
PLT Tools: DrScheme Extension Manual

PLT
scheme@cs.rice.edu
Rice University

Version 100alpha3
June 1999

Department of Computer Science – MS 132
Rice University

6100 Main Street
Houston, Texas 77005-1892

Copyright notice

Copyright c©1996-99 PLT, Rice University

Permission to make digital/hard copies and/or distribute this documentation for any purpose is hereby
granted without fee, provided that the above copyright notice, author, and this permission notice appear in
all copies of this documentation.

Send us your Web links

If you use any parts or all of the DrScheme package (software, lecture notes) for one of your courses, for
your research, or for your work, we would like to know about it. Furthermore, if you use it and publicize
the fact on some Web page, we would like to link to that page. Please drop us a line at scheme@cs.rice.edu.
Evidence of interest helps the DrScheme Project to maintain the necessary intellectual and financial support.
We appreciate your help.

Contents

1 Implementing DrScheme Tools 1

1.1 Common Tools Abstractions . 1

1.1.1 Evaluation . 1

1.1.2 Getting the same menu items as DrScheme . 2

2 Tools Reference 3

2.1 drscheme:frame:basics<%> . 3

2.2 drscheme:frame:basics-mixin . 3

2.3 drscheme:rep:text% . 5

2.4 drscheme:unit:definitions-canvas% . 7

2.5 drscheme:unit:frame% . 7

2.6 drscheme:unit:interactions-canvas% . 10

2.7 Userspace . 10

2.8 Processing Programs with Zodiac . 14

2.9 Extending the DrScheme Classes . 16

2.10 Libraries . 17

2.11 Help Desk . 17

2.12 Zodiac . 17

2.12.1 Motivation . 17

2.12.2 Notations and Terminology . 18

2.12.3 Core of McMicMac . 18

2.12.4 Scanner . 19

2.12.5 Reader . 19

2.12.6 Parser . 24

2.13 Zodiac Environments . 25

i

CONTENTS CONTENTS

2.14 Zodiac Attributes . 26

2.15 Zodiac Vocabulary . 26

2.15.1 Linking . 28

2.16 Pattern Matching . 29

2.16.1 Examples . 29

2.17 Core Scheme . 31

Index 33

ii

1. Implementing DrScheme Tools

Tools are designed for major extensions in DrScheme’s functionality. To extend DrScheme to extend the
appearance or the functionality the DrScheme window (say, to annotate programs in certain ways, or to add
buttons on the frame) use a tool. The Static Debugger and the Syntax Checker are implemented as tools.

Libraries are for extensions of DrScheme that only want to add new functions and other values bound in the
users namespace. See the DrScheme manual for more information on constructing libraries.

Tools rely heavily on MzScheme’s units. See units, §7 in PLT MzScheme: Language Manual for informa-
tion on how to construct units. They also require understanding of libraries and collections, §15 in PLT
MzScheme: Language Manual

When DrScheme starts up, it looks in the tools subdirectory of the drscheme collection directory to determine
which tools are installed. For each subdirectory of the tools directory, it looks for two files: unit.ss and
sig.ss. If sig.ss exists it is loaded when all of the signatures of DrScheme are loaded. The file unit.ss is
required to exist. It must evaluate to a unit that imports 6 units matching the signatures: wx^ (all of the
names in toolbox manual beginning with wx). mred^ (all of the names in the toolbox manual beginning
with mred:) mzlib:core^ and mzlib:print-convert^ (defined in the MzLib, §15 in PLT MzScheme:
Language Manual), drscheme:export^ (defined below), and drscheme:zodiac^. The drscheme:zodiac^

signature is the zodiac:system^ signature (defined in PLT McMicMac: Parser Manual), plus the parameter
current-vocabulary-symbol, which specifies the current vocabulary.

The drscheme:export^ signature contains the parameters defined in the parameters section2.9, and the
other classes described in the next subsections.

For example,

(unit/sig ()

(import mred^

mzlib:core^

framework^

[print-convert : mzlib:print-convert^]

[drscheme : drscheme:export^]

[zodiac : drscheme:zodiac^])

(mred:message-box "tool loaded"))

is a simple tool that opens a dialog as drscheme is started up.

1.1 Common Tools Abstractions

1.1.1 Evaluation

In order to evaluate programs that the user has implemented,

1

1.1. Common Tools Abstractions 1. Implementing DrScheme Tools

• The text of the program is in a text% object, available from the definitions-text instance variable
of the drscheme:unit:frame% class.

• Use @flink drscheme:basis:process/zodiac to process the text of the program.

• For evaluation, use the function @flink basis:initialize-parameters .

• Syntax errors are handled by raising a exn:syntax exceptionof the MzScheme manualmz:exns.

1.1.2 Getting the same menu items as DrScheme

In order to get frames that tools create and frames that DrScheme creates to have a common subset of
menus, be sure to mixin frame:standard-menus-mixin and drscheme:frame:basics-mixin

2

2. Tools Reference

2.1 drscheme:frame:basics<%>

This interface is the result of the drscheme:frame:basics-mixin

2.2 drscheme:frame:basics-mixin

Domain: frame:standard-menus<%>

Implements: frame:standard-menus<%>

Implements: drscheme:frame:basics<%>

Use this mixin to establish some common menu items across various DrScheme windows.

file-menu:between-open-and-revert

This method is called between the addition of the open menu-item and before the addition of the revert
menu-item to the file-menu menu. Override it to add additional menus at that point.

- (send a-drscheme:frame:basics-mixin file-menu:between-open-and-revert file-menu) ⇒ void
file-menu : (instance menu%)

Adds an Open Url... menu item, which invokes help desk’s drscheme:help-desk:open-users-url

function.

file-menu:new

This method is called when the new menu-item of the file-menu menu is selected. If file-menu:new is bound
to #f instead of a procedure, the new menu item will not be created.

- (send a-drscheme:frame:basics-mixin file-menu:new item evt) ⇒ void
item : (instance (derived-from menu-item%))
evt : (instance control-event%)

Opens a new empty drscheme window

file-menu:new-string

The result of this method is used to construct the name of this menu. It is inserted between ”&New” and ””
to form the complete name

3

2.2. drscheme:frame:basics-mixin 2. Tools Reference

- (send a-drscheme:frame:basics-mixin file-menu:new-string)⇒ string

Returns the empty string

file-menu:open

This method is called when the open menu-item of the file-menu menu is selected. If file-menu:open is bound
to #f instead of a procedure, the open menu item will not be created.

- (send a-drscheme:frame:basics-mixin file-menu:open item evt) ⇒ void
item : (instance (derived-from menu-item%))
evt : (instance control-event%)

Calls handler:open-file to open a new file. Note that there is a handler installed already that opens
all files in DrScheme frames.

file-menu:open-string

The result of this method is used to construct the name of this menu. It is inserted between ”&Open” and
”...” to form the complete name

- (send a-drscheme:frame:basics-mixin file-menu:open-string)⇒ string

Returns the empty string

help-menu:about

This method is called when the about menu-item of the help-menu menu is selected. If help-menu:about is
bound to #f instead of a procedure, the about menu item will not be created.

- (send a-drscheme:frame:basics-mixin help-menu:about item evt) ⇒ void
item : (instance (derived-from menu-item%))
evt : (instance control-event%)

Opens an about box for DrScheme.

help-menu:about-string

The result of this method is used to construct the name of this menu. It is inserted between ”About ” and
”...” to form the complete name

- (send a-drscheme:frame:basics-mixin help-menu:about-string)⇒ string

Returns the string ”DrScheme”.

help-menu:after-about

This method is called after the addition of the about menu-item to the help-menu menu. Override it to add
additional menus at that point.

- (send a-drscheme:frame:basics-mixin help-menu:after-about help-menu) ⇒ void
help-menu : (instance menu%)

Adds the Help Desk menu item

4

2. Tools Reference 2.3. drscheme:rep:text%

2.3 drscheme:rep:text%

User submitted evaluations in DrScheme are evaluated asynchronously.

The language dialog setting can be recovered from the user’s preferencesof the Framework manu-
alfw:preferences with the key ’drscheme:setting.

- (make-object drscheme:rep:text% line-spacing tabstops) ⇒ drscheme:rep:text% object
line-spacing = 1.0 : non-negative real number
tabstops = null : list of real numbers

The linespacing argument sets the additional amount of space (in DC units) inserted between each
line in the editor when the editor is displayed.

See set-tabs for information about tabstops.

A new keymap% object is created for the new editor. See also get-keymap and set-keymap.

A new style-list object is created for the new editor. See also get-style-list and set-style-list.

break

This method is called when the user clicks on the break button.

- (send a-drscheme:rep:text break)⇒ void

This method breaks the evaluation thread.

display-result

- (send a-drscheme:rep:text display-result v) ⇒ void
v : any scheme value

This displays the result of a computation in the bottom window.

do-many-buffer-evals

This function evaluates all of the expressions in a buffer.

- (send a-drscheme:rep:text do-many-buffer-evals text start end) ⇒ void
text : a text% object
start : int
end : int

It evaluates all of the expressions in text starting at start and ending at end .

initialize-console

- (send a-drscheme:rep:text initialize-console)⇒ void

This inserts the “Welcome to DrScheme” message into the interactions buffer.

report-error

This is called to report an error in the user’s program.

5

2.3. drscheme:rep:text% 2. Tools Reference

- (send a-drscheme:rep:text report-error start-location end-location type error-message) ⇒ void
start-location : a zodiac:zodiac struct
end-location : a zodiac:zodiac struct
type : symbol
error-message : string

See PLT McMicMac: Parser Manual for the definition of the zodiac:zodiac struct.

The default behavior is to higlight the range from the start-location to end-location in the text named
in the file field of start-location, if the file field is a text% instance.

If the file field is not an instance of text%, it will pop up a modal dialog with the error message and
the source location.

reset-console

- (send a-drscheme:rep:text reset-console)⇒ void

Kills the old eventspace, and creates a new parameterization

Also calls the super method.

To change/extend the user parameter settings, override this method, and after the call to the super
method returns, change the value of the parameters in the user’s thread. For example, to add a
definition of a function, f, to the users’ namespace, write this:

(class ...

(inherit user-thread run-in-evaluation-thread)

(rename [super-reset-console reset-console])

(public

[reset-console

(lambda ()

(super-reset-console)

(run-in-evaluation-thread

(lambda ()

(global-defined-value ’f (lambda (...) ...)))))]))

run-in-evaluation-thread

This function runs it’s arguments in the user evaluation thread. This thread is the same as the user’s
eventspace main thread.

- (send a-drscheme:rep:text run-in-evaluation-thread f) ⇒ void
f : (-¿ void)

Calls f , after switching to the user’s thread.

user-thread

This is the thread that the users code runs in. It is updated with set! each time the user clicks on the
execute button.

It is #f before the first time the user click on the Execute button.

This thread has all of its parameters initialized according to the settings of the curren execution. See
parameters, §9.4 in PLT MzScheme: Language Manual for more information about parameters.

- (ivar a-drscheme:rep:text user-thread)⇒ (union #f thread)

6

2. Tools Reference 2.4. drscheme:unit:definitions-canvas%

2.4 drscheme:unit:definitions-canvas%

Superclass: editor-canvas%

Initializes the visiblity of the save button.

- (make-object drscheme:unit:definitions-canvas% parent editor style scrolls-per-page)⇒ drscheme:unit:defi

object
parent : frame%, dialog%, panel%, or pane% object
editor = #f : text% or pasteboard% object or #f
style = null : list of symbols in ’(no-hscroll no-vscroll hide-hscroll hide-vscroll)

scrolls-per-page = 100 : exact integer in [1, 10000]

The style list can contain the following flags:

– ’no-hscroll — disallows horizontal scrolling
– ’no-vscroll — disallows vertical scrolling
– ’hide-hscroll — allows horizontal scrolling, but hides the horizontal scrollbar
– ’hide-vscroll — allows vertical scrolling, but hides the vertical scrollbar

While vertical scrolling of text editors is based on lines, horizontal scrolling and pasteboard vertical
scrolling is based on a fixed number of steps per horizontal page. The scrollsPerPage argument sets
this value.

If a canvas is initialized with #f for editor , install an editor later with set-editor.

2.5 drscheme:unit:frame%

This frame inserts the Scheme and Language menus into the menu bar as it is initialized.

- (make-object drscheme:unit:frame% label parent width height x y style)⇒ drscheme:unit:frame%

object
label : string
parent = #f : frame% object or #f
width = #f : exact integer in [0, 10000] or #f
height = #f : exact integer in [0, 10000] or #f
x = #f : exact integer in [0, 10000] or #f
y = #f : exact integer in [0, 10000] or #f
style = null : list of symbols in ’(no-resize-border no-caption no-system-menu mdi-parent

mdi-child)

The label string is displayed in the frame’s title bar. If the frame’s label is changed (see set-label),
the title bar is updated.

The parent argument can be #f or an existing frame. Under Windows, if parent is an existing frame,
the new frame is always on top of its parent. Also, the parent frame may be an MDI parent frame
from a new MDI child frame. Under Windows and X, a frame is iconized when its parent is iconized.

If parent is #f, then the eventspace for the new frame is the current eventspace, as determined by
current-eventspace . Otherwise, parent ’s eventspace is the new frame’s eventspace.

If the width or height argument is not #f, it specifies an initial size for the frame (assuming that it is
larger than the minimum size), otherwise the minimum size is used.

If the x or y argument is not #f, it specifies an initial location for the frame. Otherwise, a location is
selected automatically (tiling frames and dialogs as they are created).

The style flags adjust the appearance of the frame on some platforms:

7

2.5. drscheme:unit:frame% 2. Tools Reference

– ’no-resize-border — omits the resizeable border around the window (Windows) or grow box
in the bottom right corner (MacOS)

– ’no-caption — omits the title bar for the frame (Windows)
– ’no-system-menu — omits the system menu (Windows)
– ’mdi-child — creates the frame as a MDI (multiple document interface) child frame, mutually

exclsuive with ’mdi-parent (Windows)
– ’mdi-parent — creates the frame as a MDI (multiple document interface) parent frame, mutually

exclsuive with ’mdi-child (Windows)

If the ’mdi-child style is specified, the parent must be a frame with the ’mdi-parent style, otherwise
an exn:application:mismatch exception is raised.

button-panel

This panel goes along the top of the drscheme window and has buttons for important actions the user
frequently executes.

A tool can add a button to this panel to make some new functionality easily accessible to the user.

- (ivar a-drscheme:unit:frame button-panel)⇒ a horizontal-panel% object

definitions-canvas

This canvas is the canvas containing the definitions-text. It is initially the top half of the drscheme
window.

This canvas defaults to a drscheme:unit:definitions-canvas% object, but if you change the
drscheme:get/extend:extend-definitions-canvas parameter, it will use the class in the parameter to
create the canvas.

- (ivar a-drscheme:unit:frame definitions-canvas) ⇒ a drscheme:unit:definitions-canvas%

object

definitions-text

This text is initially the top half of the drscheme window and contains the users program.

This text defaults to a text% object, but if you change drscheme:get/extend:extend-definitions-text

procedure, it will use the extended class to create the text.

- (ivar a-drscheme:unit:frame definitions-text)⇒ a text% object.

disable-evaluation

This method is called to disable evaluation when some evaluation is taking place. See also
enable-evaluation

- (send a-drscheme:unit:frame disable-evaluation)⇒ void

Disables the execute button, the interactions window, and the definitions window.

8

2. Tools Reference 2.5. drscheme:unit:frame%

enable-evaluation

this method is called to enable evaluation after some evaluation has taken place. See also
disable-evaluation

- (send a-drscheme:unit:frame enable-evaluation)⇒ void

Enables the execute button, the interactions window, and the definitions window.

ensure-interactions-shown

Call this method when you want to be sure that the interactions window is shown. If the interactions window
is not shown, this method will show it.

- (send a-drscheme:unit:frame ensure-interactions-shown)⇒ void

execute-callback

This method is called when the user clicks on the execute button.

- (send a-drscheme:unit:frame execute-callback)⇒ void

It calls ensure-interactions-shown and then it calls do-many-buffer-evals passing in the
interactions-text and its entire range.

get-text-to-search

Override this method to specify which text to search.

- (send a-drscheme:unit:frame get-text-to-search)⇒ a text:searching% object

returns the text that is active in the last canvas passed to make-searchable

interactions-canvas

This canvas is the canvas containing the interactions-text. It is initially the bottom half of the drscheme
window.

This canvas defaults to a drscheme:unit:interactions-canvas% object, but if you use the
drscheme:get/extend:extend-interactions-canvas procedure, it will use the extended class to create
the canvas.

- (ivar a-drscheme:unit:frame interactions-canvas) ⇒ a drscheme:unit:interactions-canvas%

object

interactions-text

This text is initially the bottom half of the drscheme window and contains the users interactions with the
REPL.

This text defaults to a drscheme:rep:text%object, but if you use the drscheme:get/extend:extend-interactions-text
procedure, it will use the extended class to create the text.

9

2.6. drscheme:unit:interactions-canvas% 2. Tools Reference

- (ivar a-drscheme:unit:frame interactions-text)⇒ a drscheme:rep:text% object.

make-searchable

- (send a-drscheme:unit:frame make-searchable canvas) ⇒ void
canvas : a drscheme:unit:interactions-canvas% object

stores the canvas, until get-text-to-search is called.

update-shown

This method is called when the user selects items of the View menu.

- (send a-drscheme:unit:frame update-shown)⇒ void

Updates the interactions and definitions windows based on the contents of the menus.

2.6 drscheme:unit:interactions-canvas%

- (make-object drscheme:unit:interactions-canvas% parent editor style scrolls-per-page)⇒ drscheme:unit:int

object
parent : frame%, dialog%, panel%, or pane% object
editor = #f : text% or pasteboard% object or #f
style = null : list of symbols in ’(no-hscroll no-vscroll hide-hscroll hide-vscroll)

scrolls-per-page = 100 : exact integer in [1, 10000]

The style list can contain the following flags:

– ’no-hscroll — disallows horizontal scrolling
– ’no-vscroll — disallows vertical scrolling
– ’hide-hscroll — allows horizontal scrolling, but hides the horizontal scrollbar
– ’hide-vscroll — allows vertical scrolling, but hides the vertical scrollbar

While vertical scrolling of text editors is based on lines, horizontal scrolling and pasteboard vertical
scrolling is based on a fixed number of steps per horizontal page. The scrollsPerPage argument sets
this value.

If a canvas is initialized with #f for editor , install an editor later with set-editor.

2.7 Userspace

This set of functions deal with the language level settings for DrScheme. Along with that comes a type,
setting that captures all of the settings for each language level. These functions operate on elemnts of that
type.

current-setting

This is a parameterof the MzScheme manualmz:parameters that has the value of the current setting. This
parameter’s value reflects the current settings of the language in the interactions window, which may be
different from the current settings in the language dialog. The language dialog setting can be recovered from
the user’s preferencesof the Framework manualfw:preferences with the key ’drscheme:setting.

- (current-setting)⇒ setting

Returns the value of the parameter.

10

2. Tools Reference 2.7. Userspace

- (current-setting setting) ⇒ void
setting : setting

Sets the current value of the parameter to setting .

drscheme:basis:add-setting

- (drscheme:basis:add-setting setting) ⇒ void
setting : setting

Adds setting to the list of settings in settings.

drscheme:basis:copy-setting

- (drscheme:basis:copy-setting setting) ⇒ setting
setting : setting

Makes a copy of setting .

drscheme:basis:current-vocabulary

This parameter will be set to a Zodiac vocabulary after calling drscheme:basis:initialize-parameters.

- (drscheme:basis:current-vocabulary)⇒ vocabulary

returns the current Zodiac vocabulary

- (drscheme:basis:current-vocabulary vocab) ⇒ void
vocab : zodiac:vocab

Sets the vocabulary to vocab.

drscheme:basis:find-setting-named

- (drscheme:basis:find-setting-named name) ⇒ setting
name : string

Finds the setting with the name give by name.

drscheme:basis:get-default-setting

Returns a copy of the default setting, the one for the Beginner language level.

- (drscheme:basis:get-default-setting setting) ⇒ setting
setting : setting

drscheme:basis:get-default-setting-name

- (drscheme:basis:get-default-setting-name setting) ⇒ string
setting : setting

Gets the default setting’s name.

11

2.7. Userspace 2. Tools Reference

drscheme:basis:initialize-parameters

- (drscheme:basis:initialize-parameters custodian namespace-flags setting) ⇒ void
custodian : custodian
namespace-flags : (list-of symbols)
setting : setting

This initializes the parametersof the MzScheme manualmz:parameters for the current thread to enable
evaluation in the language level specified by setting . The argument custodian is installed as the current
custodianof the MzScheme manualmz:custodians. The symbols in namespace-flags argument are passed
to make-namespaceof the MzScheme manualmz:namespace when the namespace is created.

This procedures sets the following mzscheme parametersof the MzScheme manualmz:parameters

1. break-enabled
2. compile-allow-set!-undefined
3. compile-allow-cond-fallthrough
4. current-eval
5. current-load
6. current-setting
7. current-custodian
8. current-exception-handler
9. current-namespace

10. current-zodiac-namespace
11. current-print
12. current-load-relative-directory
13. current-require-relative-collection
14. error-print-width
15. error-value-¿string-handler
16. global-port-print-handler
17. print-graph
18. print-struct
19. read-case-sensitive
20. read-curly-brace-as-paren
21. read-square-bracket-as-paren
22. use-compiled-file-kinds

It also sets these Zodiac parameters, which control how code is generated:

1. aries:signal-undefined
2. aries:signal-not-boolean
3. zodiac:allow-reader-quasiquote
4. zodiac:disallow-untagged-inexact-numbers
5. zodiac:allow-improper-lists

It also sets these mzlibof the MzScheme manualmz:mzlib. parameters,

1. mzlib:print-convert:empty-list-name
2. mzlib:print-convert:constructor-style-printing
3. mzlib:print-convert:quasi-read-style-printing
4. mzlib:print-convert:show-sharing
5. mzlib:print-convert:whole/fractional-exact-numbers
6. mzlib:print-convert:abbreviate-cons-as-list
7. mzlib:pretty-print:pretty-print-show-inexactness

Additionally, zodiac:reset-previous-attribute is called wih the arguments #f and #f, unless the
language is MrEd Debug, in which case it is called with #f and #t.

Additionally, these built in mzscheme primitives may be replaced with version that perform checking,
based on the language level. The replacment only happens in the teaching language levels, (Beginner,

12

2. Tools Reference 2.7. Userspace

Intermediate and Advanced). For more details see plt/collects/userspce/ricedefr.ss.

<= < > >=

= + * /

eq?

cons

set-cdr!

list*

append

append!

Additionally, in the non-teaching levels, the variables: argv and program are set.

drscheme:basis:number->setting

- (drscheme:basis:number->setting n) ⇒ setting
n : number

Returns the setting corresponding to the number name.

drscheme:basis:process-file/zodiac

Use this function to process the contents of a file with zodiac. This function must be called with the
parameters controlling the user’s environment active.

- (drscheme:basis:process-file/zodiac filename processor annotate?) ⇒ void
filename : string
processor : (((+ process-finish sexp zodiac:parsed) (-¿ void) -¿ void)
annotate? : boolean

Iteratively processes the contents of the file named by filename. For each expression, calls processor .
If annotate? is #f, processor receives the parsed form of the expression. If annotate? is not #f,
processor recieves an sexpression representing the code to be evaluated for the user’s program. Finally,
varprocessor will receive an element of the process-finish structure after all expressions have been
processed.

drscheme:basis:process-finish?

- (drscheme:basis:process-finish? object) ⇒ boolean
object : TST

Returns #t if object is an instance of the process-finish struct and #f otherwise.

drscheme:basis:process-sexp/zodiac

Use this function to process the contents of a file with zodiac. This function must be called with the
parameters controlling the user’s environment active.

- (drscheme:basis:process-sexp/zodiac sexp processor annotate?) ⇒ void
sexp : sexp
processor : (((+ process-finish sexp zodiac:parsed) (-¿ void) -¿ void)
annotate? : boolean

Processes the sexpression sexp, and calls processor . If annotate? is #f, processor receives the parsed
form of the expression. If annotate? is not #f, processor recieves an sexpression representing the

13

2.8. Processing Programs with Zodiac 2. Tools Reference

code to be evaluated for the user’s program. Finally, varprocessor will receive an element of the
process-finish structure after all expressions have been processed.

drscheme:basis:r4rs-style-printing?

- (drscheme:basis:r4rs-style-printing? setting) ⇒ boolean
setting : setting

Returns #t if this setting has the R4RS style printing.

drscheme:basis:setting-name

- (drscheme:basis:setting-name setting) ⇒ string
setting : setting

Returns the name of the setting .

drscheme:basis:setting-name->number

- (drscheme:basis:setting-name->number name) ⇒ number
name : string

Returns a number for setting . See also drscheme:basis:number->setting.

drscheme:basis:zodiac-vocabulary?

- (drscheme:basis:zodiac-vocabulary? setting) ⇒ boolean
setting : setting

Returns #t if this is a vocabulary that should be processed with zodiac.

settings

This list contains one entry for each language level in drscheme.

- a-settings ⇒ (list-of setting)

2.8 Processing Programs with Zodiac

These functions are used to process sexpressions, files, and portions of buffers through Zodiac, and to retrieve
the vocabulary.

drscheme:basis:process-file/no-zodiac

- (drscheme:basis:process-file/no-zodiac filename f) ⇒ void
filename : string
f : ((+ process-finish sexp zodiac:parsed) (-¿ void) -¿ void)

This function process the file named by filename. It calls drscheme:basis:process/no-zodiac.

14

2. Tools Reference 2.8. Processing Programs with Zodiac

drscheme:basis:process-sexp/no-zodiac

- (drscheme:basis:process-sexp/no-zodiac sexp f) ⇒ void
sexp : sexp
f : ((+ process-finish sexp zodiac:parsed) (-¿ void) -¿ void)

This function calls drscheme:basis:process/no-zodiac.

drscheme:basis:process/no-zodiac

- (drscheme:basis:process/no-zodiac reader f) ⇒ void
reader : (-¿ (+ eof sexp))
f : ((+ sexp drscheme:basis:process-finish) (-¿ void) -¿ void)

This function is used to process a program, without zodiac. The first argument, f , is called
until it returns eof. The result of the first argument is applied to f, in a similar fashion to
drscheme:basis:process/zodiac

drscheme:basis:process/zodiac

- (drscheme:basis:process/zodiac reader f annotate?) ⇒ void
reader : (-¿ zodiac:sexp)
f : ((+ drscheme:basis:process-finish sexp zodiac:parsed) (-¿ void) -¿ void)
annotate? : boolean

This function is used to process a program with McMicMac (see PLT McMicMac: Parser Manual). The
first argument, reader is the result of calling zodiac:read. The second argument, f , is used to process
the intermediate results from zodiac. It must accept either a drscheme:basis:process-finish struc-
ture, indicating that all of the program is processed, or an sexpression or a zodiac:parsed structure.
The final parameter annotate? determines if f receives sexpressions or zodiac:parsed structures.
If annotate? is not #f, f will be passed sexpressions. If it is #f, f will be passed zodiac:parsed

structures.

drscheme:rep:process-text/no-zodiac

- (drscheme:rep:process-text/no-zodiac text f start end) ⇒ void
text : a text% object
f : ((+ process-finish sexp zodiac:parsed) (-¿ void) -¿ void)
start : int
end : int

This function process the text text . It calls drscheme:basis:process/no-zodiac.

drscheme:rep:process-text/zodiac

- (drscheme:rep:process-text/zodiac text f start end annotate?) ⇒ void
text : a text% object
f : ((+ process-finish sexp zodiac:parsed) (-¿ void) -¿ void)
start : int
end : int
annotate? : boolean

This function process the text text . It calls drscheme:basis:process/zodiac.

15

2.9. Extending the DrScheme Classes 2. Tools Reference

2.9 Extending the DrScheme Classes

Each of these names is bound to an extender function. In order to change the behavior of drscheme, you can
derive new classes from the standard classes for the frame, texts, canvases. Each extender accepts a function
as input. The function it accepts must take a class as it’s argument and return a classes derived from that
class as its result. For example:

(drscheme:get/extend:extend-interactions-text

(lambda (super%)

(class super%

(public

[method1 (lambda (x) ...)]

...))))

extends the interactions text class with a method named method1.

Each of these names actually has a percent character appended onto the end of it. Those are not shown
here.

drscheme:get/extend:extend-definitions-canvas

The unextended class is drscheme:unit:definitions-canvas%. This canvas is used in the top window of
drscheme frames.

- (drscheme:get/extend:extend-definitions-canvas definitions-canvas-mixin) ⇒ void
definitions-canvas-mixin : a procedure that accepts a class and produces a class derived from it.

drscheme:get/extend:extend-definitions-text

The unextended class is text:backup-autosave%. This text is used in the top window of drscheme frames.

- (drscheme:get/extend:extend-definitions-text definitions-text-mixin) ⇒ void
definitions-text-mixin : a procedure that accepts a class and produces a class derived from it.

drscheme:get/extend:extend-interactions-canvas

The unextended class is canvas:wide-snip%. This canvas is used in the bottom window of drscheme frames.

- (drscheme:get/extend:extend-interactions-canvas interactions-canvas-mixin) ⇒ void
interactions-canvas-mixin : a procedure that accepts a class and produces a class derived from it.

drscheme:get/extend:extend-interactions-text

The unextended class is drscheme:rep:text%. This text is used in the bottom window of drscheme frames.

- (drscheme:get/extend:extend-interactions-text interactions-text-mixin) ⇒ void
interactions-text-mixin : a procedure that accepts a class and produces a class derived from it.

drscheme:get/extend:extend-unit-frame

The unextended class is drscheme:unit:frame%. This is the frame that implements the main drscheme
window.

16

2. Tools Reference 2.10. Libraries

- (drscheme:get/extend:extend-unit-frame frame-mixin) ⇒ void
frame-mixin : a procedure that accepts a class and produces a class derived from it.

2.10 Libraries

drscheme:rep:invoke-library

This function extends the current namespace with the definitions in the library, if any library is set. If not,
it does nothing.

- (drscheme:rep:invoke-library)⇒ void

2.11 Help Desk

drscheme:help-desk:help-desk

This function opens a help desk window, or brings an already open help desk window to the front. If an
argument is specified, that key is searched for.

- (drscheme:help-desk:help-desk)⇒ void

Opens a help-desk window to the starting page, or just brings a help-desk window to the front (without
changing what page it is viewing).

- (drscheme:help-desk:help-desk key) ⇒ void
key : string

Searches for the string key as an exact search in both the keyword and the index.

drscheme:help-desk:open-url

- (drscheme:help-desk:open-url url) ⇒ void
url : string

Opens url in a new help desk window.

drscheme:help-desk:open-users-url

- (drscheme:help-desk:open-users-url frame) ⇒ void
frame : (union #f (instance frame%))

Queries the user for a URL and opens it in a new help desk window. The frame argument is used as
a parent for the dialog box.

2.12 Zodiac

2.12.1 Motivation

A typical program-processing tool consists of several components: a reader, a parser, and the actual process-
ing component. The reader converts the input text into some internal representation. This representation is
parsed into abstract syntax. The core of the tool processes the abstract syntax and possibly produces some
output. The output is finally presented to the programmer.

17

2.12. Zodiac 2. Tools Reference

Ideally, the output of a program-processing tool should be presented in terms of the original program. The
best way to achieve this form of reporting is to have source-object correlation (or “source correlation”).
Unfortunately, Scheme macros can transform programs in numerous ways, making the task of source corre-
lation difficult.

This document describes the McMicMac package, which provides a front-end for Scheme that generates
source correlation maps. The front-end consists of a scanner, reader, macro-expander and parser, which can
be combined selectively. It provides a common ground from which numerous programming tools can be built
and given powerful and convenient user interfaces.

The rest of this document describes each of these three phases. The parser is only sparsely specified, since the
actual abstract syntax produced by it is completely controlled by the user. (Indeed, this is one of the features
of McMicMac.) Separate documents will describe the default abstract syntaxes provided with McMicMac.

2.12.2 Notations and Terminology

These documents assume a strong familiarity with MzScheme. In particular, the implementation of McMic-
Mac makes extensive use of structures and sub-typing, units and classes.

In these documents, a structure declaration is written as follows:

type (field)

corresponds to the Scheme code

(define-struct type (field))

Sub-typing is declared as in

sub-type : type (added-field)

which corresponds to code such as

(define-struct (sub-type struct:type) (added-field))

In the text, the types are written as type, and the fields as field.

Some of the following chapters have sections on the types used and the procedures provided. It will be
assumed that the available procedures automatically include all those arising out of the structure declarations
mentioned in the types section, even if these are not explicated in the section on procedures.

2.12.3 Core of McMicMac

All structures in these documents, unless otherwise mentioned, are sub-types of a single structure, named
zodiac1. This structure has the form

zodiac (origin start finish)

where origin is an origin struct, while start and finish are location structs. The origin field is currently
unused, and the origin struct is correspondingly unspecified. Locations are represented as a tuple of the line
number, column number, file offset and file name:

location (line column offset file)

1The name is a hold-over from a previous implementation which answered to that name.

18

2. Tools Reference 2.12. Zodiac

The line and column fields contain positive integers starting at 1, while offset contains a non-negative integer
that starts at 0. The type of file is left unspecified. The period struct provides the location of periods in
improper lists:

period (location)

Note that origin, location and period are not sub-types of zodiac.

2.12.4 Scanner

The scanner returns two kinds of objects: tokens in the input program, or the end-of-file delimiter. The
latter is returned as an eof struct:

eof (location)

while all other objects returned by the scanner are a sub-type of scanned :

scanned : zodiac ()

In turn, scanned has one sub-type: token, which is the most specific type of all the objects returned by the
scanner.

token : scanned (object type)

The object and type fields will be documented later.

2.12.5 Reader

Like the scanner, the reader returns either an end-of-file delimiter or the actual object read. The end-of-file
object is of type eof , as defined in Section ??. All other values are elements of read2:

read : zodiac (object)

The reader’s output is sub-divided into scalar and sequence objects3:

scalar : read ()
sequence : read (length)

Most of these sub-types should be self-explanatory:

string : read ()
boolean : read ()
number : read ()
symbol : read (orig-name marks)
char : read ()
list : sequence (marks)
vector : sequence ()
improper-list : sequence (period marks)

In the case of scalar objects, the object field contains the Scheme representation of that object. All sequence
objects have a list of read objects in their object field; in the case of improper-list , the length of this list is
one greater than the number of pairs that constitute the list.

2Rhymes with “dead”, “head”, “routinely bled” and “positively fed”.
3Strings are classified as scalar objects.

19

2.12. Zodiac 2. Tools Reference

The period field contains a period which gives the location of the period in the source that marks a list as
being improper. The orig-name and marks fields are used by parsers that perform hygienic macro-expansion4.

2.12.5.1 Argument Lists

Argument lists are encapsulated within a structure:

arglist (vars)

The vars field is expected to always be a list of binding identifiers. To distinguish between the different
structures of argument lists, a sub-type is used. In Core Scheme, argument lists in the input can only be
(syntactic) lists of identifiers:

sym-arglist : arglist ()

Higher language levels may permit more kinds of argument lists.

zodiac:arglist-decls-vocab

- (zodiac:arglist-decls-vocab)⇒ void

UNDOCUMENTED

zodiac:arglist-pattern

- (zodiac:arglist-pattern)⇒ void

UNDOCUMENTED

zodiac:distinct-valid-id/s?

- (zodiac:distinct-valid-id/s?) ⇒ void

UNDOCUMENTED

zodiac:distinct-valid-syntactic-id/s?

- (zodiac:distinct-valid-syntactic-id/s?) ⇒ void

UNDOCUMENTED

zodiac:expand-expr

- (zodiac:expand-expr read env attrib vocab) ⇒ zodiac:parsed
read : read
env : zodiac:env
attrib : zodiac:attr
vocab : zodiac:vocab

See Zodiac Environments for information on the env argument, Zodiac Attributesor information on
the attrib argument and Zodiac Vocabulariesor information on the vocab argument.

4There is currently no clean way of hiding this detail from the user of McMicMac; elucubration on this is forthcoming.

20

2. Tools Reference 2.12. Zodiac

zodiac:extend-parsed->raw

- (zodiac:extend-parsed->raw)⇒ void

UNDOCUMENTED

zodiac:generate-name

- (zodiac:generate-name)⇒ void

UNDOCUMENTED

zodiac:in-lexically-extended-env

- (zodiac:in-lexically-extended-env)⇒ void

UNDOCUMENTED

zodiac:internal-error

- (zodiac:internal-error zodiac format) ⇒ doesn’t
zodiac : zodiac:zodiac
format : string

This function accepts arbitrarily many arguments after format .

The procedure internal-error is for critical errors; since it is not possible to guarantee that the
object in question is in the McMicMac hierarchy (indeed, that may sometimes be the error), object is
flexible enough to accept any kind of Scheme object.

The argument format is used the format string to printf, and the remaining arguments are meant to
satisfy parameters in the format string.

zodiac:language<=?

- (zodiac:language<=?) ⇒ void

UNDOCUMENTED

zodiac:language>=?

- (zodiac:language>=?) ⇒ void

UNDOCUMENTED

zodiac:lexically-resolved?

- (zodiac:lexically-resolved?) ⇒ void

UNDOCUMENTED

zodiac:make-argument-list

- (zodiac:make-argument-list)⇒ void

UNDOCUMENTED

21

2.12. Zodiac 2. Tools Reference

zodiac:make-empty-back-box

- (zodiac:make-empty-back-box)⇒ void

UNDOCUMENTED

zodiac:make-optargument-list

- (zodiac:make-optargument-list)⇒ void

UNDOCUMENTED

zodiac:marks-equal?

- (zodiac:marks-equal?) ⇒ void

UNDOCUMENTED

zodiac:name-eq?

- (zodiac:name-eq?) ⇒ void

UNDOCUMENTED

zodiac:optarglist-decls-vocab

- (zodiac:optarglist-decls-vocab)⇒ void

UNDOCUMENTED

zodiac:optarglist-pattern

- (zodiac:optarglist-pattern)⇒ void

UNDOCUMENTED

zodiac:parsed->raw

- (zodiac:parsed->raw)⇒ void

UNDOCUMENTED

zodiac:read

- (zodiac:read input location script? first-column) ⇒ (-¿ (union read eof))
input = (current-input-port) : (union input-port (-¿ TST))
location = (make-zodiac 1 1 0) : zodiac-location
script? = #t : boolean
first-column = 1 : exact-integer

When invoked, the reader returns a thunk. Repeatedly invoke this thunk to obtain a series of read
objects until an eof is returned. The names and the functionality of the optional arguments to the
reader, in turn, are:

input This argument can be either an input port or a thunk from which to take the input. The thunk
should return a char , eof or an object appropriate for external .

22

2. Tools Reference 2.12. Zodiac

initial-location The location used for the first character read from the port; subsequent characters
are appropriately offset from it.

script? Whether or not the file is a script. In a script, if the first two chars from port are #!, then
the reader will treat the first line as a comment. (This comment can span multiple lines if each
preceding line ends in a \ before the newline.)

first-column The first column of each line is can be changed by this argument. This is useful for
treating the entire file as if it were indented by some amount. Note that this parameter is unrelated
to the initial location parameter.

Note: It is an error to perform read-char on any port passed to the reader, since this may interfere
with its operation.

zodiac:scheme-expand

- (zodiac:scheme-expand)⇒ void

UNDOCUMENTED

zodiac:scheme-vocabulary

- (zodiac:scheme-vocabulary)⇒ void

UNDOCUMENTED

zodiac:sexp->raw

- (zodiac:sexp->raw sexp) ⇒ sexp
sexp : zodiac:sexp

The input is a member of the read hierarchy. The body is recursively translated into raw Scheme
s-expressions. For symbols, the value in the object field, not in the orig-name field, is used.

zodiac:static-error

- (zodiac:static-error zodiac format) ⇒ doesn’t
zodiac : zodiac:zodiac
format : string

This function accepts arbitrarily many arguments after format .

Use static-error should be used to report syntactic errors. It will not return.

The argument format is used the format string to printf, and the remaining arguments are meant to
satisfy parameters in the format string.

zodiac:structurize-syntax

- (zodiac:structurize-syntax sexp zodiac marks) ⇒ zodiac:read
sexp : mixed
zodiac : zodiac:zodiac
marks = ??? : marks

The first argument is a raw Scheme s-expression that has read objects in one or more positions (type
mixed). The second argument is any object that is an instance of a sub-type of zodiac. The output
is a read representation of the input. All Scheme s-expressions in the input are recursively converted
to read forms, while read forms are left untouched (and are not traversed further). For all raw inputs

23

2.12. Zodiac 2. Tools Reference

that are converted into read objects, the origin, start and finish information is extracted from the
second argument to structurize-syntax. The optional marks argument is used to give symbols and
list forms their initial set of marks. Ordinary users may ignore this argument.

zodiac:syntax-car

- (zodiac:syntax-car sexp) ⇒ zodiac:read
sexp : (union zodiac:list zodiac:improper-list)

Takes the “car” of the syntax. The read-object accessors should not be used to access them. In-
stead use these procedures: zodiac:syntax-car, zodiac:syntax-cdr, zodiac:syntax-null? , and
zodiac:syntax-map.

Use zodiac:structurize-syntax to get the effect of a zodiac:syntax-cons.

zodiac:syntax-cdr

- (zodiac:syntax-cdr sexp) ⇒ zodiac:read
sexp : (union zodiac:list zodiac:improper-list)

Takes the “cdr” of the syntax. The read-object accessors should not be used to access them. In-
stead use these procedures: zodiac:syntax-car, zodiac:syntax-cdr, zodiac:syntax-null? , and
zodiac:syntax-map.

Use zodiac:structurize-syntax to get the effect of a zodiac:syntax-cons.

zodiac:syntax-map

- (zodiac:syntax-map f l1 l2) ⇒ B
f : (union (TST TST -¿ B) (TST -¿ B))
l1 : zodiac:list
l2 = #f : zodiac:list

As with Scheme’s map, syntax-map can take more than one argument (currently, at most two are
allowed).

The read-object accessors should not be used to access them. Instead use these procedures:
zodiac:syntax-car, zodiac:syntax-cdr, zodiac:syntax-null? , and zodiac:syntax-map.

Use zodiac:structurize-syntax to get the effect of a zodiac:syntax-cons.

2.12.6 Parser

Parsers primarily convert read objects into objects of type parsed . We leave the concrete value of
parsed unspecified, since this is application-dependent. There are three additional parameters that
parsing depends on: environments, attributes and vocabularies.

The parser is called expand-expr:

zodiac:syntax-null?

- (zodiac:syntax-null? sexp) ⇒ zodiac:read
sexp : (union zodiac:list zodiac:improper-list)

Tests to see if the syntax is “null”. The read-object accessors should not be used to access them.
Instead use these procedures: zodiac:syntax-car, zodiac:syntax-cdr, zodiac:syntax-null? , and
zodiac:syntax-map.

Use zodiac:structurize-syntax to get the effect of a zodiac:syntax-cons.

24

2. Tools Reference 2.13. Zodiac Environments

zodiac:valid-id/s?

- (zodiac:valid-id/s?) ⇒ void

UNDOCUMENTED

zodiac:valid-id?

- (zodiac:valid-id?) ⇒ void

UNDOCUMENTED

zodiac:valid-syntactic-id/s?

- (zodiac:valid-syntactic-id/s?) ⇒ void

UNDOCUMENTED

zodiac:valid-syntactic-id?

- (zodiac:valid-syntactic-id?) ⇒ void

UNDOCUMENTED

2.13 Zodiac Environments

An environment maps identifiers in the input to information about their intended behavior in the program.
For instance, some identifiers act as keywords that represent a micro or a macro, others are bound by a
binding construct, and others are unbound.

McMicMac uses the type env-entry to range over representations of the possible types of behaviors an
identifier can exhibit. env-entry includes:

macro-resolution (rewriter)
micro-resolution (rewriter)
top-level-resolution ()

The rewriter fields contain a micro or macro, as appropriate. Micros have the type read ×env ×attr ×vocab
−→parsed while macros have the type read ×env −→read .

Languages implemented atop McMicMac will extend env-entry to reflect their binding constructs. Unless
extended, all identifiers that do not resolve to macro or micros will yield top-level-resolutions.

zodiac:extend-env

- (zodiac:extend-env extension env) ⇒ void
extension : (list-of (union new-vars marks))
env : zodiac:env

zodiac:resolve

- (zodiac:resolve id env vocab) ⇒ zodiac:env-entry
id : id

25

2.14. Zodiac Attributes 2. Tools Reference

env : zodiac:env
vocab : zodiac:vocab

zodiac:retract-env

- (zodiac:retract-env retraction env) ⇒ void
retraction : (list-of new-vars)
env : zodiac:env

2.14 Zodiac Attributes

Attributes are used to inherit and synthesize information, and to also communicate it across top-level ex-
pression boundaries.

zodiac:get-attribute

- (zodiac:get-attribute attr key) ⇒ (union TST #f)
attr : zodiac:attr
key : symbol

put-attribute updates the value of an attribute, adding it if not already present.

zodiac:make-attributes

- (zodiac:make-attributes)⇒ zodiac:attr

make-attributes creates a new (empty) table of attributes.

zodiac:put-attribute

- (zodiac:put-attribute attr key value) ⇒ zodiac:attr
attr : zodiac:attr
key : symbol
value : TST

get-attribute returns the value of the attribute, if present, and #f otherwise. The value of attr-entry
is fixed by individual applications.

2.15 Zodiac Vocabulary

McMicMac allows the user to completely specify the syntax of the underlying language. This is done by
providing different vocabularies, which are collections of expanders for the various parts of the language.
Other documentation describes the standard Scheme vocabularies that accompany McMicMac.

A vocabulary consists of micros to manage the treatment of the individual syntactic components: symbols,
literals, lists and improper-lists. All sub-types of scalar other than symbol , in addition to vector , are
considered “literals”5. In addition, micros and macros can be triggered by a leading object of type symbol
in a list .

5These correspond to the self-quoting objects in Scheme.

26

2. Tools Reference 2.15. Zodiac Vocabulary

zodiac:add-ilist-micro

- (zodiac:add-ilist-micro vocab micro)⇒ void
vocab : zodiac:vocab
micro : (zodiac:read zodiac:env zodiac:attr zodiac:vocab -¿ zodiac:parsed)

add-ilist-micro installs the expander for an improper lists of tokens.

zodiac:add-list-micro

- (zodiac:add-list-micro vocab micro) ⇒ void
vocab : zodiac:vocab
micro : (zodiac:read zodiac:env zodiac:attr zodiac:vocab -¿ zodiac:parsed)

add-list-micro installs the expander that handles a list of tokens,

zodiac:add-lit-micro

- (zodiac:add-lit-micro vocab micro) ⇒ void
vocab : zodiac:vocab
micro : (zodiac:read zodiac:env zodiac:attr zodiac:vocab -¿ zodiac:parsed)

add-lit-micro installs the the expander for processing literals.

zodiac:add-macro-form

- (zodiac:add-macro-form macro-name vocab macro) ⇒ void
macro-name : symbol
vocab : zodiac:vocab
macro : (zodiac:read zodiac:env -¿ zodiac:read)

If a list of tokens is headed by a symbol for which a micro or macro has been defined, then the defined
micro or macro is invoked; only otherwise is the micro for lists of tokens invoked.

zodiac:add-micro-form

- (zodiac:add-micro-form micro-name vocab micro)⇒ void
micro-name : symbol
vocab : zodiac:vocab
micro : (zodiac:read zodiac:env zodiac:attr zodiac:vocab -¿ zodiac:parsed)

If a list of tokens is headed by a symbol for which a micro or macro has been defined, then the defined
micro or macro is invoked; only otherwise is the micro for lists of tokens invoked.

zodiac:add-sym-micro

- (zodiac:add-sym-micro vocab micro) ⇒ void
vocab : zodiac:vocab
micro : (zodiac:read zodiac:env zodiac:attr zodiac:vocab -¿ zodiac:parsed)

add-sym-micro installs the expander for individual symbols.

27

2.15. Zodiac Vocabulary 2. Tools Reference

zodiac:copy-vocabulary

- (zodiac:copy-vocabulary v) ⇒ zodiac:vocab
v : zodiac:vocab

copy-vocabulary returns a new vocabulary that contains all the micros and macros contained in the
given vocabulary.

Note: copy-vocabulary literally makes a copy of the given vocabulary. Any changes made after the
copy operation will not be seen by the copy. Thus, the copy should be made only when the programmer
is certain the vocabulary being copied has all the appropriate contents.

zodiac:make-vocabulary

- (zodiac:make-vocabulary)⇒ zodiac:vocab

make-vocabulary creates a new vocabulary that contains no micros or macros. Any syntactic input
parsed with it will result in a syntax error.

zodiac:merge-vocabulary

- (zodiac:merge-vocabulary v1 v2) ⇒ zodiac:vocab
v1 : zodiac:vocab
v2 : zodiac:vocab

merge-vocabulary merges two vocabularies; the first argument is destructively updated by each of
the entries in the second argument.

2.15.1 Linking

McMicMac has been written so that it can be used independently of the graphical components of
DrScheme. Its only requirement is that it be run under MzScheme (or any other “sufficiently compati-
ble” system). Thus, McMicMac can be used with tools both within and without DrScheme. Linking to
McMicMac inside DrScheme is done as part of the standard interface for DrScheme tools. This section
describes how a tool linking directly to McMicMac should do so.

The code for McMicMac is found in the zodiac directory of the Rice PLT distribution (say this path
is bound to plt-home). To load McMicMac into the system, use

(require-library "fileu.ss") ; to load load-recent

(load-recent (build-path plt-home "zodiac" "load"))

This will ensure all the files are loaded, and that the compiled versions are loaded where available and
newer than their source. All the McMicMac signatures mentioned below are in the file sigs.ss.

Any unit wanting to use the McMicMac procedures must include the signature zodiac:system^ among
its imports. The unit zodiac:system@, which satisfies this signature, contains all the requisite code.
Linking to zodiac:system@ requires it be passed two parameters, in this order:

Error Interface McMicMac requires an implementation of the error handlers (Section ??). Thus,
a unit satisfying the signature zodiac:interface^, containing the error handlers that have
the described types, must be provided. McMicMac provides a default unit with no imports,
zodiac:default-interface@, that meets this signature, but those procedures will likely be un-
satisfactory for most presentation needs. They are provided only to provide a template and to
reduce the effort needed to start using McMicMac; users are strongly encouraged to replace them.

Language Parameters McMicMac takes several parameters that customize its language. These are
listed in the signature plt:parameters^ (from the file sparams.ss in the directory lib of the
PLT distribution), and the settings for MzScheme are in the unit plt:mzscheme-parameters@.

28

2. Tools Reference 2.16. Pattern Matching

Invoking this latter unit with no arguments will yield the appropriate values, which can then be
passed to McMicMac.

The implementation of zodiac:default-interface@, and a sample linkage, can be found in the file
invoke.ss.

Note: It is suggested that users of McMicMac use the prefix mechanism while importing into a unit to
prefix all McMicMac names. Since the system is not entirely documented, this will prevent unexpected
name clashes (though if they should arise, the file sigs.ss should be consulted to see what names
are exported). In addition, McMicMac provides different definitions for standard Scheme primitives
such as read and make-vector. Mixing these values with traditional Scheme primitives will lead to
confusion and, sometimes, insidious errors. Using a prefix helps the user clarify when a McMicMac
primitive is desired and when the Scheme primitive should be used instead.

2.16 Pattern Matching

Since McMicMac is intended to serve as a platform for writing tools that process programs, it is invaluable
to have a utility that syntactically validates and de-constructs input program phrases. Since McMicMac is
currently geared toward processing Scheme programs, it currently includes a pattern-matching utility that
processes Scheme s-expressions in their McMicMac-enriched forms (i.e., embedded in the read type).

The pattern matcher in McMicMac is procedural in nature. This means that it does not define any macros
or core forms; rather, patterns are defined and matched against using a series of procedure calls. A current
area of investigation is into whether there is a reasonable syntactic interface that can be provided for these
procedures and, if so, what that interface is.

This document describes McMicMac’s pattern matcher and provides some examples of its use.

The pattern matcher includes a pattern compiler, which pre-processes patterns to generate efficient code
that performs two tasks: to validate the input, and to bind pattern variables against the corresponding
components of the input.

The pattern matcher introduces four new types: the keyword list, kwd-list ; the (raw) pattern, pat ; the
compiled pattern, cpat ; and the pattern environment, penv . For now, kwd-list is just a synonym for the type
list(scheme-symbol).

2.16.1 Examples

The source for match-and-rewrite is presented first:

(define match-and-rewrite

(lambda (expr rewriter out kwd env)

(let ((p-env (match-against rewriter expr env)))

(and p-env

(pexpand out p-env kwd))))))

This assumes that a compiled pattern has already been generated for use as the rewriter argument. A
typical use might be:

(let* ((kwd ’(let))

(in-pattern ’(let ((v e) ...) b))

(out-pattern ’((lambda (v ...) b) e ...))

(m\&e (make-match\&env in-pattern-1 kwd)))

(lambda (expr env)

(or (match-and-rewrite expr m\&e out-pattern kwd env)

(static-error expr "Malformed let"))))

29

2.16. Pattern Matching 2. Tools Reference

This implements the let macro used by many Scheme implementations. Note that the compiled pattern,
bound to m&e, is created outside the procedure representing the let macro.

(let* ((kwd ’(lambda))

(in-pattern ’(lambda args body))

(m&e (make-match&env in-pattern kwd)))

(lambda (expr env attributes vocab)

(cond

((match-against m&e expr env)

=>

(lambda (p-env)

(let ((args (pexpand ’args p-env kwd))

(body (pexpand ’body p-env kwd)))

(make-lambda-form args body))))

(else

(static-error expr "Malformed lambda body")))))

In this example, a simplified version of the Scheme lambda expression is shown. Note that there is no
checking done to ensure that args does indeed match against a well-formed argument list. After the pattern
variables are expanded, the results are passed to the procedure make-lambda-form, which may represent an
abstract syntax constructor.

zodiac:make-match&env

- (zodiac:make-match&env kl) ⇒ zodiac:cpat
kl : (listof keyword)

make-match&env is used to pre-compile patterns. Typically, the computation that compiles patterns
will be hoisted out of procedure bodies so that the compilation takes place once while its result can be
used several times.

zodiac:match-against

- (zodiac:match-against pattern exp env) ⇒ (union penv #f)
pattern : zodiac:cpat
exp : zodiac:read
env : zodiac:env

match-against performs the actual matching of a given expression (of type read) against a compiled
pattern6. If the expression matches the pattern, a pattern environment, which is a non-false value, is
returned; else the result is #f.

zodiac:match-and-rewrite

- (zodiac:match-and-rewrite sexp pattern1 pattern2 keywords) ⇒ (union mixed #f)
sexp : zodiac:read
pattern1 : zodiac:cpat
pattern2 : zodiac:pat
keywords : (list keyword)

match-and-rewrite is used to provide a concise means of writing rewrite rules. It is particularly useful
for writing source-to-source transformations (macros). In Section 2.16.1, we will show the source for
this procedure.

6The environment is provided to determine whether a keyword has been lexically shadowed.

30

2. Tools Reference 2.17. Core Scheme

zodiac:pexpand

- (zodiac:pexpand pattern env keywords) ⇒ mixed
pattern : zodiac:pat
env : zodiac:penv
keywords : (listof keyword)

pexpand expands patterns in the context of a pattern environment and a list of keywords. The first
argument is recursively copied verbatim into the output unless an identifier is encountered that is
bound in the pattern environment and is not in the keyword list; this identifier is replaced by its
binding, which has type read , in the pattern environment, and transcription proceeds accordingly. The
output of compositing pexpand with structurize-syntax yields an object of type read , which can be
subjected to further pattern matching, etc.

2.17 Core Scheme

The core portions of the McMicMac vocabulary that parse Scheme are found in the unit
zodiac:scheme-core@, which satisfies the signature zodiac:scheme-core^. This document describes the
Core Scheme unit.

The primary task of Core Scheme is to create a vocabulary, scheme-vocabulary, which will be built up on
in the more advanced vocabularies, and to populate it with micros that handle the core behavior of Scheme.
For instance, a list of tokens (not headed by a keyword) is treated as an application, an improper list is
flagged as an error, and literals are quoted. Vocabularies are provided for parsing argument lists with and
without optional initial values. Predicates are provided for determining the syntactic validity of argument
lists. The rest of this document describes Core Scheme in detail.

2.17.0.1 Vocabularies

scheme-vocabulary is intended to contain all the micros and macros that parse Scheme programs. It is
initially populated with micros for handling the different syntactic categories; all list objects are treated as
applications, awaiting further layers of Scheme to add the various core forms in the language.

arglist-decls-vocab is used to parse argument lists such as those of abstractions. The syntax of arguments
accepted is controlled by the language level at which McMicMac is being used.

2.17.0.2 Types

The parsed type is used to represent the output from the parser. All parsed objects have a back field, which
is used to convey information between program processing tools such as analyzers and monitors:

parsed (back)

2.17.0.3 Expressions

Any expression is either a variable reference, an application or a special form:

varref : parsed (var)
app : parsed (fun args)
form : parsed ()

The var field of a varref is a Scheme symbol. The fun field of app is of type parsed , while args contains a
list of parsed . All the special forms — which are defined in other documents — are sub-types of form.

31

2.17. Core Scheme 2. Tools Reference

2.17.0.4 Identifiers and Binding

The Core Scheme unit recognizes that identifiers may be free or (lexically) bound. To accomodate additional
binding forms, a distinction is first drawn between free and bound variables:

top-level-varref : varref ()
bound-varref : varref (binding)

One sub-type of the latter is also defined:

lexical-varref : bound-varref ()

The binding field of a bound-varref refers to an object of type binding , with a lexical-varref referring to an
object of type lexical-binding :

binding : parsed (var orig-name)
lexical-binding : binding ()

The var field contains a Scheme symbol representing the name of the bound identifier. Since hygienic
renaming may have taken place, the orig-name field holds the original name (which may have been provided
in the source, or been introduced via a macro or micro).

The binding field may be used to distinguish between bound variables in that exactly all occurrences of the
same bound identifier contain the same value in their binding field (in the sense of eq?).

Note: There is no justification for binding to be a sub-type of parsed ; this dependency will be elided.

32

Index

break, 5
button-panel, 8

canvas
scroll bars, 7, 10

current-setting, 10

definitions-canvas, 8
definitions-text, 8
disable-evaluation, 8
display-result, 5
do-many-buffer-evals, 5
drscheme:basis:add-setting, 11
drscheme:basis:copy-setting, 11
drscheme:basis:current-vocabulary, 11
drscheme:basis:find-setting-named, 11
drscheme:basis:get-default-setting, 11
drscheme:basis:get-default-setting-name, 11
drscheme:basis:initialize-parameters, 12
drscheme:basis:number->setting, 13
drscheme:basis:process-file/no-zodiac, 14
drscheme:basis:process-file/zodiac, 13
drscheme:basis:process-finish?, 13
drscheme:basis:process-sexp/no-zodiac, 15
drscheme:basis:process-sexp/zodiac, 13
drscheme:basis:process/no-zodiac, 15
drscheme:basis:process/zodiac, 15
drscheme:basis:r4rs-style-printing?, 14
drscheme:basis:setting-name, 14
drscheme:basis:setting-name->number, 14
drscheme:basis:zodiac-vocabulary?, 14
drscheme:frame:basics-mixin, 3
drscheme:frame:basics<%>, 3
drscheme:get/extend:extend-definitions-canvas,

16
drscheme:get/extend:extend-definitions-text,

16
drscheme:get/extend:extend-interactions-canvas,

16
drscheme:get/extend:extend-interactions-text,

16
drscheme:get/extend:extend-unit-frame, 16
drscheme:help-desk:help-desk, 17
drscheme:help-desk:open-url, 17
drscheme:help-desk:open-users-url, 17
drscheme:rep:invoke-library, 17
drscheme:rep:process-text/no-zodiac, 15
drscheme:rep:process-text/zodiac, 15
drscheme:rep:text%, 5

drscheme:setting, 5, 10
drscheme:unit:definitions-canvas%, 7
drscheme:unit:frame%, 7
drscheme:unit:interactions-canvas%, 10

editor-canvas%, 7
enable-evaluation, 9
ensure-interactions-shown, 9
execute-callback, 9

file-menu:between-open-and-revert, 3
file-menu:new, 3
file-menu:new-string, 3
file-menu:open, 4
file-menu:open-string, 4

get-text-to-search, 9

help-menu:about, 4
help-menu:about-string, 4
help-menu:after-about, 4
’hide-hscroll, 7, 10
’hide-vscroll, 7, 10

initialize-console, 5
interactions-canvas, 9
interactions-text, 9

keymaps
in an editor, 5

make-searchable, 10
’mdi-child, 7
’mdi-parent, 7

’no-caption, 7
’no-hscroll, 7, 10
’no-resize-border, 7
’no-system-menu, 7
’no-vscroll, 7, 10

report-error, 5
reset-console, 6
run-in-evaluation-thread, 6

settings, 14
style lists

in an editor, 5

update-shown, 10
user-thread, 6

33

INDEX

vocabularies, 26

zodiac:add-ilist-micro, 27
zodiac:add-list-micro, 27
zodiac:add-lit-micro, 27
zodiac:add-macro-form, 27
zodiac:add-micro-form, 27
zodiac:add-sym-micro, 27
zodiac:arglist-decls-vocab, 20
zodiac:arglist-pattern, 20
zodiac:copy-vocabulary, 28
zodiac:distinct-valid-id/s?, 20
zodiac:distinct-valid-syntactic-id/s?, 20
zodiac:expand-expr, 20
zodiac:extend-env, 25
zodiac:extend-parsed->raw, 21
zodiac:generate-name, 21
zodiac:get-attribute, 26
zodiac:in-lexically-extended-env, 21
zodiac:internal-error, 21
zodiac:language<=?, 21
zodiac:language>=?, 21
zodiac:lexically-resolved?, 21
zodiac:make-argument-list, 21
zodiac:make-attributes, 26
zodiac:make-empty-back-box, 22
zodiac:make-match&env, 30
zodiac:make-optargument-list, 22
zodiac:make-vocabulary, 28
zodiac:marks-equal?, 22
zodiac:match-against, 30
zodiac:match-and-rewrite, 30
zodiac:merge-vocabulary, 28
zodiac:name-eq?, 22
zodiac:optarglist-decls-vocab, 22
zodiac:optarglist-pattern, 22
zodiac:parsed->raw, 22
zodiac:pexpand, 31
zodiac:put-attribute, 26
zodiac:read, 22
zodiac:resolve, 25
zodiac:retract-env, 26
zodiac:scheme-expand, 23
zodiac:scheme-vocabulary, 23
zodiac:sexp->raw, 23
zodiac:static-error, 23
zodiac:structurize-syntax, 23
zodiac:syntax-car, 24
zodiac:syntax-cdr, 24
zodiac:syntax-map, 24
zodiac:syntax-null?, 24
zodiac:valid-id/s?, 25
zodiac:valid-id?, 25
zodiac:valid-syntactic-id/s?, 25

zodiac:valid-syntactic-id?, 25

34

