Last update: Sun Oct 15 02:39:02 MDT 2017
Top |
Symbols |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Piziak:1998:RQR,
author = "Robert Piziak and Danny W. Turner",
title = "Real Quaternions and Rotations",
journal = j-MATHEMATICA-J,
volume = "8",
number = "3",
pages = "??--??",
month = "????",
year = "1998",
CODEN = "????",
ISSN = "1047-5974 (print), 1097-1610 (electronic)",
ISSN-L = "1047-5974",
bibdate = "Sat Nov 6 13:34:28 MDT 2010",
bibsource = "http://www.math.utah.edu/pub/tex/bib/mathematicaj.bib;
http://www.mathematica-journal.com/issue/v8n3/",
URL = "http://www.mathematica-journal.com/issue/v8i3/features/turner/contents/html/index.html;
http://www.mathematica-journal.com/issue/v8i3/features/turner/contents/notebooks/Quaternions.nb",
abstract = "Hamilton's algebra of quaternions is introduced and
implemented using Mathematica Version 4. The polar form
of a quaternion is developed and is applied to the
problem of computing the effect of a sequence of
rotations on an object in three-dimensional space.
Quaternion equivalents for rotations via Euler angles
are illustrated.",
acknowledgement = ack-nhfb,
journal-URL = "http://www.mathematica-journal.com/",
}
Related entries
- algebra,
4(1)z-3,
7(3)z-2,
8(4)z-4,
10(3)z-3,
14(z)z-8
- angle,
9(2)z-10
- applied,
6(3)10,
14(z)z-2,
16(z)z-4
- computing,
1(2)51,
2(4)z-3,
4(2)70,
4(3)z-8,
7(3)z-1,
9(2)z-1,
11(2)172,
11(2)z-3,
13(z)z-1,
13(z)z-7
- developed,
4(2)38,
15(z)z-7,
16(z)z-3
- dimensional, three-,
6(2)72
- effect,
10(2)z-5,
14(z)z
- Euler,
1(4)z-7,
11(2)172
- form,
1(3)92,
2(1)88,
2(1)88-1,
5(4)12,
6(2)41,
11(2)172,
12(1)1,
12(1)4,
13(z)z-4,
14(z)z-9
- implemented,
15(z)z-9
- introduced,
6(3)28,
11(2)284,
13(z)z-1,
13(z)z-4
- object,
5(4)8,
11(2)284,
12(1)3,
15(z)z-8
- polar,
4(4)z-7,
6(2)8
- problem,
1(2)65,
1(4)62,
3(3)z-4,
4(1)70,
4(1)z-3,
4(2)54,
6(2)41,
6(2)52,
6(3)22,
6(3)28,
6(3)58,
7(1)z-3,
10(3)z-2,
10(4)z-4,
11(1)z-2,
11(2)172,
11(2)284,
13(z)z,
13(z)z-3,
13(z)z-6,
13(z)z-9,
14(z)z-5,
14(z)z-7,
15(z)z-3,
16(z)z-5
- quaternion,
13(z)z-9
- sequence,
5(4)8,
6(3)65,
9(2)z-1,
13(z)z,
13(z)z-6,
15(z)z-8
- space,
13(z)z-2,
14(z)z
- three-dimensional,
6(2)72
- using,
1(2)45,
1(3)86,
2(2)58,
3(2)31,
3(4)66,
4(1)38,
4(1)64,
4(1)70,
4(1)81,
4(2)38,
6(3)22,
6(3)44,
8(3)z-1,
9(1)z,
9(4)686,
9(4)z-1,
10(1)z-4,
10(4)z-1,
11(2)172,
11(3)z-3,
13(z)z-1,
14(z)z,
14(z)z-1,
14(z)z-3,
15(z)z,
15(z)z-2,
15(z)z-5,
15(z)z-9,
16(z)z-2,
16(z)z-3,
16(z)z-5,
16(z)z-7
- Version,
4(1)26,
4(1)38,
7(1)z-9,
7(2)z-3,
7(4)z-3
- via,
3(3)69,
6(3)44,
9(4)z-2,
11(1)z-4,
11(2)172,
11(3)z-2,
13(z)z-4,
13(z)z-6,
16(z)z-4