Last update: Fri Mar 23 02:13:54 MDT 2018
Top |
Symbols |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Jiang:2013:AED,
author = "Hao Jiang and Stef Graillat and Canbin Hu and Shengguo
Li and Xiangke Liao and Lizhi Cheng and Fang Su",
title = "Accurate evaluation of the $k$-th derivative of a
polynomial and its application",
journal = j-J-COMPUT-APPL-MATH,
volume = "243",
number = "??",
pages = "28--47",
day = "1",
month = may,
year = "2013",
CODEN = "JCAMDI",
DOI = "https://doi.org/10.1016/j.cam.2012.11.008",
ISSN = "0377-0427 (print), 1879-1778 (electronic)",
ISSN-L = "0377-0427",
MRclass = "65D25",
MRnumber = "3003371",
MRreviewer = "Ana Maria Acu",
bibdate = "Sat Feb 25 13:26:16 MST 2017",
bibsource = "ohttp://www.math.utah.edu/pub/tex/bib/fparith.bib;
http://www.math.utah.edu/pub/tex/bib/jcomputapplmath2010.bib",
URL = "http://www.sciencedirect.com/science/article/pii/S0377042712005018",
acknowledgement = ack-nhfb,
fjournal = "Journal of Computational and Applied Mathematics",
journal-URL = "http://www.sciencedirect.com/science/journal/03770427",
keywords = "compensated algorithm; derivative evaluation;
error-free transformation; floating-point arithmetic;
rounding error",
}
Related entries
- $k$,
233(8)2013,
234(7)2327,
263(z)45,
272(z)97
- accurate,
234(2)526,
234(4)1249,
234(5)1505,
234(6)1747,
234(8)2587,
234(10)3064,
234(11)3122,
235(3)850,
235(5)1085,
235(13)3728,
236(17)4181,
242(z)157,
242(z)185,
251(z)93,
252(z)21,
269(z)101,
271(z)328,
272(z)334
- application,
233(5)1217,
233(6)1380,
233(6)1607,
233(8)1987,
233(9)2170,
233(11)2855,
234(1)21,
234(1)297,
234(1)305,
234(2)407,
234(3)845,
234(3)883,
234(3)906,
234(4)1161,
234(5)1442,
234(7)2259,
234(9)2663,
235(5)1317,
235(5)1412,
235(5)1454,
235(7)1849,
235(8)2112,
235(8)2459,
235(9)2936,
235(10)3245,
235(12)3683,
235(14)4083,
235(15)4439,
235(16)4729,
235(17)5203,
236(1)1,
236(1)49,
236(2)196,
236(3)279,
236(6)1410,
236(6)1435,
236(6)1481,
236(6)1521,
236(7)1733,
236(8)2047,
236(10)2643,
236(10)2717,
236(12)3016,
236(14)3461,
236(15)3561,
236(15)3636,
236(18)4671,
236(18)4798,
236(18)4933,
237(1)136,
239(z)103,
240(z)1,
240(z)135,
242(z)41,
245(z)10,
245(z)30,
246(z)1,
246(z)251,
250(z)1,
250(z)229,
254(z)132,
255(z)384,
255(z)456,
257(z)105,
259(z)925,
260(z)68,
260(z)201,
260(z)218,
260(z)395,
261(z)249,
262(z)223,
262(z)234,
262(z)384,
263(z)129,
263(z)351,
265(z)151,
267(z)117,
270(z)63,
270(z)166
- arithmetic,
235(17)5307,
236(2)196,
259(z)546
- derivative,
233(8)2002,
234(8)2377,
235(1)108,
235(3)563,
235(13)3825,
235(17)4925,
236(2)243,
236(10)2607,
236(10)2622,
236(13)3137,
236(13)3174,
236(17)4525,
237(1)363,
238(z)51,
259(z)14,
260(z)167,
264(z)23,
264(z)65
- error,
231(2)696,
233(7)1685,
233(8)1812,
233(8)2062,
233(9)2351,
233(11)2795,
233(11)2956,
234(1)114,
234(2)526,
234(4)972,
234(4)1049,
234(4)1303,
234(5)1435,
234(5)1586,
234(7)2135,
234(8)2450,
234(8)2543,
234(8)2578,
234(9)2618,
234(10)2903,
234(12)3373,
235(1)59,
235(1)144,
235(1)186,
235(1)293,
235(3)563,
235(5)1245,
235(5)1288,
235(5)1367,
235(7)1781,
235(8)2217,
235(8)2515,
235(8)2805,
235(9)3110,
235(10)3163,
235(12)3395,
235(12)3435,
235(12)3599,
235(14)4237,
235(14)4272,
235(16)4589,
235(17)4949,
235(18)5394,
236(2)265,
236(6)1103,
236(6)1226,
236(6)1370,
236(6)1552,
236(7)1993,
236(10)2643,
236(13)3137,
236(15)3542,
236(15)3835,
236(17)4448,
236(18)4788,
236(18)4810,
237(1)432,
239(z)72,
239(z)406,
241(z)68,
243(z)10,
245(z)133,
249(z)74,
250(z)229,
251(z)67,
251(z)133,
254(z)185,
255(z)133,
255(z)384,
255(z)502,
255(z)529,
258(z)99,
259(z)48,
259(z)117,
260(z)78,
262(z)217,
262(z)261,
263(z)299,
263(z)405,
265(z)69,
265(z)173,
265(z)243,
266(z)73,
269(z)132
- evaluation,
233(7)1685,
233(8)1995,
233(10)2724,
234(1)95,
234(3)825,
234(6)1656,
235(7)1781,
235(8)1956,
235(10)3151,
235(11)3355,
235(14)4174,
236(5)860,
236(5)906,
236(6)1543,
236(8)2126,
239(z)322,
243(z)60,
244(z)77,
245(z)148,
250(z)107,
258(z)57,
260(z)103,
261(z)201,
264(z)71
- floating-point,
236(7)1795
- Jiang, Hao,
235(9)2904
- point, floating-,
236(7)1795
- polynomial,
233(3)847,
233(5)1220,
233(6)1355,
233(6)1366,
233(6)1380,
233(6)1416,
233(6)1446,
233(6)1453,
233(6)1462,
233(6)1491,
233(6)1511,
233(6)1519,
233(6)1554,
233(6)1577,
233(9)2136,
233(9)2227,
233(10)2688,
233(11)3005,
234(1)181,
234(5)1528,
234(5)1586,
234(6)1937,
235(3)660,
235(3)765,
235(3)785,
235(4)895,
235(4)904,
235(4)982,
235(4)998,
235(5)1129,
235(5)1502,
235(6)1557,
235(6)1587,
235(6)1730,
235(8)2670,
235(8)2740,
235(9)2956,
235(9)3015,
235(9)3033,
235(11)3315,
235(14)4059,
235(14)4076,
235(16)4825,
235(16)4851,
235(16)4878,
235(17)4925,
235(17)5232,
235(17)5272,
236(1)1,
236(1)7,
236(1)49,
236(1)65,
236(1)74,
236(1)85,
236(2)196,
236(4)543,
236(4)589,
236(5)924,
236(6)1464,
236(7)1753,
236(11)2763,
236(13)3111,
236(13)3238,
236(13)3349,
236(14)3478,
236(15)3763,
236(15)3817,
237(1)83,
237(1)102,
239(z)415,
240(z)5,
240(z)42,
240(z)51,
240(z)62,
242(z)53,
244(z)10,
244(z)155,
247(z)152,
249(z)133,
250(z)244,
253(z)123,
256(z)16,
256(z)219,
259(z)108,
259(z)877,
260(z)54,
260(z)258,
261(z)249,
265(z)151,
265(z)187,
265(z)220,
267(z)195,
272(z)221,
272(z)251,
272(z)276,
272(z)293,
272(z)449
- rounding,
242(z)157,
242(z)185
- Su, Fang,
235(8)2766
- th,
236(17)4410,
272(z)468
- transformation,
233(5)1217,
233(5)1220,
233(11)3018,
234(7)2069,
235(14)4140,
235(15)4452,
235(16)4851,
236(7)1961,
244(z)49,
250(z)107,
253(z)142,
259(z)485,
267(z)195,
271(z)117