seealso screen.availHeight

390 Client-Side JavaScript Reference

screen.availWidth

availWidth

See also

Specifies the width of the screen, in pixels, minus permanent or semipermanent
user interface features displayed by the operating system, such as the Taskbar
on Windows.

Property of screen

Implemented in JavaScript 1.2
screen.availLeft

colorDepth

The bit depth of the color palette in bits per pixel, if a color palette is in use.
Otherwise, this property is derived from screen.pixelDepth

Property of screen
Implemented in JavaScript 1.2
height

Display screen height, in pixels.
Property of screen

Implemented in JavaScript 1.2

pixelDepth

Display screen color resolution, in bits per pixel.
Property of screen

Implemented in JavaScript 1.2

width

Display screen width, in pixels.
Property of screen
Implemented in JavaScript 1.2

Chapter |, Objects, Methods, and Properties 391

Select

Select

A selection list on an HTML form. The user can choose one or more items from
a selection list, depending on how the list was created.
Client-side object

Implemented in JavaScript 1.0

JavaScript 1.1: added type property; added the ability to add and
delete options.

JavaScript 1.2: added handleEvent method.

Created by The HTML SELECTtag. For a given form, the JavaScript runtime engine creates
appropriate Select objects for each selection list and puts these objects in the
elements array of the corresponding Form object. You access a Select
object by indexing this array. You can index the array either by number or, if
supplied, by using the value of the NAMEattribute.

The runtime engine also creates Option objects for each OPTIONtag inside the
SELECTtag.

Event handlers ¢ onBlur
e onChange
e onFocus

392 Client-Side JavaScript Reference

Select

Description The following figure shows a form containing two selection lists. The user can
choose one item from the list on the left and can choose multiple items from
the list on the right:

liml Metscape - [Join the music club!] [|¢

First name: |JESSE |

Last name: |Schaefer |

Shipping Music types for
method: your free CDs:

2day 4] oning
allowing multiple
selections
select object
Bd Send catalog allowing only

ane selection

A Select object is a form element and must be defined within a FORMag.

Property
Summary Property Description
form Specifies the form containing the selection list.
length Reflects the number of options in the selection list.
name Reflects the NAMEattribute.
options Reflects the OPTIONtags.
selectedindex Reflects the index of the selected option (or the first selected

option, if multiple options are selected).

type Specifies that the object is represents a selection list and
whether it can have one or more selected options.

Chapter |, Objects, Methods, and Properties 393

Select

Method Summary

Examples

Method Description

blur Removes focus from the selection list.

focus Gives focus to the selection list.
handleEvent Invokes the handler for the specified event.

In addition, this object inherits the watch and unwatch methods from
Object

Example 1. The following example displays two selection lists. In the first list,
the user can select only one item; in the second list, the user can select multiple
items.

Choose the music type for your free CD:
<SELECT NAME="music_type_single">
<OPTION SELECTED> R&B
<OPTION> Jazz
<OPTION> Blues
<OPTION> New Age
</SELECT>
<P>Choose the music types for your free CDs:

<SELECT NAME="music_type_multi* MULTIPLE>
<OPTION SELECTED> R&B
<OPTION> Jazz
<OPTION> Blues
<OPTION> New Age
</SELECT>

Example 2. The following example displays two selection lists that let the user
choose a month and day. These selection lists are initialized to the current date.
The user can change the month and day by using the selection lists or by
choosing preset dates from radio buttons. Text fields on the form display the
values of the Select object’s properties and indicate the date chosen and
whether it is Cinco de Mayo.

394 Client-Side JavaScript Reference

<HTML>

<HEAD>

<TITLE>Select object example</TITLE>
</HEAD>

<BODY>

<SCRIPT>

var today = new Date()

function updatePropertyDisplay(monthObj,dayObj) {

}

/I Get date strings
var monthinteger, daylnteger, monthString, dayString
monthinteger=monthObj.selectedIindex
dayInteger=dayObj.selectedindex
monthString=monthObj.options[monthinteger].text
dayString=dayObj.options[dayInteger].text
/I Display property values
document.selectForm.textFullDate.value=monthStrin g+ " "+ dayString
document.selectForm.textMonthLength.value=monthObj.length
document.selectForm.textDayLength.value=dayObj.length
document.selectForm.textMonthName.value=monthObj.name
document.selectForm.textDayName.value=dayObj.name
document.selectForm.textMonthindex.value=monthObj.selectedIndex
document.selectForm.textDaylIndex.value=dayObj.selectedindex
/I Is it Cinco de Mayo?
if (monthObj.options[4].selected && dayObj.options[4].selected)
document.selectForm.textCinco.value="Yes!"
else
document.selectForm.textCinco.value="No"

</SCRIPT>

<l

_______________ >

<FORM NAME="selectForm">
<P>Choose a month and day:
Month: <SELECT NAME="monthSelection"

onChange="updatePropertyDisplay(this,document.selectForm.daySelection)">
<OPTION> January <OPTION> February <OPTION> March

<OPTION> April <OPTION> May <OPTION> June

<OPTION> July <OPTION> August <OPTION> September

<OPTION> October <OPTION> November <OPTION> December

</SELECT>
Day: <SELECT NAME="daySelection"

onChange="updatePropertyDisplay(document.selectForm.monthSelection,this)">
<OPTION> 1 <OPTION> 2 <OPTION> 3 <OPTION> 4 <OPTION> 5
<OPTION> 6 <OPTION> 7 <OPTION> 8 <OPTION> 9 <OPTION> 10
<OPTION> 11 <OPTION> 12 <OPTION> 13 <OPTION> 14 <OPTION> 15
<OPTION> 16 <OPTION> 17 <OPTION> 18 <OPTION> 19 <OPTION> 20
<OPTION> 21 <OPTION> 22 <OPTION> 23 <OPTION> 24 <OPTION> 25
<OPTION> 26 <OPTION> 27 <OPTION> 28 <OPTION> 29 <OPTION> 30
<OPTION> 31

</SELECT>

Select

Chapter |, Objects, Methods, and Properties 395

Select

<P>Set the date to:
<INPUT TYPE="radio" NAME="dateChoice"
onClick="
monthSelection.selectedIindex=0;
daySelection.selectedIindex=0;
updatePropertyDisplay
document.selectForm.monthSelection,document.selectForm.daySelection)">
New Year's Day
<INPUT TYPE="radio" NAME="dateChoice"
onClick="
monthSelection.selectedIindex=4;
daySelection.selectedindex=4;
updatePropertyDisplay
(document.selectForm.monthSelection,document.selectForm.daySelection)">
Cinco de Mayo
<INPUT TYPE="radio" NAME="dateChoice"
onClick="
monthSelection.selectedIindex=5;
daySelection.selectedindex=20;
updatePropertyDisplay
(document.selectForm.monthSelection,document.selectForm.daySelection)">
Summer Solstice
<P>Property values:

Date chosen: <INPUT TYPE="text" NAME="textFullDate" VALUE="" SIZE=20">

monthSelection.length<INPUT TYPE="text" NAME="textMonthLength" VALUE="" SIZE=20">

daySelection.length<INPUT TYPE="text" NAME="textDayLength" VALUE="" SIZE=20">

monthSelection.name<INPUT TYPE="text" NAME="textMonthName" VALUE="" SIZE=20">

daySelection.name<INPUT TYPE="text" NAME="textDayName" VALUE="" SIZE=20">

monthSelection.selectedindex
<INPUT TYPE="text" NAME="textMonthindex" VALUE="" SIZE=20">

daySelection.selectedIindex<INPUT TYPE="text" NAME="textDayIndex" VALUE="" SIZE=20">

Is it Cinco de Mayo? <INPUT TYPE="text" NAME="textCinco" VALUE="" SIZE=20">
<SCRIPT>
document.selectForm.monthSelection.selectedindex=today.getMonth()
document.selectForm.daySelection.selectedindex=today.getDate()-1
updatePropertyDisplay(document.selectForm.monthSelection,document.selectForm.daySelection)
</SCRIPT>
</FORM>
</BODY>
</HTML>

396 Client-Side JavaScript Reference

Select

Example 3. Add an option with the Option constructor. The following
example creates two Select objects, one with and one without the MULTIPLE
attribute. No options are initially defined for either object. When the user clicks
a button associated with the Select object, the populate function creates four
options for the Select object and selects the first option.

<SCRIPT>
function populate(inForm) {
colorArray = new Array("Red", "Blue", "Yellow", "Green")

var option0 = new Option("Red", "color_red")
var optionl = new Option("Blue", "color_blue")
var option2 = new Option("Yellow", "color_yellow")
var option3 = new Option("Green", "color_green")

for (var i=0; i < 4; i++) {
eval(“inForm.selectTest.options[i]=option" + i)
if (i==0) {
inForm.selectTest.options[i].selected=true

}
}
history.go(0)
}
</SCRIPT>

<H3>Select Option() constructor</H3>

<FORM>

<SELECT NAME="selectTest"></SELECT><P>

<INPUT TYPE="button" VALUE="Populate Select List" onClick="populate(this.form)">
<pP>

</[FORM>

<HR>

<H3>Select-Multiple Option() constructor</H3>

<FORM>

<SELECT NAME="selectTest" multiple></SELECT><P>

<INPUT TYPE="button" VALUE="Populate Select List" onClick="populate(this.form)">
</[FORM>

Example 4. Delete an option. The following function removes an option
from a Select object.

function deleteAnltem(theList,itemNo) {
theList.options[itemNo]=null
history.go(0)

}

Seealso Form, Radio

Chapter |, Objects, Methods, and Properties 397

Select.blur

blur
Removes focus from the selection list.
Method of Select
Implemented in JavaScript 1.0
Syntax blur()
Parameters None
Seealso Select.focus
focus
Navigates to the selection list and gives it focus.
Method of Select
Implemented in JavaScript 1.0
Syntax focus()
Parameters None

Description

See also

Use the focus method to navigate to a selection list and give it focus. The user
can then make selections from the list.

Select.blur

form

Description

See also

An object reference specifying the form containing the selection list.
Property of Select

Read-only
Implemented in JavaScript 1.0

Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

Form

398 Client-Side JavaScript Reference

Select.handleEvent

handleEvent

Syntax

Parameters

Invokes the handler for the specified event.
Method of Select

Implemented in JavaScript 1.2

handleEvent(event)

Description

event The name of an event for which the object has an event handler.
length

The number of options in the selection list.

Property of Select

Read-only

Implemented in JavaScript 1.0

This value of this property is the same as the value of Option.length

name

Security

Description

A string specifying the name of the selection list.
Property of Select

Implemented in JavaScript 1.0

JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

The name property initially reflects the value of the NAMEttribute. Changing the
name property overrides this setting. The name property is not displayed on the
screen; it is used to refer to the list programmatically.

If multiple objects on the same form have the same NAMEattribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Select element on the same form
have their NAMEattribute set to "myField" | an array with the elements

Chapter |, Objects, Methods, and Properties 399

Select.options

myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Examples In the following example, the valueGetter ~ function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {
msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")

}

options

An array corresponding to options in a Select object in source order.
Property of Select

Read-only

Implemented in JavaScript 1.0

Description You can refer to the options of a Select object by using the options array.
This array contains an entry for each option in a Select object (OPTIONtag) in
source order. For example, if a Select object named musicStyle contains
three options, you can access these options as musicStyle.options[0]
musicStyle.options[1] , and musicStyle.options[2]

)

To obtain the number of options in the selection list, you can use either
Select.length or the length property of the options array. For example,
you can get the number of options in the musicStyle selection list with either
of these expressions:

musicStyle.length
musicStyle.options.length

400 Client-Side JavaScript Reference

Select.options

You can add or remove options from a selection list using this array. To add or
replace an option to an existing Select object, you assign a new Option
object to a place in the array. For example, to create a new Option object
called jeans and add it to the end of the selection list named myList , you
could use the following code:

jeans = new Option("Blue Jeans", "jeans", false, false);
myList.options[myList.length] = jeans;

To delete an option from a Select object, you set the appropriate index of the
options array to null. Removing an option compresses the options array. For
example, assume that myList has 5 elements in it, the value of the fourth
element is "foo" , and you execute this statement:

myList.options[1] = null
Now, myList has 4 elements in it and the value of the third element is "foo"

After you delete an option, you must refresh the document by using
history.go(0) . This statement must be last. When the document reloads,
variables are lost if not saved in cookies or form element values.

You can determine which option in a selection list is currently selected by
using either the selectedindex property of the options array or of the
Select object itself. That is, the following expressions return the same value:

musicStyle.selectedindex
musicStyle.options.selectedIndex

For more information about this property, see Select.selectedindex

For Select objects that can have multiple selections (that is, the SELECTtag
has the MULTIPLE attribute), the selectedindex property is not very useful. In
this case, it returns the index of the first selection. To find all the selected
options, you have to loop and test each option individually. For example, to
print a list of all selected options in a selection list named mySelect , you could
use code such as this:

document.write("You've selected the following options:\n")
for (var i = 0; i < mySelect.options.length; i++) {
if (mySelect.options[i].selected)
document.write(" mySelect.options[i].text\n")

}

In general, to work with individual options in a selection list, you work with
the appropriate Option object.

Chapter |, Objects, Methods, and Properties 401

Select.selectedIndex

selectedIindex

An integer specifying the index of the selected option in a Select object.
Property of Select

Implemented in JavaScript 1.0

Security JavaScript 1.1. This property is tainted by default. For information on data
tainting, see the Client-Side JavaScript Guide.

Description Options in a Select object are indexed in the order in which they are defined,
starting with an index of 0. You can set the selectedindex property at any
time. The display of the Select object updates immediately when you set the
selectedindex property.

If no option is selected, selectedindex has a value of -1.

In general, the selectedindex property is more useful for Select objects that
are created without the MULTIPLE attribute. If you evaluate selectedindex
when multiple options are selected, the selectedindex property specifies the
index of the first option only. Setting selectedindex clears any other options
that are selected in the Select object.

The Option.selected property is more useful in conjunction with Select
objects that are created with the MULTIPLE attribute. With the
Option.selected property, you can evaluate every option in the options
array to determine multiple selections, and you can select individual options
without clearing the selection of other options.

Examples In the following example, the getSelectedindex function returns the selected
index in the musicType Select object:

function getSelectedindex() {
return document.musicForm.musicType.selectedindex

}

The previous example assumes that the Select object is similar to the
following:

<SELECT NAME="musicType">
<OPTION SELECTED> R&B
<OPTION> Jazz
<OPTION> Blues
<OPTION> New Age
</SELECT>

402 Client-Side JavaScript Reference

Select.type

See also Option.defaultSelected , Option.selected

type
For all Select objects created with the MULTIPLE keyword, the value of the
type property is "select-multiple” . For Select objects created without this
keyword, the value of the type property is "select-one” . This property
specifies the form element’s type.
Property of Select
Read-only
Implemented in JavaScript 1.1

Examples The following example writes the value of the type property for every element

on a form.

for (var i = 0; i < document.forml.elements.length; i++) {
document.writeln("
type i s " + document.forml.elements]i].type)

}

Chapter |, Objects, Methods, and Properties 403

String

String

An object representing a series of characters in a string.
Core object

Implemented in JavaScript 1.0: Create a String object only by quoting characters.

JavaScript 1.1, NES 2.0: added String constructor; added
prototype property; added split method; added ability to pass
strings among scripts in different windows or frames (in previous
releases, you had to add an empty string to another window’s string
to refer to it)

JavaScript 1.2, NES 3.0: added concat , match , replace
search | slice , and substr methods.

)

JavaScript 1.3: added toSource method; changed charCodeAt ,
fromCharCode , and replace methods

ECMA version ECMA-262

Created by The String constructor:
new String(string)

Parameters
string Any string.

Description The String object is a wrapper around the string primitive data type. Do not
confuse a string literal with the String object. For example, the following
code creates the string literal S1 and also the String object S2:

sl
s2

"foo" /I creates a string literal value
new String("foo") // creates a String object

You can call any of the methods of the String object on a string literal
value—TJavaScript automatically converts the string literal to a temporary
String object, calls the method, then discards the temporary String object.
You can also use the String.length property with a string literal.

404 Client-Side JavaScript Reference

Property
Summary

Method Summary

String

You should use string literals unless you specifically need to use a String
object, because String objects can have counterintuitive behavior. For
example:

sl = "2 + 2" /| creates a string literal value

s2 = new String("2 + 2") // creates a String object
eval(sl) /I returns the number 4

eval(s2) /I returns the string "2 + 2"

A string can be represented as a literal enclosed by single or double quotation
marks; for example, “Netscape” or ‘Netscape’.

You can convert the value of any object into a string using the top-level
String function.

Property Description

constructor Specifies the function that creates an object’s prototype.

length Reflects the length of the string.

prototype Allows the addition of properties to a String object.

Method Description

anchor Creates an HTML anchor that is used as a hypertext target.

big Causes a string to be displayed in a big font as if it were in a
BIG tag.

blink Causes a string to blink as if it were in a BLINK tag.

bold Causes a string to be displayed as if it were in a B tag.

charAt Returns the character at the specified index .

charCodeAt Returns a number indicating the Unicode value of the character

at the given index.

concat Combines the text of two strings and returns a new string.

fixed Causes a string to be displayed in fixed-pitch font as if it were in
aTT tag.

fontcolor Causes a string to be displayed in the specified color as if it

were in a tag.

Chapter |, Objects, Methods, and Properties 405

String

Method

Description

fontsize

fromCharCode

indexOf

italics

lastindexOf

link
match

replace

search

slice

small

split

strike

sub

substr

substring

sup

toLowerCase

Causes a string to be displayed in the specified font size as if it
were in a tag.

Returns a string created by using the specified sequence of
Unicode values.

Returns the index within the calling String object of the first
occurrence of the specified value, or -1 if not found.

Causes a string to be italic, as if it were in an | tag.

Returns the index within the calling String object of the last
occurrence of the specified value, or -1 if not found.

Creates an HTML hypertext link that requests another URL.
Used to match a regular expression against a string.

Used to find a match between a regular expression and a string,
and to replace the matched substring with a new substring.

Executes the search for a match between a regular expression
and a specified string.

Extracts a section of a string and returns a new string.

Causes a string to be displayed in a small font, as if it were in a
SMALLtag.

Splits a String object into an array of strings by separating the
string into substrings.

Causes a string to be displayed as struck-out text, as if it were in
a STRIKE tag.

Causes a string to be displayed as a subscript, as if it were in a
SUBtag.

Returns the characters in a string beginning at the specified
location through the specified number of characters.

Returns the characters in a string between two indexes into the
string.

Causes a string to be displayed as a superscript, as if it were in a
SUPtag.

Returns the calling string value converted to lowercase.

406 Client-Side JavaScript Reference

Examples

String

Method Description

toSource Returns an object literal representing the specified object; you
can use this value to create a new object. Overrides the
Object.toSource method.

toString Returns a string representing the specified object. Overrides the
Object.toString method.

toUpperCase Returns the calling string value converted to uppercase.

valueOf Returns the primitive value of the specified object. Overrides the

Object.valueOf method.

In addition, this object inherits the watch and unwatch methods from
Object

Example 1: String literal. The following statement creates a string literal:

var last_name = "Schaefer"

Example 2: String literal properties. The following statements evaluate to 8,
"SCHAEFER," and "schaefer"

last_name.length
last_name.toUpperCase()
last_name.toLowerCase()

Example 3: Accessing individual characters in a string. You can think of a
string as an array of characters. In this way, you can access the individual
characters in the string by indexing that array. For example, the following code
displays “The first character in the string is H”:

var myString = "Hello"
myString[0] // returns "H"

Example 4: Pass a string among scripts in different windows or frames.
The following code creates two string variables and opens a second window:

var lastName = "Schaefer"
var firstName = "Jesse"
empWindow=window.open('string2.html','window1','width=300,height=300")

If the HTML source for the second window (string2.html) creates two string
variables, empLastName and empFirstName , the following code in the first
window assigns values to the second window’s variables:

empWindow.empFirstName=firstName
empWindow.empLastName=lastName

Chapter |, Objects, Methods, and Properties 407

String.anchor

The following code in the first window displays the values of the second
window’s variables:

alert('empFirstName in empWindow i s ' + empWindow.empFirstName)
alert('empLastName in empWindow i s ' + empWindow.empLastName)
anchor

Creates an HTML anchor that is used as a hypertext target.
Metbod of String

Implemented in JavaScript 1.0, NES 2.0

Syntax anchor(nameAttribute)

Parameters
nameAttribute A string.

Description Use the anchor method with the document.write or document.writeln
methods to programmatically create and display an anchor in a document.
Create the anchor with the anchor method, and then call write or writeln
to display the anchor in a document. In server-side JavaScript, use the write
function to display the anchor.

In the syntax, the text string represents the literal text that you want the user
to see. The nameAttribute string represents the NAMEattribute of the A tag.

Anchors created with the anchor method become elements in the
document.anchors array.

Examples The following example opens the msgWindow window and creates an anchor
for the table of contents:

var myString="Table of Contents"
msgWindow.document.writeln(myString.anchor("contents_anchor"))

The previous example produces the same output as the following HTML:

Table of Contents

See also String.link

408 Client-Side JavaScript Reference

String.big

big

Syntax
Parameters

Description

Causes a string to be displayed in a big font as if it were in a BIG tag.
Method of String

Implemented in JavaScript 1.0, NES 2.0

big()

None

Use the big method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

Examples The following example uses string methods to change the size of a string:
var worldString="Hello, world"
document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))
The previous example produces the same output as the following HTML:
<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>
Seealso String.fontsize , String.small
blink
Causes a string to blink as if it were in a BLINK tag.
Method of String
Implemented in JavaScript 1.0, NES 2.0
Syntax blink()
Parameters None

Description

Use the blink method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

Chapter |, Objects, Methods, and Properties 409

String.bold

Examples

See also

The following example uses string methods to change the formatting of a
string:

var worldString="Hello, world"

document.write(worldString.blink())

document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

String.bold , String.italics , String.strike

bold

Syntax
Parameters

Description

Examples

Causes a string to be displayed as bold as if it were in a B tag.
Method of String

Implemented in JavaScript 1.0, NES 2.0

bold()
None

Use the bold method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write
function to display the string.

The following example uses string methods to change the formatting of a
string:
