Last update: Fri Mar 23 02:13:54 MDT 2018
Top |
Symbols |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Einkemmer:2014:ASS,
author = "Lukas Einkemmer and Alexander Ostermann",
title = "An almost symmetric {Strang} splitting scheme for the
construction of high order composition methods",
journal = j-J-COMPUT-APPL-MATH,
volume = "271",
number = "??",
pages = "307--318",
day = "1",
month = dec,
year = "2014",
CODEN = "JCAMDI",
ISSN = "0377-0427 (print), 1879-1778 (electronic)",
ISSN-L = "0377-0427",
bibdate = "Sat Feb 25 13:34:46 MST 2017",
bibsource = "http://www.math.utah.edu/pub/tex/bib/jcomputapplmath2010.bib",
URL = "http://www.sciencedirect.com/science/article/pii/S0377042714002143",
acknowledgement = ack-nhfb,
fjournal = "Journal of Computational and Applied Mathematics",
journal-URL = "http://www.sciencedirect.com/science/journal/03770427",
}
Related entries
- almost,
234(1)233,
234(8)2501,
235(5)1213,
235(8)2090,
235(11)3342,
236(7)1724,
236(17)4296,
239(z)50,
239(z)304,
253(z)249
- composition,
233(5)1217,
235(3)646,
236(5)704
- construction,
233(7)1660,
234(1)131,
234(6)1953,
234(7)2358,
235(8)2112,
236(4)557,
237(1)654,
240(z)5,
240(z)74,
240(z)204,
243(z)80,
244(z)49,
245(z)75,
249(z)157,
250(z)190,
255(z)417,
256(z)92,
259(z)87,
259(z)485,
260(z)301,
261(z)72,
261(z)249,
265(z)151
- high,
234(3)941,
234(6)1670,
234(6)1773,
234(6)1834,
234(6)1860,
234(6)2020,
234(7)2358,
235(3)837,
235(12)3527,
235(17)5177,
236(4)557,
236(5)937,
236(6)1343,
236(6)1449,
237(1)269,
240(z)204,
249(z)1,
253(z)163,
256(z)168,
259(z)182,
259(z)377,
262(z)234,
262(z)361,
267(z)96,
271(z)328
- order,
233(6)1491,
233(6)1577,
233(7)1697,
233(8)2002,
233(9)2278,
233(10)2696,
234(1)192,
234(2)317,
234(3)906,
234(3)941,
234(4)1105,
234(6)1886,
234(6)1953,
234(7)2358,
234(8)2411,
234(8)2501,
234(10)2969,
234(10)3064,
235(1)301,
235(1)325,
235(3)837,
235(5)1490,
235(5)1553,
235(8)2405,
235(8)2412,
235(8)2442,
235(9)2897,
235(9)2928,
235(11)3270,
235(11)3342,
235(13)3953,
235(14)4047,
235(14)4221,
235(16)4532,
235(16)4629,
235(17)4991,
235(17)5177,
235(17)5326,
236(2)184,
236(4)476,
236(4)557,
236(5)937,
236(6)1442,
236(6)1449,
236(10)2622,
236(11)2754,
236(11)2883,
236(11)2895,
236(15)3647,
236(16)3869,
236(18)4671,
236(18)4762,
237(1)269,
237(1)363,
239(z)152,
240(z)204,
242(z)125,
242(z)261,
245(z)194,
246(z)18,
246(z)52,
246(z)195,
246(z)234,
247(z)68,
248(z)1,
249(z)144,
252(z)27,
252(z)52,
252(z)75,
252(z)86,
253(z)51,
253(z)163,
253(z)204,
254(z)81,
255(z)417,
256(z)16,
256(z)77,
256(z)168,
258(z)99,
259(z)14,
259(z)65,
259(z)108,
259(z)259,
260(z)167,
260(z)449,
262(z)234,
262(z)361,
263(z)45,
263(z)351,
265(z)120,
267(z)96,
268(z)179,
270(z)275,
270(z)522,
271(z)31,
271(z)117,
271(z)328
- Ostermann, Alexander,
255(z)417,
256(z)168,
262(z)361
- scheme,
233(8)2013,
233(8)2062,
233(10)2620,
233(12)3157,
234(1)272,
234(2)613,
234(3)777,
234(3)899,
234(4)1258,
234(7)2054,
234(7)2080,
234(7)2089,
234(7)2098,
234(7)2311,
234(8)2493,
234(8)2501,
234(8)2578,
234(12)3397,
234(12)3445,
235(3)708,
235(5)1245,
235(5)1383,
235(6)1739,
235(7)1790,
235(8)2030,
235(8)2477,
235(11)3270,
235(12)3527,
235(14)4221,
235(14)4237,
235(16)4675,
235(17)4899,
235(17)4966,
235(17)5203,
236(2)253,
236(6)1240,
236(6)1343,
236(15)3654,
236(16)4042,
236(17)4462,
236(18)4660,
236(18)4756,
236(18)4775,
239(z)93,
240(z)174,
243(z)1,
246(z)74,
246(z)136,
246(z)215,
248(z)15,
250(z)229,
251(z)33,
252(z)62,
255(z)404,
258(z)151,
259(z)529,
259(z)835,
260(z)364,
263(z)246,
263(z)299,
264(z)23,
267(z)20,
267(z)82,
270(z)571,
271(z)20,
272(z)148
- splitting,
234(4)1078,
234(7)2143,
235(2)460,
235(3)646,
235(13)3734,
235(15)4452,
236(6)1604,
236(10)2643,
236(13)3198,
241(z)30,
247(z)162,
250(z)16,
255(z)384,
256(z)36,
260(z)281,
261(z)221,
262(z)234,
263(z)160,
265(z)301,
267(z)49,
268(z)145
- symmetric,
233(5)1298,
233(11)3030,
234(1)283,
234(4)995,
234(6)1803,
234(6)1886,
235(8)2423,
235(14)3972,
235(16)4545,
235(16)4652,
235(16)4802,
236(1)49,
236(1)85,
236(4)482,
236(7)2037,
236(11)2883,
236(15)3556,
236(15)3654,
236(16)3880,
236(17)4348,
236(18)4925,
237(1)644,
244(z)49,
246(z)122,
250(z)217,
255(z)825,
256(z)268,
259(z)281,
260(z)236,
260(z)364,
262(z)217,
266(z)18,
266(z)52,
268(z)23,
272(z)221