Entry Madsen:1985:SLL from lnm1985.bib
Last update: Sat Oct 14 02:53:33 MDT 2017
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Madsen:1985:SLL,
author = "Ib Madsen and Martin Raussen",
title = "Smooth and locally linear $g$ homotopy
representations",
journal = j-LECT-NOTES-MATH,
volume = "1172",
pages = "130--156",
year = "1985",
CODEN = "LNMAA2",
DOI = "https://doi.org/10.1007/BFb0074428",
ISBN = "3-540-16061-2 (print), 3-540-39745-0 (e-book)",
ISBN-13 = "978-3-540-16061-8 (print), 978-3-540-39745-8
(e-book)",
ISSN = "0075-8434 (print), 1617-9692 (electronic)",
ISSN-L = "0075-8434",
MRclass = "57S15 (57S25)",
MRnumber = "825778 (87i:57034)",
MRreviewer = "R. K. Lashof",
bibdate = "Fri May 9 19:07:50 MDT 2014",
bibsource = "http://www.math.utah.edu/pub/tex/bib/lnm1985.bib",
URL = "http://link.springer.com/chapter/10.1007/BFb0074428/",
acknowledgement = ack-nhfb,
book-DOI = "https://doi.org/10.1007/BFb0074420",
book-URL = "http://www.springerlink.com/content/978-3-540-39745-8",
fjournal = "Lecture Notes in Mathematics",
journal-URL = "http://link.springer.com/bookseries/304",
}
Related entries
- $g$,
1375(0)60,
1410(0)177
- 57S15,
1167(0)1,
1217(0)115,
1217(0)210,
1255(0)34,
1326(0)1,
1345(0)256,
1361(0)123,
1361(0)253,
1361(0)261,
1375(0)1,
1375(0)89,
1375(0)98,
1375(0)126,
1375(0)132,
1375(0)183,
1375(0)191,
1375(0)198,
1375(0)231
- 57S25,
1126(0)127,
1126(0)420,
1167(0)168,
1172(0)163,
1172(0)167,
1217(0)58,
1217(0)84,
1217(0)115,
1255(0)34,
1361(0)14,
1361(0)261,
1369(0)275,
1375(0)33,
1375(0)42,
1375(0)48,
1375(0)89,
1411(0)124
- homotopy,
1126(0)62,
1167(0)260,
1172(0)17,
1172(0)116,
1172(0)188,
1176(0)21,
1176(0)88,
1176(0)129,
1176(0)215,
1183(0)1,
1183(0)28,
1217(0)26,
1217(0)210,
1217(0)258,
1246(0)75,
1264(0)93,
1286(0)1,
1286(0)93,
1289(0)240,
1298(0)54,
1298(0)82,
1298(0)162,
1318(0)31,
1318(0)192,
1346(0)99,
1361(0)1,
1370(0)24,
1370(0)87,
1370(0)103,
1370(0)193,
1370(0)221,
1375(0)16,
1375(0)60,
1375(0)111
- linear,
1109(0)189,
1121(0)28,
1122(0)105,
1125(0)15,
1128(0)72,
1134(0)55,
1134(0)108,
1135(0)52,
1146(0)176,
1149(0)94,
1149(0)129,
1155(0)60,
1162(0)10,
1162(0)133,
1163(0)72,
1171(0)84,
1185(0)231,
1186(0)85,
1186(0)129,
1186(0)160,
1186(0)191,
1186(0)200,
1191(0)15,
1191(0)38,
1192(0)59,
1192(0)149,
1192(0)181,
1192(0)315,
1214(0)211,
1216(0)40,
1216(0)49,
1216(0)68,
1217(0)58,
1223(0)49,
1223(0)102,
1225(0)52,
1225(0)168,
1230(0)103,
1230(0)167,
1233(0)11,
1236(0)1,
1236(0)208,
1241(0)1,
1242(0)1,
1248(0)142,
1256(0)312,
1262(0)1
- locally,
1167(0)47,
1177(0)91,
1187(0)114,
1201(0)150,
1210(0)125,
1281(0)36,
1281(0)85,
1281(0)120,
1283(0)65,
1292(0)132,
1348(0)1,
1348(0)87,
1359(0)226
- representation,
1111(0)135,
1122(0)130,
1139(0)6,
1142(0)112,
1142(0)126,
1142(0)233,
1146(0)325,
1153(0)297,
1153(0)359,
1167(0)95,
1172(0)188,
1177(0)115,
1177(0)199,
1177(0)341,
1178(0)1,
1178(0)243,
1178(0)272,
1179(0)1,
1185(0)58,
1185(0)118,
1195(0)10,
1204(0)1,
1210(0)158,
1217(0)210,
1234(0)34,
1234(0)267,
1237(0)228,
1243(0)1,
1243(0)15,
1243(0)73,
1243(0)108,
1243(0)273,
1258(0)126,
1258(0)150
- smooth,
1131(0)37,
1174(0)43,
1183(0)128,
1192(0)235,
1217(0)258,
1222(0)1,
1222(0)199,
1248(0)85,
1256(0)1,
1266(0)181,
1311(0)1,
1312(0)54,
1322(0)17,
1324(0)166,
1341(0)172,
1346(0)139,
1364(0)64,
1366(0)116,
1370(0)135,
1375(0)6,
1389(0)183,
1404(0)201,
1405(0)69,
1410(0)1,
1411(0)148