Entry Dijksma:1987:UCK from lnm1985.bib
Last update: Sat Oct 14 02:53:33 MDT 2017
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Dijksma:1987:UCK,
author = "Aad Dijksma and Heinz Langer and Henk de Snoo",
title = "Unitary colligations in {Krein} spaces and their role
in the extension theory of isometries and symmetric
linear relations in {Hilbert} spaces",
journal = j-LECT-NOTES-MATH,
volume = "1242",
pages = "1--42",
year = "1987",
CODEN = "LNMAA2",
DOI = "https://doi.org/10.1007/BFb0072441",
ISBN = "3-540-17833-3 (print), 3-540-47876-0 (e-book)",
ISBN-13 = "978-3-540-17833-0 (print), 978-3-540-47876-8
(e-book)",
ISSN = "0075-8434 (print), 1617-9692 (electronic)",
ISSN-L = "0075-8434",
MRclass = "47B50 (47A20)",
MRnumber = "906270 (89a:47055)",
MRreviewer = "E. R. Tsekanovs{\cprime}ki{\u\i}",
bibdate = "Fri May 9 19:07:18 MDT 2014",
bibsource = "http://www.math.utah.edu/pub/tex/bib/lnm1985.bib",
URL = "http://link.springer.com/chapter/10.1007/BFb0072441/",
acknowledgement = ack-nhfb,
book-DOI = "https://doi.org/10.1007/BFb0072440",
book-URL = "http://www.springerlink.com/content/978-3-540-47876-8",
fjournal = "Lecture Notes in Mathematics",
journal-URL = "http://link.springer.com/bookseries/304",
}
Related entries
- 47A20,
1272(0)39,
1302(0)22
- 47B50,
1359(0)93
- extension,
1130(0)157,
1130(0)195,
1130(0)341,
1130(0)395,
1141(0)121,
1141(0)245,
1142(0)150,
1146(0)288,
1163(0)49,
1171(0)139,
1185(0)361,
1189(0)259,
1194(0)158,
1197(0)134,
1208(0)93,
1223(0)110,
1251(0)265,
1258(0)52,
1258(0)110,
1258(0)126,
1267(0)157,
1270(0)23,
1276(0)313,
1281(0)26,
1302(0)171,
1316(0)305,
1320(0)150,
1320(0)205,
1346(0)357,
1347(0)112,
1351(0)23,
1359(0)159,
1371(0)108,
1381(0)60,
1398(0)100,
1411(0)24
- Hilbert,
1119(0)32,
1124(0)79,
1124(0)146,
1151(0)115,
1153(0)128,
1183(0)32,
1188(0)229,
1223(0)208,
1230(0)138,
1240(0)69,
1242(0)368,
1266(0)24,
1266(0)181,
1318(0)1,
1331(0)161,
1332(0)179,
1348(0)87,
1353(0)140,
1376(0)1,
1384(0)124,
1389(0)87,
1389(0)183,
1390(0)77,
1396(0)256,
1412(0)172
- isometry,
1120(0)45,
1201(0)122,
1277(0)290,
1396(0)99
- linear,
1109(0)189,
1121(0)28,
1122(0)105,
1125(0)15,
1128(0)72,
1134(0)55,
1134(0)108,
1135(0)52,
1146(0)176,
1149(0)94,
1149(0)129,
1155(0)60,
1162(0)10,
1162(0)133,
1163(0)72,
1171(0)84,
1172(0)130,
1185(0)231,
1186(0)85,
1186(0)129,
1186(0)160,
1186(0)191,
1186(0)200,
1191(0)15,
1191(0)38,
1192(0)59,
1192(0)149,
1192(0)181,
1192(0)315,
1214(0)211,
1216(0)40,
1216(0)49,
1216(0)68,
1217(0)58,
1223(0)49,
1223(0)102,
1225(0)52,
1225(0)168,
1230(0)103,
1230(0)167,
1233(0)11,
1236(0)1,
1236(0)208,
1241(0)1,
1248(0)142,
1256(0)312,
1262(0)1
- relation,
1124(0)1,
1130(0)32,
1136(0)90,
1149(0)17,
1149(0)82,
1149(0)175,
1158(0)1,
1170(0)138,
1170(0)166,
1177(0)256,
1177(0)269,
1183(0)195,
1200(0)51,
1234(0)5,
1243(0)240,
1267(0)21,
1277(0)256,
1289(0)210,
1320(0)176,
1344(0)205,
1380(0)197,
1390(0)66,
1396(0)182
- role,
1388(0)16
- symmetric,
1156(0)30,
1158(0)208,
1166(0)72,
1203(0)75,
1209(0)184,
1210(0)58,
1211(0)159,
1211(0)228,
1234(0)267,
1243(0)108,
1243(0)198,
1248(0)40,
1250(0)171,
1250(0)184,
1255(0)53,
1267(0)5,
1267(0)21,
1267(0)168,
1286(0)305,
1293(0)131,
1316(0)328,
1322(0)17,
1332(0)33,
1350(0)266,
1369(0)261,
1376(0)278,
1390(0)66
- Tsekanovs{\cprime}ki{\u\i}, E. R.,
1272(0)1,
1272(0)39
- unitary,
1243(0)15,
1294(0)15,
1375(0)126,
1379(0)125,
1382(0)36,
1390(0)1,
1396(0)89,
1396(0)182