Entry Skurczynski:1993:BHI from tcs1990.bib
Last update: Wed Sep 26 02:11:46 MDT 2018
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Skurczynski:1993:BHI,
author = "Jerzy Skurczy{\'n}ski",
title = "The {Borel} hierarchy is infinite in the class of
regular sets of trees",
journal = j-THEOR-COMP-SCI,
volume = "112",
number = "2",
pages = "413--418",
day = "10",
month = may,
year = "1993",
CODEN = "TCSCDI",
ISSN = "0304-3975 (print), 1879-2294 (electronic)",
ISSN-L = "0304-3975",
bibdate = "Mon Jul 19 22:17:11 MDT 1999",
bibsource = "http://www.elsevier.com/cgi-bin/cas/tree/store/tcs/cas_free/browse/browse.cgi?year=1993&volume=112&issue=2;
http://www.math.utah.edu/pub/tex/bib/tcs1990.bib",
URL = "http://www.elsevier.com/cgi-bin/cas/tree/store/tcs/cas_sub/browse/browse.cgi?year=1993&volume=112&issue=2&aid=1282",
acknowledgement = ack-nhfb,
classification = "C1160 (Combinatorial mathematics); C4210 (Formal
logic); C4220 (Automata theory)",
corpsource = "Math. Inst., Gdansk Univ., Poland",
fjournal = "Theoretical Computer Science",
journal-URL = "http://www.sciencedirect.com/science/journal/03043975/",
keywords = "automata; automata theory; Borel hierarchy; formal
languages; regular sets; set theory; tree languages;
trees (mathematics); weak conditions",
pubcountry = "Netherlands",
treatment = "T Theoretical or Mathematical",
}
Related entries
- Borel,
83(1)97
- condition,
70(1)35,
70(1)151,
70(2)179,
72(1)27,
74(1)3,
75(1)111,
83(1)57,
83(2)189,
86(1)81,
86(2)233,
87(2)315,
88(2)269,
93(2)185,
93(2)227,
93(2)279,
94(1)101,
94(1)141,
94(2)335,
95(2)307,
97(1)143,
97(2)233,
100(1)157,
100(2)267,
100(2)325,
103(1)39,
105(1)7,
109(1)181,
110(1)1,
111(1)89,
112(1)145,
113(1)93,
118(2)301,
120(1)69,
120(2)197,
121(1)309,
126(2)183,
129(1)123,
131(2)271,
132(1)259
- hierarchy,
73(3)313,
80(2)203,
81(1)77,
83(1)97,
83(2)313,
83(2)323,
84(2)199,
85(2)305,
88(2)297,
91(1)71,
95(1)97,
96(2)325,
96(2)345,
97(2)183,
98(2)249,
98(2)289,
100(1)45,
101(2)289,
102(2)215,
104(2)235,
106(2)283,
112(2)339,
113(1)167,
115(2)225,
115(2)261,
116(1)33,
119(2)293,
120(2)293,
123(2)239,
125(2)355,
127(1)123,
129(2)323,
132(1)1,
134(2)263,
134(2)287
- infinite,
73(2)121,
74(1)71,
74(2)121,
74(2)227,
75(1)157,
76(2)309,
82(2)177,
83(2)301,
84(2)165,
86(1)3,
86(2)277,
88(1)83,
88(2)365,
93(2)227,
93(2)327,
94(2)161,
96(1)157,
96(1)z,
99(1)121,
100(1)105,
103(1)143,
103(2)165,
103(2)191,
104(1)3,
107(2)305,
108(1)45,
112(1)145,
112(2)277,
113(1)35,
115(1)63,
116(1)3,
123(1)3,
123(1)55,
125(2)167,
126(1)77,
126(2)183,
129(1)1,
129(2)385,
132(1)37,
132(1)337,
134(1)131,
134(2)329
- regular,
70(2)213,
73(1)91,
73(3)329,
74(3)341,
75(1)157,
76(2)261,
76(2)273,
76(2)323,
77(1)97,
79(1)25,
81(2)305,
82(1)19,
83(2)287,
84(2)293,
85(1)117,
86(2)233,
87(1)43,
87(2)315,
88(1)139,
88(2)287,
88(2)351,
91(1)85,
91(1)101,
96(2)285,
97(2)217,
98(2)163,
99(1)79,
100(1)67,
101(1)133,
103(2)191,
103(2)409,
104(2)161,
106(1)61,
106(1)119,
108(1)17,
108(2)393,
112(2)187,
115(2)261,
116(2)305,
116(2)373,
119(2)267,
120(2)197,
124(2)329,
125(2)315,
125(2)361,
127(2)287,
129(1)187,
131(2)311,
131(2)463,
132(1)71,
133(1)49,
134(1)107,
134(1)119,
134(1)175,
134(1)189,
134(1)253,
134(2)537
- weak,
70(1)127,
79(2)295,
82(2)409,
83(2)323,
87(1)203,
87(1)221,
93(2)185,
93(2)227,
94(1)101,
97(2)233,
103(1)143,
118(2)193,
120(2)197,
133(1)3,
133(1)85