Entry Jonoska:1996:SSS from tcs1995.bib
Last update: Sun Oct 15 02:56:11 MDT 2017
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Jonoska:1996:SSS,
author = "Nata{\v{s}}a Jonoska",
title = "Sofic shifts with synchronizing presentations",
journal = j-THEOR-COMP-SCI,
volume = "158",
number = "1--2",
pages = "81--115",
day = "20",
month = may,
year = "1996",
CODEN = "TCSCDI",
ISSN = "0304-3975 (print), 1879-2294 (electronic)",
ISSN-L = "0304-3975",
bibdate = "Mon Jul 19 22:19:55 MDT 1999",
bibsource = "http://www.elsevier.com/cgi-bin/cas/tree/store/tcs/cas_free/browse/browse.cgi?year=1996&volume=158&issue=1-2;
http://www.math.utah.edu/pub/tex/bib/tcs1995.bib",
URL = "http://www.elsevier.com/cgi-bin/cas/tree/store/tcs/cas_sub/browse/browse.cgi?year=1996&volume=158&issue=1-2&aid=1996",
acknowledgement = ack-nhfb,
classification = "C1160 (Combinatorial mathematics); C4210L (Formal
languages and computational linguistics)",
corpsource = "Dept. of Math., Univ. of South Florida, Tampa, FL,
USA",
fjournal = "Theoretical Computer Science",
journal-URL = "http://www.sciencedirect.com/science/journal/03043975/",
keywords = "bi-infinite sequences; bi-synchronizing presentation;
binary sequences; directed graphs; factor language;
finite directed labeled graph; formal languages;
predecessor sets; sofic shift; subshift; symbolic
dynamical system; synchronizing presentations;
syntactic monoid",
pubcountry = "Netherlands",
treatment = "T Theoretical or Mathematical",
}
Related entries
- bi-infinite,
168(2)241
- binary,
137(2)237,
138(1)67,
140(2)333,
141(1)283,
141(1)311,
143(2)353,
144(1)251,
145(1)45,
145(1)271,
145(1)317,
146(1)243,
147(1)1,
150(1)77,
154(1)41,
155(2)425,
156(1)39,
156(1)315,
158(1)53,
160(1)305,
169(1)67,
172(1)135,
174(1)67,
177(1)3,
179(1)251,
179(1)301,
180(1)47,
181(1)119,
181(1)181,
182(1)145,
188(1)1,
188(1)241,
197(1)111,
218(1)161,
220(2)363
- directed,
127(2)287,
143(1)73,
151(2)385,
152(1)67,
154(2)247,
154(2)379,
157(2)215,
158(1)343,
159(1)65,
159(1)129,
159(2)343,
168(1)121,
171(1)3,
174(1)97,
175(2)393,
178(1)103,
178(1)129,
194(1)207,
194(1)246,
203(1)143,
221(1)119
- dynamical,
138(1)35,
138(1)67,
138(1)201,
143(2)269,
145(1)1,
163(1)291,
164(1)41,
168(2)417,
168(2)461,
174(1)157,
174(1)203,
178(1)77,
180(1)353,
180(1)363,
187(1)87,
201(1)99,
217(1)31
- factor,
141(1)175,
141(1)269,
154(2)387,
165(2)295,
172(1)67,
181(2)379,
205(1)337,
209(1)377,
218(1)41,
218(1)177
- infinite, bi-,
168(2)241
- labeled,
143(1)137,
154(2)247
- monoid,
145(1)229,
146(1)321,
148(2)227,
150(1)77,
163(1)55,
163(1)259,
168(1)105,
172(1)135,
174(1)67,
178(1)257,
183(1)45,
183(1)93,
191(1)117,
191(1)219,
194(1)57,
197(1)246-2,
204(1)35,
204(1)131,
204(1)169,
208(1)3,
225(1)149
- presentation,
146(1)321,
161(1)263,
183(1)83,
197(1)244-2
- sequence,
139(1)27,
143(2)335,
144(1)101,
145(1)291,
145(1)317,
147(1)31,
148(1)1,
150(1)77,
151(1)163,
151(1)277,
155(2)321,
156(1)39,
158(1)35,
158(1)65,
161(1)289,
163(1)193,
163(1)211,
164(1)165,
165(2)233,
165(2)295,
168(2)267,
168(2)337,
170(1)349,
174(1)67,
174(1)171,
174(1)259,
178(1)155,
180(1)115,
180(1)203,
182(1)145,
182(1)233,
183(1)143,
184(1)61,
185(1)3,
188(1)161,
188(1)195,
191(1)185,
191(1)245,
194(1)240,
194(1)241-2,
194(1)244-2,
197(1)244-1,
205(1)337,
207(2)343,
207(2)363,
209(1)179,
209(1)261,
209(1)377,
210(2)305,
210(2)341,
215(1)31,
218(1)3,
218(1)177,
221(1)41,
225(1)185
- shift,
148(1)1,
163(1)117,
168(2)461,
174(1)203,
197(1)246-1,
226(1)61
- sofic,
174(1)203
- subshift,
174(1)203
- symbolic,
138(1)3,
138(2)353,
148(1)1,
164(1)165,
171(1)247,
176(1)39,
187(1)221,
187(1)231,
187(1)249,
188(1)161,
192(1)107,
221(1)211
- syntactic,
143(1)1,
145(1)159,
155(1)111,
163(1)259,
167(1)47,
173(1)209,
183(1)93,
197(1)1,
228(1)211