Last update: Fri Mar 23 02:13:54 MDT 2018
Top |
Symbols |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Dubrulle:2010:RTM,
author = "A. A. Dubrulle and B. N. Parlett",
title = "Revelations of a transposition matrix",
journal = j-J-COMPUT-APPL-MATH,
volume = "233",
number = "5",
pages = "1217--1219",
day = "1",
month = jan,
year = "2010",
CODEN = "JCAMDI",
DOI = "https://doi.org/10.1016/j.cam.2008.11.018",
ISSN = "0377-0427 (print), 1879-1778 (electronic)",
ISSN-L = "0377-0427",
MRclass = "65F15 (15A18)",
MRnumber = "MR2559358",
bibdate = "Sat Feb 25 13:24:20 MST 2017",
bibsource = "http://www.math.utah.edu/pub/bibnet/authors/p/parlett-beresford-n.bib;
http://www.math.utah.edu/pub/tex/bib/jcomputapplmath2010.bib",
URL = "http://www.sciencedirect.com/science/article/pii/S0377042709001745",
ZMnumber = "1179.15003",
abstract = "Matrix transposition, which is most commonly thought
of as a simple exchange of the entries of a matrix, is
a similarity transformation. While this transformation
is not unique, its composition is determined by the
spectral configuration of the matrix to which it
applies. We use this relationship here to show that,
conversely, certain properties of the spectrum of a
matrix can be inferred from some knowledge of its
transposition matrices.\par
The paper is organised as follows. Section 2 is a
detailed analysis of the relationship between the
spectrum of a matrix and the constituents of an
associated transposition matrix. In Section 3, we
discuss the spectral properties revealed by
transposition matrices and an application to the
product of two skew-symmetric matrices.",
acknowledgement = ack-nhfb,
fjournal = "Journal of Computational and Applied Mathematics",
journal-URL = "http://www.sciencedirect.com/science/journal/03770427",
}
Related entries
- 15A18,
255(z)805,
268(z)23
- 65F15,
233(5)1326,
249(z)157,
255(z)805,
267(z)218,
268(z)111
- application,
233(6)1380,
233(6)1607,
233(8)1987,
233(9)2170,
233(11)2855,
234(1)21,
234(1)297,
234(1)305,
234(2)407,
234(3)845,
234(3)883,
234(3)906,
234(4)1161,
234(5)1442,
234(7)2259,
234(9)2663,
235(5)1317,
235(5)1412,
235(5)1454,
235(7)1849,
235(8)2112,
235(8)2459,
235(9)2936,
235(10)3245,
235(12)3683,
235(14)4083,
235(15)4439,
235(16)4729,
235(17)5203,
236(1)1,
236(1)49,
236(2)196,
236(3)279,
236(6)1410,
236(6)1435,
236(6)1481,
236(6)1521,
236(7)1733,
236(8)2047,
236(10)2643,
236(10)2717,
236(12)3016,
236(14)3461,
236(15)3561,
236(15)3636,
236(18)4671,
236(18)4798,
236(18)4933,
237(1)136,
239(z)103,
240(z)1,
240(z)135,
242(z)41,
243(z)28,
245(z)10,
245(z)30,
246(z)1,
246(z)251,
250(z)1,
250(z)229,
254(z)132,
255(z)384,
255(z)456,
257(z)105,
259(z)925,
260(z)68,
260(z)201,
260(z)218,
260(z)395,
261(z)249,
262(z)223,
262(z)234,
262(z)384,
263(z)129,
263(z)351,
265(z)151,
267(z)117,
270(z)63,
270(z)166
- associated,
234(8)2562,
235(1)174,
235(5)1490,
235(7)1755,
235(8)2888,
235(12)3481,
236(1)19,
236(1)107,
237(1)589,
253(z)163,
255(z)133,
259(z)660,
260(z)410,
268(z)23,
272(z)417
- certain,
233(6)1607,
233(9)2245,
233(9)2339,
234(4)1049,
235(11)3304,
236(5)916,
236(9)2354,
238(z)180,
270(z)506,
272(z)8
- composition,
235(3)646,
236(5)704,
271(z)307
- configuration,
233(7)1640,
246(z)10,
262(z)3
- entry,
235(3)756
- exchange,
270(z)198
- not,
235(1)154
- paper,
234(11)3104,
236(14)3409,
237(1)1,
252(z)1
- product,
233(6)1596,
233(10)2481,
233(11)2855,
234(1)305,
235(5)1085,
235(5)1482,
235(6)1676,
235(7)1763,
235(15)4496,
236(6)1399,
236(6)1591,
236(15)3720,
236(17)4264,
255(z)671,
257(z)180,
260(z)103,
268(z)135
- property,
233(6)1462,
233(6)1505,
233(9)2235,
235(1)91,
235(1)270,
235(2)478,
235(5)1502,
235(16)4878,
236(1)94,
236(3)411,
236(5)988,
236(9)2354,
236(15)3624,
243(z)1,
244(z)19,
253(z)104,
259(z)536,
260(z)54,
267(z)96,
270(z)283
- relationship,
235(7)1775
- section,
234(4)1267,
236(11)2813,
236(14)3409
- similarity,
269(z)1
- simple,
233(11)3060,
234(1)58,
235(7)1812,
235(9)2944,
236(6)1382,
241(z)19,
243(z)48,
246(z)269,
248(z)15,
256(z)1,
272(z)107
- skew-symmetric,
233(11)2867
- spectral,
233(9)2235,
233(10)2631,
233(10)2652,
234(1)316,
234(5)1492,
234(6)1717,
234(6)1904,
234(10)2986,
234(10)3039,
235(1)120,
235(1)270,
235(3)615,
235(8)2263,
235(10)3229,
235(14)4032,
236(6)1193,
236(9)2406,
236(9)2499,
237(1)145,
237(1)269,
239(z)322,
239(z)380,
239(z)396,
241(z)1,
244(z)90,
244(z)115,
246(z)113,
249(z)107,
250(z)83,
255(z)616,
257(z)46,
259(z)815,
260(z)218,
260(z)494,
263(z)88,
265(z)301,
269(z)118,
272(z)417
- spectrum,
235(16)4519,
238(z)109,
244(z)19,
259(z)522
- symmetric, skew-,
233(11)2867
- transformation,
233(5)1220,
233(11)3018,
234(7)2069,
235(14)4140,
235(15)4452,
235(16)4851,
236(7)1961,
243(z)28,
244(z)49,
250(z)107,
253(z)142,
259(z)485,
267(z)195,
271(z)117
- two,
233(8)1717,
233(8)2002,
233(8)2071,
233(8)2090,
233(10)2575,
233(10)2737,
234(3)667,
234(3)722,
234(3)812,
234(5)1374,
235(1)59,
235(4)916,
235(5)1412,
235(6)1587,
235(7)1763,
235(8)2112,
235(8)2647,
235(13)3817,
235(15)4325,
235(17)5198,
236(1)28,
236(6)1123,
236(6)1137,
236(6)1675,
236(15)3817,
237(1)520,
250(z)96,
250(z)122,
259(z)77,
260(z)117,
260(z)421,
261(z)172,
261(z)201,
261(z)249,
263(z)377,
265(z)151,
265(z)301,
267(z)61,
269(z)42
- use,
233(6)1534,
234(7)2319,
235(3)669,
235(13)3889
- which,
235(1)154,
235(16)4621,
236(16)3905,
262(z)127