Entry Chan:1983:FVP from tcs1980.bib
Last update: Thu Sep 27 02:46:46 MDT 2018
Top |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Chan:1983:FVP,
author = "Tat-hung Chan and O. H. Ibarra",
title = "On the finite-valuedness problem for sequential
machines",
journal = j-THEOR-COMP-SCI,
volume = "23",
number = "1",
pages = "95--101",
month = mar,
year = "1983",
CODEN = "TCSCDI",
ISSN = "0304-3975 (print), 1879-2294 (electronic)",
ISSN-L = "0304-3975",
bibdate = "Sat Nov 22 13:36:07 MST 1997",
bibsource = "http://www.math.utah.edu/pub/tex/bib/tcs1980.bib",
acknowledgement = ack-nhfb,
classification = "C4140 (Linear algebra); C4220 (Automata theory)",
corpsource = "Dept. of Computer Sci., Univ. of Minnesota,
Minneapolis, MN, USA",
fjournal = "Theoretical Computer Science",
journal-URL = "http://www.sciencedirect.com/science/journal/03043975/",
keywords = "accepting computations; accepting states; ambiguity;
distinct outputs; exponential space algorithm; finite
automata; finite products; finite-valuedness problem;
matrices; matrix algebra; nondeterministic finite
acceptors; nondeterministic Mealy sequential machine;
nonnegative integer entries; polynomial bound; space
bound; square space algorithm",
pubcountry = "Netherlands",
treatment = "T Theoretical or Mathematical",
}
Related entries
- acceptor,
10(3)249,
16(1)75,
23(1)37,
24(1)105,
24(2)179,
24(3)313,
29(1)185,
32(3)227
- algebra,
10(3)221,
12(3)229,
13(1)109,
14(3)305,
15(1)1,
15(1)77,
15(2)159,
15(2)201,
16(1)93,
17(1)99,
17(2)151,
17(3)343,
19(1)39,
20(2)95,
21(1)91,
21(1)99,
21(3)281,
21(3)315,
22(1)95,
22(3)317,
23(2)171,
23(2)187,
24(1)73,
25(1)67,
25(2)171,
27(1)225,
27(3)255,
28(3)287,
30(1)91,
31(1)31,
32(1)1,
32(1)61,
32(1)201,
32(3)279,
33(1)117,
33(2)139,
33(2)327,
33(2)331,
34(1)33,
34(1)169,
34(1)207,
34(3)315
- ambiguity,
12(2)127,
12(2)135,
24(3)313,
31(1)61
- bound,
10(1)1,
10(1)53,
10(1)83,
11(3)321,
12(3)339,
14(1)19,
14(1)103,
14(3)337,
15(3)311,
16(3)307,
19(1)39,
22(3)233,
22(3)285,
23(2)171,
23(2)211,
24(3)239,
25(1)1,
26(1)25,
27(1)3,
27(3)241,
28(3)263,
28(3)337,
29(1)75,
29(1)123,
30(3)319,
32(1)173
- C4140,
12(3)229,
13(1)109,
15(1)77,
22(3)317,
23(2)171,
33(1)117,
34(1)207
- C4220,
10(1)19,
10(3)221,
10(3)249,
10(3)273,
11(2)167,
12(2)161,
12(3)333,
13(2)231,
13(3)295,
13(3)315,
13(3)323,
13(3)331,
14(1)39,
14(1)63,
14(1)91,
14(2)155,
14(3)211,
15(2)117,
15(3)311,
16(1)75,
16(2)115,
16(2)187,
16(2)223,
17(1)99,
17(2)229,
17(3)333,
18(1)33,
18(2)207,
19(2)161,
19(2)219,
19(3)253,
19(3)305,
19(3)331,
21(1)27,
21(1)39,
21(2)145,
21(3)237,
21(3)255,
22(1)57,
22(1)219,
22(3)297,
23(1)37,
23(1)103,
23(2)155,
23(2)217,
23(3)231,
23(3)287,
23(3)305,
23(3)333,
24(1)95,
24(1)105,
24(2)123,
24(2)179,
24(3)313,
24(3)331,
25(2)193,
25(3)221,
25(3)311,
26(1)1,
26(1)25,
26(1)197,
26(1)221,
26(1)225,
26(3)327,
26(3)343,
27(1)61,
27(1)121,
27(1)217,
28(1)1,
28(1)223,
28(3)263,
28(3)277,
28(3)315,
28(3)329,
29(1)87,
29(1)123,
30(2)205,
31(3)297,
31(3)317,
32(1)87,
32(1)201,
32(1)221,
32(3)227,
32(3)309,
32(3)321,
32(3)331,
32(3)339,
33(1)3,
33(2)261,
33(2)335,
34(1)157,
34(3)241,
34(3)255
- computation,
10(2)171,
11(2)181,
11(2)207,
12(1)1,
12(2)175,
13(1)17,
13(2)175,
14(2)127,
14(2)187,
14(3)247,
17(2)113,
18(1)41,
19(1)39,
19(2)143,
19(2)161,
20(3)323,
22(1)19,
23(3)305,
24(1)105,
24(2)123,
24(2)195,
25(1)1,
25(3)267,
26(1)53,
26(1)121,
27(1)225,
30(1)49,
31(1)175,
31(3)263,
32(1)61,
32(1)157,
32(3)227,
33(1)z,
34(1)17,
34(1)227
- distinct,
34(3)275
- exponential,
12(3)303
- finite,
10(1)19,
10(2)187,
10(3)273,
11(2)167,
13(2)137,
13(3)323,
13(3)331,
14(1)19,
14(1)39,
14(1)63,
14(2)195,
14(3)227,
15(2)201,
16(2)187,
16(2)223,
17(1)99,
17(3)333,
18(3)325,
19(3)231,
19(3)305,
20(2)95,
21(1)91,
21(2)225,
21(3)357,
22(1)19,
22(1)95,
22(3)285,
22(3)297,
23(1)83,
23(2)155,
23(2)217,
23(3)339,
24(2)179,
24(3)331,
27(1)121,
27(1)217,
28(3)277,
28(3)287,
28(3)315,
28(3)329,
29(1)87,
29(1)185,
31(1)139,
31(3)297,
32(1)173,
32(1)201,
32(3)249,
32(3)321,
33(2)239,
33(2)261,
33(2)335,
34(1)135
- Ibarra, O. H.,
13(3)295,
17(1)55,
19(1)17,
19(2)219,
24(1)35,
24(3)313,
26(1)197,
29(1)123
- integer,
11(2)207,
14(3)211,
14(3)247,
14(3)289,
19(1)17,
23(1)83,
24(1)35,
28(3)263,
31(1)125
- linear,
10(2)123,
11(1)1,
11(3)321,
12(3)229,
13(1)109,
14(3)337,
15(1)77,
16(3)307,
16(3)329,
18(2)207,
19(1)39,
19(2)203,
19(3)321,
19(3)337,
22(1)95,
22(1)195,
22(3)285,
22(3)317,
23(2)171,
23(3)333,
24(2)143,
29(1)1,
32(1)25,
32(1)47,
32(3)227,
32(3)339,
33(1)107,
33(1)117,
33(2)261,
34(1)135,
34(1)207
- matrix,
11(2)123,
11(3)341,
17(1)99,
19(1)39,
21(2)213,
22(1)95,
22(3)317,
23(2)171,
28(3)287,
31(1)125,
31(3)227,
33(1)117
- nondeterministic,
10(1)19,
11(2)181,
11(3)227,
13(2)175,
13(2)193,
13(3)239,
14(1)91,
15(1)27,
15(2)181,
15(3)251,
18(3)301,
20(3)323,
21(1)1,
23(1)37,
23(2)187,
23(3)287,
24(1)105,
24(3)313,
26(3)327,
26(3)343,
28(1)83,
29(1)27,
32(1)121,
32(3)227,
32(3)321,
32(3)331,
33(1)65,
34(1)135,
34(1)227
- nonnegative,
19(1)17,
23(1)69
- output,
15(2)213,
16(2)177,
32(3)227
- polynomial,
10(1)1,
10(1)53,
10(2)111,
11(1)93,
11(3)321,
11(3)331,
11(3)337,
12(1)1,
12(2)161,
12(3)303,
13(3)271,
14(1)91,
14(3)289,
15(1)27,
15(1)77,
15(3)251,
15(3)279,
15(3)329,
16(2)223,
17(1)91,
17(2)163,
18(1)95,
19(1)17,
19(3)287,
21(1)99,
21(1)105,
21(2)179,
21(3)255,
22(1)195,
22(3)285,
22(3)317,
24(3)291,
25(1)67,
26(1)25,
27(1)3,
27(1)127,
28(1)135,
31(1)101,
31(1)125,
31(3)227,
32(1)61,
32(3)279,
34(1)17,
34(1)207
- product,
10(1)53,
13(2)137,
19(3)331,
21(2)213,
22(3)253,
27(1)85,
28(1)135,
31(1)83,
34(3)315
- sequential,
10(1)19,
11(3)247,
12(1)39,
19(2)219,
20(3)265,
24(2)131,
29(1)87,
32(1)25,
32(3)227,
33(2)279,
34(1)135
- space,
15(3)311,
16(1)5,
16(2)115,
16(3)329,
17(2)229,
19(2)161,
20(3)323,
21(1)105,
21(2)179,
21(3)237,
23(2)107,
26(1)25,
26(1)197,
27(1)109,
27(1)127,
29(1)155,
31(3)297,
32(1)77,
32(1)221,
34(3)275
- square,
16(1)25,
23(2)211
- state,
11(2)167,
13(1)45,
14(3)211,
17(1)99,
18(1)33,
23(2)107,
23(2)155,
24(2)179,
29(1)87,
32(1)25