Entry Fenner:1980:BTR from compj1980.bib
Last update: Sat Jan  6 02:03:49 MST 2018
              
Top |
Symbols |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Fenner:1980:BTR,
  author =       "T. I. Fenner and G. Loizou",
  title =        "A binary tree representation and related algorithms
                 for generating integer partitions",
  journal =      j-COMP-J,
  volume =       "23",
  number =       "4",
  pages =        "332--337",
  month =        nov,
  year =         "1980",
  CODEN =        "CMPJA6",
  DOI =          "https://doi.org/10.1093/comjnl/23.4.332",
  ISSN =         "0010-4620 (print), 1460-2067 (electronic)",
  ISSN-L =       "0010-4620",
  MRclass =      "68C05 (68E10)",
  MRnumber =     "82a:68054",
  bibdate =      "Tue Mar 25 13:51:56 MST 1997",
  bibsource =    "http://www.math.utah.edu/pub/tex/bib/compj1980.bib;
                 http://www3.oup.co.uk/computer_journal/hdb/Volume_23/Issue_04/",
  URL =          "http://www3.oup.co.uk/computer_journal/hdb/Volume_23/Issue_04/tiff/332.tif;
                 http://www3.oup.co.uk/computer_journal/hdb/Volume_23/Issue_04/tiff/333.tif;
                 http://www3.oup.co.uk/computer_journal/hdb/Volume_23/Issue_04/tiff/334.tif;
                 http://www3.oup.co.uk/computer_journal/hdb/Volume_23/Issue_04/tiff/335.tif;
                 http://www3.oup.co.uk/computer_journal/hdb/Volume_23/Issue_04/tiff/336.tif;
                 http://www3.oup.co.uk/computer_journal/hdb/Volume_23/Issue_04/tiff/337.tif",
  acknowledgement = ack-nhfb,
  classcodes =   "C1160 (Combinatorial mathematics)",
  corpsource =   "Birkbeck Coll., Univ. of London, London, UK",
  fjournal =     "The Computer Journal",
  journal-URL =  "http://comjnl.oxfordjournals.org/",
  keywords =     "algorithms; binary tree representation; combinatorial
                 mathematics; generating integer; lexicographic;
                 partitions; recursive traversal algorithm; trees
                 (mathematics)",
  treatment =    "T Theoretical or Mathematical",
}
Related entries
- 68C05,
23(1)37,
23(1)61,
23(1)73,
24(1)85,
24(2)148,
25(2)257,
25(4)423,
26(2)97
 
- 68E10,
23(2)161,
23(3)248,
24(1)85,
24(2)148,
25(3)338
 
- binary,
23(3)248,
23(3)269,
24(1)42,
25(1)140,
25(1)158,
25(3)316,
25(4)471,
26(2)106,
26(2)154,
26(2)187,
26(3)193,
27(2)178,
28(4)417,
28(4)426,
28(5)538,
29(1)36,
29(2)103,
29(2)171,
29(4)368,
30(2)176,
30(4)308,
30(6)541,
30(6)565,
31(2)141,
31(4)330,
31(6)564,
31(6)565,
32(1)45,
32(1)63,
32(1)68,
32(1)76,
32(3)246,
32(5)470
 
- combinatorial,
23(1)73,
25(1)48,
26(2)97,
26(4)336,
27(2)151,
28(4)439,
30(3)258,
30(3)282,
30(5)433,
31(1)65,
31(4)304,
31(6)564,
32(1)68,
32(1)76,
32(3)281,
32(4)374,
32(5)470,
32(5)474,
32(6)571
 
- generating,
23(1)73,
25(2)257,
26(3)205,
28(2)117,
28(4)433,
31(1)61,
31(3)283,
32(3)281,
32(5)470,
32(6)571
 
- integer,
23(3)256,
25(4)471,
26(2)187,
26(2)187,
27(1)84,
29(2)171,
30(4)372,
32(3)273
 
- lexicographic,
26(1)92,
26(3)205,
27(4)373,
28(4)444,
28(5)538,
30(3)282,
30(3)282-1,
30(6)569,
31(1)61,
31(1)65
 
- mathematics,
23(2)161,
23(3)248,
23(3)256,
25(1)158,
25(2)235,
25(2)239,
25(2)257,
26(2)97,
26(2)106,
26(2)188,
26(3)193,
26(3)205,
26(3)224,
27(2)178,
27(2)184,
27(3)218,
27(3)225,
27(4)368-1,
28(1)73,
28(2)105,
28(3)313,
28(4)417,
28(4)426,
28(4)433,
28(4)439,
28(5)538,
29(1)36,
29(1)52,
29(1)76,
29(2)171,
29(2)176,
29(6)564,
30(3)268,
30(3)277,
30(3)282,
30(4)355,
30(5)433,
30(6)569,
31(1)61,
31(1)65,
31(3)269,
31(4)330,
31(4)353,
31(4)364,
31(6)557,
31(6)564,
31(6)567,
32(1)68,
32(1)76,
32(3)281,
32(4)374,
32(5)470,
32(5)474,
32(6)571
 
- partition,
23(2)187,
23(3)256,
31(3)283,
32(3)281
 
- recursive,
25(2)231,
26(1)15,
26(3)205,
27(2)171,
28(1)78,
29(2)161,
29(2)182,
29(6)531,
30(4)376,
31(3)229,
31(3)283,
31(4)358,
31(6)561,
31(6)565,
32(1)36,
32(3)281
 
- related,
26(4)375,
28(1)82,
30(4)355,
31(3)253,
32(1)55
 
- representation,
25(4)442,
25(4)471,
26(3)235,
26(4)344,
27(2)171,
27(3)225,
28(1)73,
28(2)112,
28(2)184,
28(4)379,
28(4)433,
29(3)241,
29(5)467,
30(2)128,
30(3)214,
30(5)404,
31(1)12,
31(1)17,
31(3)229,
31(3)258,
31(6)525,
32(1)45,
32(1)76,
32(4)333,
32(5)445,
32(6)494,
32(6)549,
32(6)554
 
- traversal,
25(3)397,
27(2)178,
28(4)426,
31(3)269,
31(4)358,
32(1)76