Entry Herbst:1993:GPF from tcs1990.bib
Last update: Wed Sep 26 02:11:46 MDT 2018
              
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Herbst:1993:GPF,
  author =       "Thomas Herbst and Richard M. Thomas",
  title =        "Group presentations, formal languages and
                 characterizations of one-counter groups",
  journal =      j-THEOR-COMP-SCI,
  volume =       "112",
  number =       "2",
  pages =        "187--214",
  day =          "10",
  month =        may,
  year =         "1993",
  CODEN =        "TCSCDI",
  ISSN =         "0304-3975 (print), 1879-2294 (electronic)",
  ISSN-L =       "0304-3975",
  bibdate =      "Mon Jul 19 22:17:11 MDT 1999",
  bibsource =    "http://www.elsevier.com/cgi-bin/cas/tree/store/tcs/cas_free/browse/browse.cgi?year=1993&volume=112&issue=2;
                 http://www.math.utah.edu/pub/tex/bib/tcs1990.bib",
  URL =          "http://www.elsevier.com/cgi-bin/cas/tree/store/tcs/cas_sub/browse/browse.cgi?year=1993&volume=112&issue=2&aid=1314",
  acknowledgement = ack-nhfb,
  classification = "C1110 (Algebra); C1160 (Combinatorial mathematics);
                 C4210 (Formal logic)",
  corpsource =   "Inst. fur Inf. und Praktische Math.,
                 Christian-Albrechts-Univ. Kiel, Germany",
  fjournal =     "Theoretical Computer Science",
  journal-URL =  "http://www.sciencedirect.com/science/journal/03043975/",
  keywords =     "context-free language; context-free languages; formal
                 languages; group presentations; group theory; one
                 counter language; one-counter groups; regular language;
                 set theory; word problem",
  pubcountry =   "Netherlands",
  treatment =    "T Theoretical or Mathematical",
}
Related entries
- C1110,
71(3)347,
72(2)119,
74(3)273,
84(2)225,
84(2)251,
87(1)1,
89(2)207,
93(2)327,
98(1)79,
98(1)99,
98(1)115,
98(1)137,
98(1)z,
108(1)3,
108(1)17,
112(2)311,
112(2)371,
120(1)101,
123(2)239,
123(2)259,
129(2)337,
134(1)3,
134(1)131,
134(1)189,
134(1)209
 
- characterization,
70(2)193,
71(3)413,
80(2)303,
83(2)249,
83(2)313,
85(1)117,
87(2)329,
88(1)139,
88(2)231,
96(1)35,
99(2)301,
103(1)143,
103(2)311,
105(1)7,
110(2)405,
113(2)371,
129(2)207,
132(1)337,
133(1)105,
134(2)455
 
- counter,
76(2)251,
108(2)371
 
- counter, one-,
85(1)53,
97(2)245,
108(2)393
 
- group,
70(2)193,
72(1)65,
80(1)117,
80(2)227,
84(1)23,
84(2)225,
84(2)251,
86(2)233,
87(2)229,
87(2)315,
88(1)83,
88(1)151,
89(2)207,
91(1)119,
93(2)327,
94(2)199,
95(2)263,
98(1)79,
98(1)115,
98(2)321,
99(2)231,
108(1)3,
108(1)119,
108(1)151,
108(1)z,
109(1)3,
112(2)311,
115(1)3,
117(1)243,
120(1)101,
123(2)239,
123(2)259,
125(1)149,
134(1)3,
134(1)189,
134(1)209,
134(1)z
 
- one,
73(3)265,
75(1)3,
96(2)389,
96(2)411,
118(1)3,
118(1)49,
119(2)331,
123(2)239,
123(2)273,
132(1)395,
134(1)51
 
- one-counter,
85(1)53,
97(2)245,
108(2)393
 
- presentation,
85(2)231,
107(2)277,
120(1)69,
131(2)271
 
- regular,
70(2)213,
73(1)91,
73(3)329,
74(3)341,
75(1)157,
76(2)261,
76(2)273,
76(2)323,
77(1)97,
79(1)25,
81(2)305,
82(1)19,
83(2)287,
84(2)293,
85(1)117,
86(2)233,
87(1)43,
87(2)315,
88(1)139,
88(2)287,
88(2)351,
91(1)85,
91(1)101,
96(2)285,
97(2)217,
98(2)163,
99(1)79,
100(1)67,
101(1)133,
103(2)191,
103(2)409,
104(2)161,
106(1)61,
106(1)119,
108(1)17,
108(2)393,
112(2)413,
115(2)261,
116(2)305,
116(2)373,
119(2)267,
120(2)197,
124(2)329,
125(2)315,
125(2)361,
127(2)287,
129(1)187,
131(2)311,
131(2)463,
132(1)71,
133(1)49,
134(1)107,
134(1)119,
134(1)175,
134(1)189,
134(1)253,
134(2)537
 
- word,
71(3)281,
71(3)381,
72(1)27,
72(1)39,
72(1)55,
73(3)335,
74(1)3,
79(1)195,
79(1)241,
81(1)147,
81(2)305,
82(1)71,
83(2)301,
85(1)33,
86(2)277,
88(1)83,
88(2)365,
92(1)19,
93(2)227,
94(2)199,
94(2)367,
96(2)325,
96(2)405,
99(2)327,
100(1)67,
102(2)253,
106(2)327,
106(2)373,
106(2)395,
108(1)3,
108(1)17,
108(1)45,
108(1)103,
108(1)z,
108(2)251,
108(2)311,
108(2)357,
110(1)1,
112(2)311,
115(1)43,
115(2)191,
115(2)243,
117(1)217,
119(2)267,
120(2)303,
123(1)55,
123(2)273,
126(2)237,
127(1)53,
129(2)263,
129(2)369,
131(2)271,
132(1)129,
132(1)415,
134(1)209,
134(1)225,
134(1)z,
134(2)529,
136(2)361