Entry Heintz:1983:DFQ from tcs1980.bib
Last update: Thu Sep 27 02:46:46 MDT 2018
Top |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Heintz:1983:DFQ,
author = "J. Heintz",
title = "Definability and fast quantifier elimination in
algebraically closed fields",
journal = j-THEOR-COMP-SCI,
volume = "24",
number = "3",
pages = "239--277",
month = aug,
year = "1983",
CODEN = "TCSCDI",
ISSN = "0304-3975 (print), 1879-2294 (electronic)",
ISSN-L = "0304-3975",
bibdate = "Sat Nov 22 13:36:07 MST 1997",
bibsource = "http://www.math.utah.edu/pub/tex/bib/tcs1980.bib",
acknowledgement = ack-nhfb,
classification = "C4240 (Programming and algorithm theory)",
corpsource = "Fachbereich Math., Johann Wolfgang Goethe-Univ.,
Frankfurt/Main, West Germany",
fjournal = "Theoretical Computer Science",
journal-URL = "http://www.sciencedirect.com/science/journal/03043975/",
keywords = "algebraic complexity theory; algebraically closed
fields; Bezout-inequality; Bezout-theorem;
computational complexity; definability; fast quantifier
elimination; upper bounds",
pubcountry = "Netherlands",
treatment = "T Theoretical or Mathematical",
}
Related entries
- algebraic,
11(3)321,
12(2)175,
15(1)77,
17(2)113,
18(1)1,
19(3)331,
20(3)209,
21(3)281,
21(3)315,
22(1)95,
25(2)95,
25(3)267,
26(3)243,
27(1)39,
27(1)167,
27(3)255,
28(1)45,
29(1)49,
30(2)139,
31(1)175,
31(3)227,
31(3)263,
33(2)175,
34(1)169,
34(3)275,
34(3)289
- algebraically,
10(1)1
- bound,
10(1)1,
10(1)53,
10(1)83,
11(3)321,
12(3)339,
14(1)19,
14(1)103,
14(3)337,
15(3)311,
16(3)307,
19(1)39,
22(3)233,
22(3)285,
23(1)95,
23(2)171,
23(2)211,
25(1)1,
26(1)25,
27(1)3,
27(3)241,
28(3)263,
28(3)337,
29(1)75,
29(1)123,
30(3)319,
32(1)173
- closed,
15(3)329,
27(1)109,
27(1)121,
28(3)239,
28(3)315,
34(3)275
- computational,
10(1)1,
10(1)53,
10(1)83,
10(2)171,
10(3)221,
11(1)1,
11(1)71,
11(1)93,
11(3)321,
12(1)97,
12(2)119,
12(2)161,
12(3)255,
12(3)291,
13(3)271,
13(3)295,
14(1)1,
14(1)91,
14(3)227,
14(3)247,
14(3)289,
14(3)337,
15(1)77,
15(2)181,
15(2)201,
15(3)291,
15(3)321,
16(1)25,
16(1)99,
16(2)115,
16(3)279,
17(1)55,
17(2)213,
17(3)303,
18(1)95,
18(1)105,
18(3)259,
19(1)1,
19(1)17,
19(1)39,
19(2)161,
19(2)203,
19(3)337,
20(3)323,
21(1)1,
21(1)105,
21(2)179,
21(3)255,
22(1)19,
22(1)195,
22(3)285,
22(3)317,
23(2)171,
23(2)187,
23(3)333,
24(2)123,
24(3)221,
24(3)279,
24(3)291,
25(2)95,
25(2)193,
26(1)197,
26(3)287,
26(3)327,
27(1)3,
27(3)241,
28(1)111,
28(1)135,
28(3)277,
29(1)123,
30(3)241,
30(3)319,
31(1)41,
31(1)101,
31(1)125,
31(1)175,
32(1)61,
32(1)77,
32(1)157,
32(1)173,
32(1)221,
32(3)227,
32(3)279,
33(1)117,
33(2)261,
33(2)305,
34(1)17,
34(1)83,
34(1)207,
34(3)337
- definability,
25(1)1
- elimination,
17(1)43,
21(3)269
- fast,
19(3)253,
21(1)105,
27(3)241
- field,
11(2)207,
15(1)77,
22(3)285
- Heintz, J.,
11(3)321
- quantifier,
11(2)123,
12(3)291,
18(1)105,
21(3)269,
30(3)319
- upper,
16(1)93,
22(3)285,
27(1)3,
27(3)241,
28(3)263,
29(1)123,
30(3)319,
32(1)173